mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
415 lines
17 KiB
415 lines
17 KiB
#!/usr/bin/env python |
|
import os |
|
import cv2 as cv |
|
import numpy as np |
|
|
|
from tests_common import NewOpenCVTests, unittest |
|
|
|
def normAssert(test, a, b, msg=None, lInf=1e-5): |
|
test.assertLess(np.max(np.abs(a - b)), lInf, msg) |
|
|
|
def inter_area(box1, box2): |
|
x_min, x_max = max(box1[0], box2[0]), min(box1[2], box2[2]) |
|
y_min, y_max = max(box1[1], box2[1]), min(box1[3], box2[3]) |
|
return (x_max - x_min) * (y_max - y_min) |
|
|
|
def area(box): |
|
return (box[2] - box[0]) * (box[3] - box[1]) |
|
|
|
def box2str(box): |
|
left, top = box[0], box[1] |
|
width, height = box[2] - left, box[3] - top |
|
return '[%f x %f from (%f, %f)]' % (width, height, left, top) |
|
|
|
def normAssertDetections(test, refClassIds, refScores, refBoxes, testClassIds, testScores, testBoxes, |
|
confThreshold=0.0, scores_diff=1e-5, boxes_iou_diff=1e-4): |
|
matchedRefBoxes = [False] * len(refBoxes) |
|
errMsg = '' |
|
for i in range(len(testBoxes)): |
|
testScore = testScores[i] |
|
if testScore < confThreshold: |
|
continue |
|
|
|
testClassId, testBox = testClassIds[i], testBoxes[i] |
|
matched = False |
|
for j in range(len(refBoxes)): |
|
if (not matchedRefBoxes[j]) and testClassId == refClassIds[j] and \ |
|
abs(testScore - refScores[j]) < scores_diff: |
|
interArea = inter_area(testBox, refBoxes[j]) |
|
iou = interArea / (area(testBox) + area(refBoxes[j]) - interArea) |
|
if abs(iou - 1.0) < boxes_iou_diff: |
|
matched = True |
|
matchedRefBoxes[j] = True |
|
if not matched: |
|
errMsg += '\nUnmatched prediction: class %d score %f box %s' % (testClassId, testScore, box2str(testBox)) |
|
|
|
for i in range(len(refBoxes)): |
|
if (not matchedRefBoxes[i]) and refScores[i] > confThreshold: |
|
errMsg += '\nUnmatched reference: class %d score %f box %s' % (refClassIds[i], refScores[i], box2str(refBoxes[i])) |
|
if errMsg: |
|
test.fail(errMsg) |
|
|
|
def printParams(backend, target): |
|
backendNames = { |
|
cv.dnn.DNN_BACKEND_OPENCV: 'OCV', |
|
cv.dnn.DNN_BACKEND_INFERENCE_ENGINE: 'DLIE' |
|
} |
|
targetNames = { |
|
cv.dnn.DNN_TARGET_CPU: 'CPU', |
|
cv.dnn.DNN_TARGET_OPENCL: 'OCL', |
|
cv.dnn.DNN_TARGET_OPENCL_FP16: 'OCL_FP16', |
|
cv.dnn.DNN_TARGET_MYRIAD: 'MYRIAD' |
|
} |
|
print('%s/%s' % (backendNames[backend], targetNames[target])) |
|
|
|
def getDefaultThreshold(target): |
|
if target == cv.dnn.DNN_TARGET_OPENCL_FP16 or target == cv.dnn.DNN_TARGET_MYRIAD: |
|
return 4e-3 |
|
else: |
|
return 1e-5 |
|
|
|
testdata_required = bool(os.environ.get('OPENCV_DNN_TEST_REQUIRE_TESTDATA', False)) |
|
|
|
g_dnnBackendsAndTargets = None |
|
|
|
class dnn_test(NewOpenCVTests): |
|
|
|
def setUp(self): |
|
super(dnn_test, self).setUp() |
|
|
|
global g_dnnBackendsAndTargets |
|
if g_dnnBackendsAndTargets is None: |
|
g_dnnBackendsAndTargets = self.initBackendsAndTargets() |
|
self.dnnBackendsAndTargets = g_dnnBackendsAndTargets |
|
|
|
def initBackendsAndTargets(self): |
|
self.dnnBackendsAndTargets = [ |
|
[cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_CPU], |
|
] |
|
|
|
if self.checkIETarget(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_TARGET_CPU): |
|
self.dnnBackendsAndTargets.append([cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_TARGET_CPU]) |
|
if self.checkIETarget(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_TARGET_MYRIAD): |
|
self.dnnBackendsAndTargets.append([cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_TARGET_MYRIAD]) |
|
|
|
if cv.ocl.haveOpenCL() and cv.ocl.useOpenCL(): |
|
self.dnnBackendsAndTargets.append([cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_OPENCL]) |
|
self.dnnBackendsAndTargets.append([cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_OPENCL_FP16]) |
|
if cv.ocl_Device.getDefault().isIntel(): |
|
if self.checkIETarget(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_TARGET_OPENCL): |
|
self.dnnBackendsAndTargets.append([cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_TARGET_OPENCL]) |
|
if self.checkIETarget(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_TARGET_OPENCL_FP16): |
|
self.dnnBackendsAndTargets.append([cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_TARGET_OPENCL_FP16]) |
|
return self.dnnBackendsAndTargets |
|
|
|
def find_dnn_file(self, filename, required=True): |
|
if not required: |
|
required = testdata_required |
|
return self.find_file(filename, [os.environ.get('OPENCV_DNN_TEST_DATA_PATH', os.getcwd()), |
|
os.environ['OPENCV_TEST_DATA_PATH']], |
|
required=required) |
|
|
|
def checkIETarget(self, backend, target): |
|
proto = self.find_dnn_file('dnn/layers/layer_convolution.prototxt') |
|
model = self.find_dnn_file('dnn/layers/layer_convolution.caffemodel') |
|
net = cv.dnn.readNet(proto, model) |
|
try: |
|
net.setPreferableBackend(backend) |
|
net.setPreferableTarget(target) |
|
inp = np.random.standard_normal([1, 2, 10, 11]).astype(np.float32) |
|
net.setInput(inp) |
|
net.forward() |
|
except BaseException as e: |
|
return False |
|
return True |
|
|
|
def test_getAvailableTargets(self): |
|
targets = cv.dnn.getAvailableTargets(cv.dnn.DNN_BACKEND_OPENCV) |
|
self.assertTrue(cv.dnn.DNN_TARGET_CPU in targets) |
|
|
|
def test_blobFromImage(self): |
|
np.random.seed(324) |
|
|
|
width = 6 |
|
height = 7 |
|
scale = 1.0/127.5 |
|
mean = (10, 20, 30) |
|
|
|
# Test arguments names. |
|
img = np.random.randint(0, 255, [4, 5, 3]).astype(np.uint8) |
|
blob = cv.dnn.blobFromImage(img, scale, (width, height), mean, True, False) |
|
blob_args = cv.dnn.blobFromImage(img, scalefactor=scale, size=(width, height), |
|
mean=mean, swapRB=True, crop=False) |
|
normAssert(self, blob, blob_args) |
|
|
|
# Test values. |
|
target = cv.resize(img, (width, height), interpolation=cv.INTER_LINEAR) |
|
target = target.astype(np.float32) |
|
target = target[:,:,[2, 1, 0]] # BGR2RGB |
|
target[:,:,0] -= mean[0] |
|
target[:,:,1] -= mean[1] |
|
target[:,:,2] -= mean[2] |
|
target *= scale |
|
target = target.transpose(2, 0, 1).reshape(1, 3, height, width) # to NCHW |
|
normAssert(self, blob, target) |
|
|
|
|
|
def test_model(self): |
|
img_path = self.find_dnn_file("dnn/street.png") |
|
weights = self.find_dnn_file("dnn/MobileNetSSD_deploy.caffemodel", required=False) |
|
config = self.find_dnn_file("dnn/MobileNetSSD_deploy.prototxt", required=False) |
|
if weights is None or config is None: |
|
raise unittest.SkipTest("Missing DNN test files (dnn/MobileNetSSD_deploy.{prototxt/caffemodel}). Verify OPENCV_DNN_TEST_DATA_PATH configuration parameter.") |
|
|
|
frame = cv.imread(img_path) |
|
model = cv.dnn_DetectionModel(weights, config) |
|
model.setInputParams(size=(300, 300), mean=(127.5, 127.5, 127.5), scale=1.0/127.5) |
|
|
|
iouDiff = 0.05 |
|
confThreshold = 0.0001 |
|
nmsThreshold = 0 |
|
scoreDiff = 1e-3 |
|
|
|
classIds, confidences, boxes = model.detect(frame, confThreshold, nmsThreshold) |
|
|
|
refClassIds = (7, 15) |
|
refConfidences = (0.9998, 0.8793) |
|
refBoxes = ((328, 238, 85, 102), (101, 188, 34, 138)) |
|
|
|
normAssertDetections(self, refClassIds, refConfidences, refBoxes, |
|
classIds, confidences, boxes,confThreshold, scoreDiff, iouDiff) |
|
|
|
for box in boxes: |
|
cv.rectangle(frame, box, (0, 255, 0)) |
|
cv.rectangle(frame, np.array(box), (0, 255, 0)) |
|
cv.rectangle(frame, tuple(box), (0, 255, 0)) |
|
cv.rectangle(frame, list(box), (0, 255, 0)) |
|
|
|
|
|
def test_classification_model(self): |
|
img_path = self.find_dnn_file("dnn/googlenet_0.png") |
|
weights = self.find_dnn_file("dnn/squeezenet_v1.1.caffemodel", required=False) |
|
config = self.find_dnn_file("dnn/squeezenet_v1.1.prototxt") |
|
ref = np.load(self.find_dnn_file("dnn/squeezenet_v1.1_prob.npy")) |
|
if weights is None or config is None: |
|
raise unittest.SkipTest("Missing DNN test files (dnn/squeezenet_v1.1.{prototxt/caffemodel}). Verify OPENCV_DNN_TEST_DATA_PATH configuration parameter.") |
|
|
|
frame = cv.imread(img_path) |
|
model = cv.dnn_ClassificationModel(config, weights) |
|
model.setInputSize(227, 227) |
|
model.setInputCrop(True) |
|
|
|
out = model.predict(frame) |
|
normAssert(self, out, ref) |
|
|
|
|
|
def test_textdetection_model(self): |
|
img_path = self.find_dnn_file("dnn/text_det_test1.png") |
|
weights = self.find_dnn_file("dnn/onnx/models/DB_TD500_resnet50.onnx", required=False) |
|
if weights is None: |
|
raise unittest.SkipTest("Missing DNN test files (onnx/models/DB_TD500_resnet50.onnx). Verify OPENCV_DNN_TEST_DATA_PATH configuration parameter.") |
|
|
|
frame = cv.imread(img_path) |
|
scale = 1.0 / 255.0 |
|
size = (736, 736) |
|
mean = (122.67891434, 116.66876762, 104.00698793) |
|
|
|
model = cv.dnn_TextDetectionModel_DB(weights) |
|
model.setInputParams(scale, size, mean) |
|
out, _ = model.detect(frame) |
|
|
|
self.assertTrue(type(out) == tuple, msg='actual type {}'.format(str(type(out)))) |
|
self.assertTrue(np.array(out).shape == (2, 4, 2)) |
|
|
|
|
|
def test_face_detection(self): |
|
proto = self.find_dnn_file('dnn/opencv_face_detector.prototxt') |
|
model = self.find_dnn_file('dnn/opencv_face_detector.caffemodel', required=False) |
|
if proto is None or model is None: |
|
raise unittest.SkipTest("Missing DNN test files (dnn/opencv_face_detector.{prototxt/caffemodel}). Verify OPENCV_DNN_TEST_DATA_PATH configuration parameter.") |
|
|
|
img = self.get_sample('gpu/lbpcascade/er.png') |
|
blob = cv.dnn.blobFromImage(img, mean=(104, 177, 123), swapRB=False, crop=False) |
|
|
|
ref = [[0, 1, 0.99520785, 0.80997437, 0.16379407, 0.87996572, 0.26685631], |
|
[0, 1, 0.9934696, 0.2831718, 0.50738752, 0.345781, 0.5985168], |
|
[0, 1, 0.99096733, 0.13629119, 0.24892329, 0.19756334, 0.3310290], |
|
[0, 1, 0.98977017, 0.23901358, 0.09084064, 0.29902688, 0.1769477], |
|
[0, 1, 0.97203469, 0.67965847, 0.06876482, 0.73999709, 0.1513494], |
|
[0, 1, 0.95097077, 0.51901293, 0.45863652, 0.5777427, 0.5347801]] |
|
|
|
print('\n') |
|
for backend, target in self.dnnBackendsAndTargets: |
|
printParams(backend, target) |
|
|
|
net = cv.dnn.readNet(proto, model) |
|
net.setPreferableBackend(backend) |
|
net.setPreferableTarget(target) |
|
net.setInput(blob) |
|
out = net.forward().reshape(-1, 7) |
|
|
|
scoresDiff = 4e-3 if target in [cv.dnn.DNN_TARGET_OPENCL_FP16, cv.dnn.DNN_TARGET_MYRIAD] else 1e-5 |
|
iouDiff = 2e-2 if target in [cv.dnn.DNN_TARGET_OPENCL_FP16, cv.dnn.DNN_TARGET_MYRIAD] else 1e-4 |
|
|
|
ref = np.array(ref, np.float32) |
|
refClassIds, testClassIds = ref[:, 1], out[:, 1] |
|
refScores, testScores = ref[:, 2], out[:, 2] |
|
refBoxes, testBoxes = ref[:, 3:], out[:, 3:] |
|
|
|
normAssertDetections(self, refClassIds, refScores, refBoxes, testClassIds, |
|
testScores, testBoxes, 0.5, scoresDiff, iouDiff) |
|
|
|
def test_async(self): |
|
timeout = 10*1000*10**6 # in nanoseconds (10 sec) |
|
proto = self.find_dnn_file('dnn/layers/layer_convolution.prototxt') |
|
model = self.find_dnn_file('dnn/layers/layer_convolution.caffemodel') |
|
if proto is None or model is None: |
|
raise unittest.SkipTest("Missing DNN test files (dnn/layers/layer_convolution.{prototxt/caffemodel}). Verify OPENCV_DNN_TEST_DATA_PATH configuration parameter.") |
|
|
|
print('\n') |
|
for backend, target in self.dnnBackendsAndTargets: |
|
if backend != cv.dnn.DNN_BACKEND_INFERENCE_ENGINE: |
|
continue |
|
|
|
printParams(backend, target) |
|
|
|
netSync = cv.dnn.readNet(proto, model) |
|
netSync.setPreferableBackend(backend) |
|
netSync.setPreferableTarget(target) |
|
|
|
netAsync = cv.dnn.readNet(proto, model) |
|
netAsync.setPreferableBackend(backend) |
|
netAsync.setPreferableTarget(target) |
|
|
|
# Generate inputs |
|
numInputs = 10 |
|
inputs = [] |
|
for _ in range(numInputs): |
|
inputs.append(np.random.standard_normal([2, 6, 75, 113]).astype(np.float32)) |
|
|
|
# Run synchronously |
|
refs = [] |
|
for i in range(numInputs): |
|
netSync.setInput(inputs[i]) |
|
refs.append(netSync.forward()) |
|
|
|
# Run asynchronously. To make test more robust, process inputs in the reversed order. |
|
outs = [] |
|
for i in reversed(range(numInputs)): |
|
netAsync.setInput(inputs[i]) |
|
outs.insert(0, netAsync.forwardAsync()) |
|
|
|
for i in reversed(range(numInputs)): |
|
ret, result = outs[i].get(timeoutNs=float(timeout)) |
|
self.assertTrue(ret) |
|
normAssert(self, refs[i], result, 'Index: %d' % i, 1e-10) |
|
|
|
def test_nms(self): |
|
confs = (1, 1) |
|
rects = ((0, 0, 0.4, 0.4), (0, 0, 0.2, 0.4)) # 0.5 overlap |
|
|
|
self.assertTrue(all(cv.dnn.NMSBoxes(rects, confs, 0, 0.6).ravel() == (0, 1))) |
|
|
|
def test_custom_layer(self): |
|
class CropLayer(object): |
|
def __init__(self, params, blobs): |
|
self.xstart = 0 |
|
self.xend = 0 |
|
self.ystart = 0 |
|
self.yend = 0 |
|
# Our layer receives two inputs. We need to crop the first input blob |
|
# to match a shape of the second one (keeping batch size and number of channels) |
|
def getMemoryShapes(self, inputs): |
|
inputShape, targetShape = inputs[0], inputs[1] |
|
batchSize, numChannels = inputShape[0], inputShape[1] |
|
height, width = targetShape[2], targetShape[3] |
|
self.ystart = (inputShape[2] - targetShape[2]) // 2 |
|
self.xstart = (inputShape[3] - targetShape[3]) // 2 |
|
self.yend = self.ystart + height |
|
self.xend = self.xstart + width |
|
return [[batchSize, numChannels, height, width]] |
|
def forward(self, inputs): |
|
return [inputs[0][:,:,self.ystart:self.yend,self.xstart:self.xend]] |
|
|
|
cv.dnn_registerLayer('CropCaffe', CropLayer) |
|
proto = ''' |
|
name: "TestCrop" |
|
input: "input" |
|
input_shape |
|
{ |
|
dim: 1 |
|
dim: 2 |
|
dim: 5 |
|
dim: 5 |
|
} |
|
input: "roi" |
|
input_shape |
|
{ |
|
dim: 1 |
|
dim: 2 |
|
dim: 3 |
|
dim: 3 |
|
} |
|
layer { |
|
name: "Crop" |
|
type: "CropCaffe" |
|
bottom: "input" |
|
bottom: "roi" |
|
top: "Crop" |
|
}''' |
|
|
|
net = cv.dnn.readNetFromCaffe(bytearray(proto.encode())) |
|
for backend, target in self.dnnBackendsAndTargets: |
|
if backend != cv.dnn.DNN_BACKEND_OPENCV: |
|
continue |
|
|
|
printParams(backend, target) |
|
|
|
net.setPreferableBackend(backend) |
|
net.setPreferableTarget(target) |
|
src_shape = [1, 2, 5, 5] |
|
dst_shape = [1, 2, 3, 3] |
|
inp = np.arange(0, np.prod(src_shape), dtype=np.float32).reshape(src_shape) |
|
roi = np.empty(dst_shape, dtype=np.float32) |
|
net.setInput(inp, "input") |
|
net.setInput(roi, "roi") |
|
out = net.forward() |
|
ref = inp[:, :, 1:4, 1:4] |
|
normAssert(self, out, ref) |
|
|
|
cv.dnn_unregisterLayer('CropCaffe') |
|
|
|
# check that dnn module can work with 3D tensor as input for network |
|
def test_input_3d(self): |
|
model = self.find_dnn_file('dnn/onnx/models/hidden_lstm.onnx') |
|
input_file = self.find_dnn_file('dnn/onnx/data/input_hidden_lstm.npy') |
|
output_file = self.find_dnn_file('dnn/onnx/data/output_hidden_lstm.npy') |
|
if model is None: |
|
raise unittest.SkipTest("Missing DNN test files (dnn/onnx/models/hidden_lstm.onnx). " |
|
"Verify OPENCV_DNN_TEST_DATA_PATH configuration parameter.") |
|
if input_file is None or output_file is None: |
|
raise unittest.SkipTest("Missing DNN test files (dnn/onnx/data/{input/output}_hidden_lstm.npy). " |
|
"Verify OPENCV_DNN_TEST_DATA_PATH configuration parameter.") |
|
|
|
input = np.load(input_file) |
|
# we have to expand the shape of input tensor because Python bindings cut 3D tensors to 2D |
|
# it should be fixed in future. see : https://github.com/opencv/opencv/issues/19091 |
|
# please remove `expand_dims` after that |
|
input = np.expand_dims(input, axis=3) |
|
gold_output = np.load(output_file) |
|
|
|
for backend, target in self.dnnBackendsAndTargets: |
|
printParams(backend, target) |
|
|
|
net = cv.dnn.readNet(model) |
|
|
|
net.setPreferableBackend(backend) |
|
net.setPreferableTarget(target) |
|
|
|
net.setInput(input) |
|
real_output = net.forward() |
|
|
|
normAssert(self, real_output, gold_output, "", getDefaultThreshold(target)) |
|
|
|
if __name__ == '__main__': |
|
NewOpenCVTests.bootstrap()
|
|
|