Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2305 lines
96 KiB
2305 lines
96 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved. |
|
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved. |
|
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// @Authors |
|
// Niko Li, newlife20080214@gmail.com |
|
// Jia Haipeng, jiahaipeng95@gmail.com |
|
// Shengen Yan, yanshengen@gmail.com |
|
// Jiang Liyuan, jlyuan001.good@163.com |
|
// Rock Li, Rock.Li@amd.com |
|
// Zailong Wu, bullet@yeah.net |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other oclMaterials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
#include <iomanip> |
|
|
|
|
|
using namespace cv; |
|
using namespace cv::ocl; |
|
using namespace std; |
|
|
|
namespace cv |
|
{ |
|
namespace ocl |
|
{ |
|
////////////////////////////////OpenCL kernel strings///////////////////// |
|
extern const char *bitwise; |
|
extern const char *bitwiseM; |
|
extern const char *transpose_kernel; |
|
extern const char *arithm_nonzero; |
|
extern const char *arithm_sum; |
|
extern const char *arithm_2_mat; |
|
extern const char *arithm_sum_3; |
|
extern const char *arithm_minMax; |
|
extern const char *arithm_minMax_mask; |
|
extern const char *arithm_minMaxLoc; |
|
extern const char *arithm_minMaxLoc_mask; |
|
extern const char *arithm_LUT; |
|
extern const char *arithm_add; |
|
extern const char *arithm_add_scalar; |
|
extern const char *arithm_add_scalar_mask; |
|
extern const char *arithm_bitwise_not; |
|
extern const char *arithm_bitwise_and; |
|
extern const char *arithm_bitwise_and_mask; |
|
extern const char *arithm_bitwise_and_scalar; |
|
extern const char *arithm_bitwise_and_scalar_mask; |
|
extern const char *arithm_bitwise_or; |
|
extern const char *arithm_bitwise_or_mask; |
|
extern const char *arithm_bitwise_or_scalar; |
|
extern const char *arithm_bitwise_or_scalar_mask; |
|
extern const char *arithm_bitwise_xor; |
|
extern const char *arithm_bitwise_xor_mask; |
|
extern const char *arithm_bitwise_xor_scalar; |
|
extern const char *arithm_bitwise_xor_scalar_mask; |
|
extern const char *arithm_compare_eq; |
|
extern const char *arithm_compare_ne; |
|
extern const char *arithm_sub; |
|
extern const char *arithm_sub_scalar; |
|
extern const char *arithm_sub_scalar_mask; |
|
extern const char *arithm_mul; |
|
extern const char *arithm_div; |
|
extern const char *arithm_absdiff; |
|
extern const char *arithm_transpose; |
|
extern const char *arithm_flip; |
|
extern const char *arithm_flip_rc; |
|
extern const char *arithm_magnitude; |
|
extern const char *arithm_cartToPolar; |
|
extern const char *arithm_polarToCart; |
|
extern const char *arithm_exp; |
|
extern const char *arithm_log; |
|
extern const char *arithm_addWeighted; |
|
extern const char *arithm_phase; |
|
extern const char *arithm_pow; |
|
extern const char *arithm_magnitudeSqr; |
|
//extern const char * jhp_transpose_kernel; |
|
int64 kernelrealtotal = 0; |
|
int64 kernelalltotal = 0; |
|
int64 reducetotal = 0; |
|
int64 downloadtotal = 0; |
|
int64 alltotal = 0; |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////////// |
|
//////////////////common///////////////////////////////////////////////// |
|
/////////////////////////////////////////////////////////////////////// |
|
inline int divUp(int total, int grain) |
|
{ |
|
return (total + grain - 1) / grain; |
|
} |
|
////////////////////////////////////////////////////////////////////////////// |
|
/////////////////////// add subtract multiply divide ///////////////////////// |
|
////////////////////////////////////////////////////////////////////////////// |
|
template<typename T> |
|
void arithmetic_run(const oclMat &src1, const oclMat &src2, oclMat &dst, string kernelName, const char **kernelString, void *_scalar) |
|
{ |
|
if(src1.clCxt -> impl -> double_support == 0 && src1.type() == CV_64F) |
|
{ |
|
CV_Error(CV_GpuNotSupported, "Selected device don't support double\r\n"); |
|
return; |
|
} |
|
|
|
dst.create(src1.size(), src1.type()); |
|
CV_Assert(src1.cols == src2.cols && src2.cols == dst.cols && |
|
src1.rows == src2.rows && src2.rows == dst.rows); |
|
|
|
CV_Assert(src1.type() == src2.type() && src1.type() == dst.type()); |
|
CV_Assert(src1.depth() != CV_8S); |
|
|
|
Context *clCxt = src1.clCxt; |
|
int channels = dst.oclchannels(); |
|
int depth = dst.depth(); |
|
|
|
int vector_lengths[4][7] = {{4, 0, 4, 4, 1, 1, 1}, |
|
{4, 0, 4, 4, 1, 1, 1}, |
|
{4, 0, 4, 4, 1, 1, 1}, |
|
{4, 0, 4, 4, 1, 1, 1} |
|
}; |
|
|
|
size_t vector_length = vector_lengths[channels - 1][depth]; |
|
int offset_cols = (dst.offset / dst.elemSize1()) & (vector_length - 1); |
|
int cols = divUp(dst.cols * channels + offset_cols, vector_length); |
|
|
|
size_t localThreads[3] = { 64, 4, 1 }; |
|
size_t globalThreads[3] = { divUp(cols, localThreads[0]) *localThreads[0], |
|
divUp(dst.rows, localThreads[1]) *localThreads[1], |
|
1 |
|
}; |
|
|
|
int dst_step1 = dst.cols * dst.elemSize(); |
|
vector<pair<size_t , const void *> > args; |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&src1.data )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src1.step )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src1.offset )); |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&src2.data )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src2.step )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src2.offset )); |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&dst.data )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.step )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.offset )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src1.rows )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&cols )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&dst_step1 )); |
|
T scalar; |
|
if(_scalar != NULL) |
|
{ |
|
double scalar1 = *((double *)_scalar); |
|
scalar = (T)scalar1; |
|
args.push_back( make_pair( sizeof(T), (void *)&scalar )); |
|
} |
|
|
|
openCLExecuteKernel(clCxt, kernelString, kernelName, globalThreads, localThreads, args, -1, depth); |
|
} |
|
static void arithmetic_run(const oclMat &src1, const oclMat &src2, oclMat &dst, string kernelName, const char **kernelString) |
|
{ |
|
arithmetic_run<char>(src1, src2, dst, kernelName, kernelString, (void *)NULL); |
|
} |
|
static void arithmetic_run(const oclMat &src1, const oclMat &src2, oclMat &dst, const oclMat &mask, string kernelName, const char **kernelString) |
|
{ |
|
if(src1.clCxt -> impl -> double_support == 0 && src1.type() == CV_64F) |
|
{ |
|
CV_Error(CV_GpuNotSupported, "Selected device don't support double\r\n"); |
|
return; |
|
} |
|
|
|
dst.create(src1.size(), src1.type()); |
|
CV_Assert(src1.cols == src2.cols && src2.cols == dst.cols && |
|
src1.rows == src2.rows && src2.rows == dst.rows && |
|
src1.rows == mask.rows && src1.cols == mask.cols); |
|
|
|
CV_Assert(src1.type() == src2.type() && src1.type() == dst.type()); |
|
CV_Assert(src1.depth() != CV_8S); |
|
CV_Assert(mask.type() == CV_8U); |
|
|
|
Context *clCxt = src1.clCxt; |
|
int channels = dst.oclchannels(); |
|
int depth = dst.depth(); |
|
|
|
int vector_lengths[4][7] = {{4, 4, 2, 2, 1, 1, 1}, |
|
{2, 2, 1, 1, 1, 1, 1}, |
|
{4, 4, 2, 2 , 1, 1, 1}, |
|
{1, 1, 1, 1, 1, 1, 1} |
|
}; |
|
|
|
size_t vector_length = vector_lengths[channels - 1][depth]; |
|
int offset_cols = ((dst.offset % dst.step) / dst.elemSize()) & (vector_length - 1); |
|
int cols = divUp(dst.cols + offset_cols, vector_length); |
|
|
|
size_t localThreads[3] = { 64, 4, 1 }; |
|
size_t globalThreads[3] = { divUp(cols, localThreads[0]) *localThreads[0], |
|
divUp(dst.rows, localThreads[1]) *localThreads[1], |
|
1 |
|
}; |
|
|
|
int dst_step1 = dst.cols * dst.elemSize(); |
|
vector<pair<size_t , const void *> > args; |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&src1.data )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src1.step )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src1.offset )); |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&src2.data )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src2.step )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src2.offset )); |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&mask.data )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&mask.step )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&mask.offset )); |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&dst.data )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.step )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.offset )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src1.rows )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&cols )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&dst_step1 )); |
|
|
|
openCLExecuteKernel(clCxt, kernelString, kernelName, globalThreads, localThreads, args, channels, depth); |
|
} |
|
void cv::ocl::add(const oclMat &src1, const oclMat &src2, oclMat &dst) |
|
{ |
|
arithmetic_run(src1, src2, dst, "arithm_add", &arithm_add); |
|
} |
|
void cv::ocl::add(const oclMat &src1, const oclMat &src2, oclMat &dst, const oclMat &mask) |
|
{ |
|
arithmetic_run(src1, src2, dst, mask, "arithm_add_with_mask", &arithm_add); |
|
} |
|
|
|
void cv::ocl::subtract(const oclMat &src1, const oclMat &src2, oclMat &dst) |
|
{ |
|
arithmetic_run(src1, src2, dst, "arithm_sub", &arithm_sub); |
|
} |
|
void cv::ocl::subtract(const oclMat &src1, const oclMat &src2, oclMat &dst, const oclMat &mask) |
|
{ |
|
arithmetic_run(src1, src2, dst, mask, "arithm_sub_with_mask", &arithm_sub); |
|
} |
|
typedef void (*MulDivFunc)(const oclMat &src1, const oclMat &src2, oclMat &dst, string kernelName, |
|
const char **kernelString, void *scalar); |
|
|
|
void cv::ocl::multiply(const oclMat &src1, const oclMat &src2, oclMat &dst, double scalar) |
|
{ |
|
if((src1.clCxt -> impl -> double_support != 0) && (src1.depth() == CV_64F)) |
|
arithmetic_run<double>(src1, src2, dst, "arithm_mul", &arithm_mul, (void *)(&scalar)); |
|
else |
|
arithmetic_run<float>(src1, src2, dst, "arithm_mul", &arithm_mul, (void *)(&scalar)); |
|
} |
|
void cv::ocl::divide(const oclMat &src1, const oclMat &src2, oclMat &dst, double scalar) |
|
{ |
|
|
|
if(src1.clCxt -> impl -> double_support != 0) |
|
arithmetic_run<double>(src1, src2, dst, "arithm_div", &arithm_div, (void *)(&scalar)); |
|
else |
|
arithmetic_run<float>(src1, src2, dst, "arithm_div", &arithm_div, (void *)(&scalar)); |
|
|
|
} |
|
template <typename WT , typename CL_WT> |
|
void arithmetic_scalar_run(const oclMat &src1, const Scalar &src2, oclMat &dst, const oclMat &mask, string kernelName, const char **kernelString, int isMatSubScalar) |
|
{ |
|
if(src1.clCxt -> impl -> double_support == 0 && src1.type() == CV_64F) |
|
{ |
|
CV_Error(CV_GpuNotSupported, "Selected device don't support double\r\n"); |
|
return; |
|
} |
|
|
|
dst.create(src1.size(), src1.type()); |
|
|
|
CV_Assert(src1.cols == dst.cols && src1.rows == dst.rows && |
|
src1.type() == dst.type()); |
|
|
|
//CV_Assert(src1.depth() != CV_8S); |
|
|
|
if(mask.data) |
|
{ |
|
CV_Assert(mask.type() == CV_8U && src1.rows == mask.rows && src1.cols == mask.cols); |
|
} |
|
|
|
Context *clCxt = src1.clCxt; |
|
int channels = dst.oclchannels(); |
|
int depth = dst.depth(); |
|
|
|
WT s[4] = { saturate_cast<WT>(src2.val[0]), saturate_cast<WT>(src2.val[1]), |
|
saturate_cast<WT>(src2.val[2]), saturate_cast<WT>(src2.val[3]) |
|
}; |
|
|
|
int vector_lengths[4][7] = {{4, 0, 2, 2, 1, 1, 1}, |
|
{2, 0, 1, 1, 1, 1, 1}, |
|
{4, 0, 2, 2 , 1, 1, 1}, |
|
{1, 0, 1, 1, 1, 1, 1} |
|
}; |
|
|
|
size_t vector_length = vector_lengths[channels - 1][depth]; |
|
int offset_cols = ((dst.offset % dst.step) / dst.elemSize()) & (vector_length - 1); |
|
int cols = divUp(dst.cols + offset_cols, vector_length); |
|
|
|
size_t localThreads[3] = { 64, 4, 1 }; |
|
size_t globalThreads[3] = { divUp(cols, localThreads[0]) *localThreads[0], |
|
divUp(dst.rows, localThreads[1]) *localThreads[1], |
|
1 |
|
}; |
|
|
|
int dst_step1 = dst.cols * dst.elemSize(); |
|
vector<pair<size_t , const void *> > args; |
|
args.push_back( make_pair( sizeof(cl_mem) , (void *)&src1.data )); |
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&src1.step )); |
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&src1.offset)); |
|
args.push_back( make_pair( sizeof(cl_mem) , (void *)&dst.data )); |
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&dst.step )); |
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&dst.offset)); |
|
|
|
if(mask.data) |
|
{ |
|
args.push_back( make_pair( sizeof(cl_mem) , (void *)&mask.data )); |
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&mask.step )); |
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&mask.offset)); |
|
} |
|
args.push_back( make_pair( sizeof(CL_WT) , (void *)&s )); |
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&src1.rows )); |
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&cols )); |
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&dst_step1 )); |
|
if(isMatSubScalar != 0) |
|
{ |
|
isMatSubScalar = isMatSubScalar > 0 ? 1 : 0; |
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&isMatSubScalar)); |
|
} |
|
|
|
openCLExecuteKernel(clCxt, kernelString, kernelName, globalThreads, localThreads, args, channels, depth); |
|
} |
|
|
|
static void arithmetic_scalar_run(const oclMat &src, oclMat &dst, string kernelName, const char **kernelString, double scalar) |
|
{ |
|
if(src.clCxt -> impl -> double_support == 0 && src.type() == CV_64F) |
|
{ |
|
CV_Error(CV_GpuNotSupported, "Selected device don't support double\r\n"); |
|
return; |
|
} |
|
|
|
dst.create(src.size(), src.type()); |
|
CV_Assert(src.cols == dst.cols && src.rows == dst.rows); |
|
|
|
CV_Assert(src.type() == dst.type()); |
|
CV_Assert(src.depth() != CV_8S); |
|
|
|
Context *clCxt = src.clCxt; |
|
int channels = dst.oclchannels(); |
|
int depth = dst.depth(); |
|
|
|
int vector_lengths[4][7] = {{4, 0, 4, 4, 1, 1, 1}, |
|
{4, 0, 4, 4, 1, 1, 1}, |
|
{4, 0, 4, 4 , 1, 1, 1}, |
|
{4, 0, 4, 4, 1, 1, 1} |
|
}; |
|
|
|
size_t vector_length = vector_lengths[channels - 1][depth]; |
|
int offset_cols = (dst.offset / dst.elemSize1()) & (vector_length - 1); |
|
int cols = divUp(dst.cols * channels + offset_cols, vector_length); |
|
|
|
size_t localThreads[3] = { 64, 4, 1 }; |
|
size_t globalThreads[3] = { divUp(cols, localThreads[0]) *localThreads[0], |
|
divUp(dst.rows, localThreads[1]) *localThreads[1], |
|
1 |
|
}; |
|
|
|
int dst_step1 = dst.cols * dst.elemSize(); |
|
vector<pair<size_t , const void *> > args; |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&src.data )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src.step )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src.offset )); |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&dst.data )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.step )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.offset )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src.rows )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&cols )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&dst_step1 )); |
|
|
|
if(src.clCxt -> impl -> double_support != 0) |
|
args.push_back( make_pair( sizeof(cl_double), (void *)&scalar )); |
|
else |
|
{ |
|
float f_scalar = (float)scalar; |
|
args.push_back( make_pair( sizeof(cl_float), (void *)&f_scalar)); |
|
} |
|
|
|
openCLExecuteKernel(clCxt, kernelString, kernelName, globalThreads, localThreads, args, -1, depth); |
|
} |
|
|
|
typedef void (*ArithmeticFuncS)(const oclMat &src1, const Scalar &src2, oclMat &dst, const oclMat &mask, string kernelName, const char **kernelString, int isMatSubScalar); |
|
|
|
|
|
static void arithmetic_scalar(const oclMat &src1, const Scalar &src2, oclMat &dst, const oclMat &mask, string kernelName, const char **kernelString, int isMatSubScalar) |
|
{ |
|
static ArithmeticFuncS tab[8] = |
|
{ |
|
arithmetic_scalar_run<int, cl_int4>, |
|
arithmetic_scalar_run<int, cl_int4>, |
|
arithmetic_scalar_run<int, cl_int4>, |
|
arithmetic_scalar_run<int, cl_int4>, |
|
arithmetic_scalar_run<int, cl_int4>, |
|
arithmetic_scalar_run<float, cl_float4>, |
|
arithmetic_scalar_run<double, cl_double4>, |
|
0 |
|
}; |
|
ArithmeticFuncS func = tab[src1.depth()]; |
|
if(func == 0) |
|
cv::ocl::error("Unsupported arithmetic operation", __FILE__, __LINE__); |
|
func(src1, src2, dst, mask, kernelName, kernelString, isMatSubScalar); |
|
} |
|
static void arithmetic_scalar(const oclMat &src1, const Scalar &src2, oclMat &dst, const oclMat &mask, string kernelName, const char **kernelString) |
|
{ |
|
arithmetic_scalar(src1, src2, dst, mask, kernelName, kernelString, 0); |
|
} |
|
|
|
void cv::ocl::add(const oclMat &src1, const Scalar &src2, oclMat &dst, const oclMat &mask) |
|
{ |
|
string kernelName = mask.data ? "arithm_s_add_with_mask" : "arithm_s_add"; |
|
const char **kernelString = mask.data ? &arithm_add_scalar_mask : &arithm_add_scalar; |
|
|
|
arithmetic_scalar( src1, src2, dst, mask, kernelName, kernelString); |
|
} |
|
|
|
void cv::ocl::subtract(const oclMat &src1, const Scalar &src2, oclMat &dst, const oclMat &mask) |
|
{ |
|
string kernelName = mask.data ? "arithm_s_sub_with_mask" : "arithm_s_sub"; |
|
const char **kernelString = mask.data ? &arithm_sub_scalar_mask : &arithm_sub_scalar; |
|
arithmetic_scalar( src1, src2, dst, mask, kernelName, kernelString, 1); |
|
} |
|
void cv::ocl::subtract(const Scalar &src2, const oclMat &src1, oclMat &dst, const oclMat &mask) |
|
{ |
|
string kernelName = mask.data ? "arithm_s_sub_with_mask" : "arithm_s_sub"; |
|
const char **kernelString = mask.data ? &arithm_sub_scalar_mask : &arithm_sub_scalar; |
|
arithmetic_scalar( src1, src2, dst, mask, kernelName, kernelString, -1); |
|
} |
|
void cv::ocl::divide(double scalar, const oclMat &src, oclMat &dst) |
|
{ |
|
if(src.clCxt -> impl -> double_support == 0) |
|
{ |
|
CV_Error(CV_GpuNotSupported, "Selected device don't support double\r\n"); |
|
return; |
|
} |
|
|
|
string kernelName = "arithm_s_div"; |
|
arithmetic_scalar_run(src, dst, kernelName, &arithm_div, scalar); |
|
} |
|
////////////////////////////////////////////////////////////////////////////// |
|
///////////////////////////////// Absdiff /////////////////////////////////// |
|
////////////////////////////////////////////////////////////////////////////// |
|
void cv::ocl::absdiff(const oclMat &src1, const oclMat &src2, oclMat &dst) |
|
{ |
|
arithmetic_run(src1, src2, dst, "arithm_absdiff", &arithm_absdiff); |
|
} |
|
void cv::ocl::absdiff(const oclMat &src1, const Scalar &src2, oclMat &dst) |
|
{ |
|
string kernelName = "arithm_s_absdiff"; |
|
oclMat mask; |
|
arithmetic_scalar( src1, src2, dst, mask, kernelName, &arithm_absdiff); |
|
} |
|
////////////////////////////////////////////////////////////////////////////// |
|
///////////////////////////////// compare /////////////////////////////////// |
|
////////////////////////////////////////////////////////////////////////////// |
|
static void compare_run(const oclMat &src1, const oclMat &src2, oclMat &dst, string kernelName, const char **kernelString) |
|
{ |
|
dst.create(src1.size(), CV_8UC1); |
|
CV_Assert(src1.oclchannels() == 1); |
|
CV_Assert(src1.type() == src2.type()); |
|
Context *clCxt = src1.clCxt; |
|
int depth = src1.depth(); |
|
int vector_lengths[7] = {4, 0, 4, 4, 4, 4, 4}; |
|
size_t vector_length = vector_lengths[depth]; |
|
int offset_cols = (dst.offset / dst.elemSize1()) & (vector_length - 1); |
|
int cols = divUp(dst.cols + offset_cols, vector_length); |
|
size_t localThreads[3] = { 64, 4, 1 }; |
|
size_t globalThreads[3] = { divUp(cols, localThreads[0]) *localThreads[0], |
|
divUp(dst.rows, localThreads[1]) *localThreads[1], |
|
1 |
|
}; |
|
int dst_step1 = dst.cols * dst.elemSize(); |
|
vector<pair<size_t , const void *> > args; |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&src1.data )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src1.step )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src1.offset )); |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&src2.data )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src2.step )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src2.offset )); |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&dst.data )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.step )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.offset )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src1.rows )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&cols )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&dst_step1 )); |
|
openCLExecuteKernel(clCxt, kernelString, kernelName, globalThreads, localThreads, args, -1, depth); |
|
} |
|
|
|
void cv::ocl::compare(const oclMat &src1, const oclMat &src2, oclMat &dst , int cmpOp) |
|
{ |
|
if(src1.clCxt -> impl -> double_support == 0 && src1.type() == CV_64F) |
|
{ |
|
cout << "Selected device do not support double" << endl; |
|
return; |
|
} |
|
string kernelName; |
|
const char **kernelString = NULL; |
|
switch( cmpOp ) |
|
{ |
|
case CMP_EQ: |
|
kernelName = "arithm_compare_eq"; |
|
kernelString = &arithm_compare_eq; |
|
break; |
|
case CMP_GT: |
|
kernelName = "arithm_compare_gt"; |
|
kernelString = &arithm_compare_eq; |
|
break; |
|
case CMP_GE: |
|
kernelName = "arithm_compare_ge"; |
|
kernelString = &arithm_compare_eq; |
|
break; |
|
case CMP_NE: |
|
kernelName = "arithm_compare_ne"; |
|
kernelString = &arithm_compare_ne; |
|
break; |
|
case CMP_LT: |
|
kernelName = "arithm_compare_lt"; |
|
kernelString = &arithm_compare_ne; |
|
break; |
|
case CMP_LE: |
|
kernelName = "arithm_compare_le"; |
|
kernelString = &arithm_compare_ne; |
|
break; |
|
default: |
|
CV_Error(CV_StsBadArg, "Unknown comparison method"); |
|
} |
|
compare_run(src1, src2, dst, kernelName, kernelString); |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////////////// |
|
////////////////////////////////// sum ////////////////////////////////////// |
|
////////////////////////////////////////////////////////////////////////////// |
|
|
|
//type = 0 sum,type = 1 absSum,type = 2 sqrSum |
|
static void arithmetic_sum_buffer_run(const oclMat &src, cl_mem &dst, int vlen , int groupnum, int type = 0) |
|
{ |
|
vector<pair<size_t , const void *> > args; |
|
int all_cols = src.step / (vlen * src.elemSize1()); |
|
int pre_cols = (src.offset % src.step) / (vlen * src.elemSize1()); |
|
int sec_cols = all_cols - (src.offset % src.step + src.cols * src.elemSize() - 1) / (vlen * src.elemSize1()) - 1; |
|
int invalid_cols = pre_cols + sec_cols; |
|
int cols = all_cols - invalid_cols , elemnum = cols * src.rows;; |
|
int offset = src.offset / (vlen * src.elemSize1()); |
|
int repeat_s = src.offset / src.elemSize1() - offset * vlen; |
|
int repeat_e = (offset + cols) * vlen - src.offset / src.elemSize1() - src.cols * src.oclchannels(); |
|
char build_options[512]; |
|
CV_Assert(type == 0 || type == 1 || type == 2); |
|
sprintf(build_options, "-D DEPTH_%d -D REPEAT_S%d -D REPEAT_E%d -D FUNC_TYPE_%d", src.depth(), repeat_s, repeat_e, type); |
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&cols )); |
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&invalid_cols )); |
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&offset)); |
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&elemnum)); |
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&groupnum)); |
|
args.push_back( make_pair( sizeof(cl_mem) , (void *)&src.data)); |
|
args.push_back( make_pair( sizeof(cl_mem) , (void *)&dst )); |
|
size_t gt[3] = {groupnum * 256, 1, 1}, lt[3] = {256, 1, 1}; |
|
if(src.oclchannels() != 3) |
|
openCLExecuteKernel(src.clCxt, &arithm_sum, "arithm_op_sum", gt, lt, args, -1, -1, build_options); |
|
else |
|
openCLExecuteKernel(src.clCxt, &arithm_sum_3, "arithm_op_sum_3", gt, lt, args, -1, -1, build_options); |
|
} |
|
|
|
template <typename T> |
|
Scalar arithmetic_sum(const oclMat &src, int type = 0) |
|
{ |
|
size_t groupnum = src.clCxt->impl->maxComputeUnits; |
|
CV_Assert(groupnum != 0); |
|
int vlen = src.oclchannels() == 3 ? 12 : 8, dbsize = groupnum * vlen; |
|
Context *clCxt = src.clCxt; |
|
T *p = new T[dbsize]; |
|
cl_mem dstBuffer = openCLCreateBuffer(clCxt, CL_MEM_WRITE_ONLY, dbsize * sizeof(T)); |
|
Scalar s; |
|
s.val[0] = 0.0; |
|
s.val[1] = 0.0; |
|
s.val[2] = 0.0; |
|
s.val[3] = 0.0; |
|
arithmetic_sum_buffer_run(src, dstBuffer, vlen, groupnum, type); |
|
|
|
memset(p, 0, dbsize * sizeof(T)); |
|
openCLReadBuffer(clCxt, dstBuffer, (void *)p, dbsize * sizeof(T)); |
|
for(int i = 0; i < dbsize;) |
|
{ |
|
for(int j = 0; j < src.oclchannels(); j++, i++) |
|
s.val[j] += p[i]; |
|
} |
|
delete[] p; |
|
openCLFree(dstBuffer); |
|
return s; |
|
} |
|
|
|
typedef Scalar (*sumFunc)(const oclMat &src, int type); |
|
Scalar cv::ocl::sum(const oclMat &src) |
|
{ |
|
if(src.clCxt->impl->double_support == 0 && src.depth() == CV_64F) |
|
{ |
|
CV_Error(CV_GpuNotSupported, "select device don't support double"); |
|
} |
|
static sumFunc functab[2] = |
|
{ |
|
arithmetic_sum<float>, |
|
arithmetic_sum<double> |
|
}; |
|
|
|
sumFunc func; |
|
func = functab[src.clCxt->impl->double_support]; |
|
return func(src, 0); |
|
} |
|
|
|
Scalar cv::ocl::absSum(const oclMat &src) |
|
{ |
|
if(src.clCxt->impl->double_support == 0 && src.depth() == CV_64F) |
|
{ |
|
CV_Error(CV_GpuNotSupported, "select device don't support double"); |
|
} |
|
static sumFunc functab[2] = |
|
{ |
|
arithmetic_sum<float>, |
|
arithmetic_sum<double> |
|
}; |
|
|
|
sumFunc func; |
|
func = functab[src.clCxt->impl->double_support]; |
|
return func(src, 1); |
|
} |
|
|
|
Scalar cv::ocl::sqrSum(const oclMat &src) |
|
{ |
|
if(src.clCxt->impl->double_support == 0 && src.depth() == CV_64F) |
|
{ |
|
CV_Error(CV_GpuNotSupported, "select device don't support double"); |
|
} |
|
static sumFunc functab[2] = |
|
{ |
|
arithmetic_sum<float>, |
|
arithmetic_sum<double> |
|
}; |
|
|
|
sumFunc func; |
|
func = functab[src.clCxt->impl->double_support]; |
|
return func(src, 2); |
|
} |
|
////////////////////////////////////////////////////////////////////////////// |
|
//////////////////////////////// meanStdDev ////////////////////////////////// |
|
////////////////////////////////////////////////////////////////////////////// |
|
void cv::ocl::meanStdDev(const oclMat &src, Scalar &mean, Scalar &stddev) |
|
{ |
|
CV_Assert(src.depth() <= CV_32S); |
|
cv::Size sz(1, 1); |
|
int channels = src.oclchannels(); |
|
Mat m1(sz, CV_MAKETYPE(CV_32S, channels), cv::Scalar::all(0)), |
|
m2(sz, CV_MAKETYPE(CV_32S, channels), cv::Scalar::all(0)); |
|
oclMat dst1(m1), dst2(m2); |
|
//arithmetic_sum_run(src, dst1,"arithm_op_sum"); |
|
//arithmetic_sum_run(src, dst2,"arithm_op_squares_sum"); |
|
m1 = (Mat)dst1; |
|
m2 = (Mat)dst2; |
|
int i = 0, *p = (int *)m1.data, *q = (int *)m2.data; |
|
for(; i < channels; i++) |
|
{ |
|
mean.val[i] = (double)p[i] / (src.cols * src.rows); |
|
stddev.val[i] = std::sqrt(std::max((double) q[i] / (src.cols * src.rows) - mean.val[i] * mean.val[i] , 0.)); |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////////////// |
|
//////////////////////////////////// minMax ///////////////////////////////// |
|
////////////////////////////////////////////////////////////////////////////// |
|
static void arithmetic_minMax_run(const oclMat &src, const oclMat &mask, cl_mem &dst, int vlen , int groupnum, string kernelName) |
|
{ |
|
vector<pair<size_t , const void *> > args; |
|
int all_cols = src.step / (vlen * src.elemSize1()); |
|
int pre_cols = (src.offset % src.step) / (vlen * src.elemSize1()); |
|
int sec_cols = all_cols - (src.offset % src.step + src.cols * src.elemSize() - 1) / (vlen * src.elemSize1()) - 1; |
|
int invalid_cols = pre_cols + sec_cols; |
|
int cols = all_cols - invalid_cols , elemnum = cols * src.rows;; |
|
int offset = src.offset / (vlen * src.elemSize1()); |
|
int repeat_s = src.offset / src.elemSize1() - offset * vlen; |
|
int repeat_e = (offset + cols) * vlen - src.offset / src.elemSize1() - src.cols * src.oclchannels(); |
|
char build_options[50]; |
|
sprintf(build_options, "-D DEPTH_%d -D REPEAT_S%d -D REPEAT_E%d", src.depth(), repeat_s, repeat_e); |
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&cols )); |
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&invalid_cols )); |
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&offset)); |
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&elemnum)); |
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&groupnum)); |
|
args.push_back( make_pair( sizeof(cl_mem) , (void *)&src.data)); |
|
if(!mask.empty()) |
|
{ |
|
int mall_cols = mask.step / (vlen * mask.elemSize1()); |
|
int mpre_cols = (mask.offset % mask.step) / (vlen * mask.elemSize1()); |
|
int msec_cols = mall_cols - (mask.offset % mask.step + mask.cols * mask.elemSize() - 1) / (vlen * mask.elemSize1()) - 1; |
|
int minvalid_cols = mpre_cols + msec_cols; |
|
int moffset = mask.offset / (vlen * mask.elemSize1()); |
|
|
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&minvalid_cols )); |
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&moffset )); |
|
args.push_back( make_pair( sizeof(cl_mem) , (void *)&mask.data )); |
|
} |
|
args.push_back( make_pair( sizeof(cl_mem) , (void *)&dst )); |
|
size_t gt[3] = {groupnum * 256, 1, 1}, lt[3] = {256, 1, 1}; |
|
openCLExecuteKernel(src.clCxt, &arithm_minMax, kernelName, gt, lt, args, -1, -1, build_options); |
|
} |
|
|
|
|
|
static void arithmetic_minMax_mask_run(const oclMat &src, const oclMat &mask, cl_mem &dst, int vlen, int groupnum, string kernelName) |
|
{ |
|
vector<pair<size_t , const void *> > args; |
|
size_t gt[3] = {groupnum * 256, 1, 1}, lt[3] = {256, 1, 1}; |
|
char build_options[50]; |
|
if(src.oclchannels() == 1) |
|
{ |
|
int cols = (src.cols - 1) / vlen + 1; |
|
int invalid_cols = src.step / (vlen * src.elemSize1()) - cols; |
|
int offset = src.offset / src.elemSize1(); |
|
int repeat_me = vlen - (mask.cols % vlen == 0 ? vlen : mask.cols % vlen); |
|
int minvalid_cols = mask.step / (vlen * mask.elemSize1()) - cols; |
|
int moffset = mask.offset / mask.elemSize1(); |
|
int elemnum = cols * src.rows; |
|
sprintf(build_options, "-D DEPTH_%d -D REPEAT_E%d", src.depth(), repeat_me); |
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&cols )); |
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&invalid_cols )); |
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&offset)); |
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&elemnum)); |
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&groupnum)); |
|
args.push_back( make_pair( sizeof(cl_mem) , (void *)&src.data)); |
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&minvalid_cols )); |
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&moffset )); |
|
args.push_back( make_pair( sizeof(cl_mem) , (void *)&mask.data )); |
|
args.push_back( make_pair( sizeof(cl_mem) , (void *)&dst )); |
|
// printf("elemnum:%d,cols:%d,invalid_cols:%d,offset:%d,minvalid_cols:%d,moffset:%d,repeat_e:%d\r\n", |
|
// elemnum,cols,invalid_cols,offset,minvalid_cols,moffset,repeat_me); |
|
openCLExecuteKernel(src.clCxt, &arithm_minMax_mask, kernelName, gt, lt, args, -1, -1, build_options); |
|
} |
|
} |
|
|
|
template <typename T> void arithmetic_minMax(const oclMat &src, double *minVal, double *maxVal, const oclMat &mask) |
|
{ |
|
size_t groupnum = src.clCxt->impl->maxComputeUnits; |
|
CV_Assert(groupnum != 0); |
|
groupnum = groupnum * 2; |
|
int vlen = 8; |
|
int dbsize = groupnum * 2 * vlen * sizeof(T) ; |
|
Context *clCxt = src.clCxt; |
|
cl_mem dstBuffer = openCLCreateBuffer(clCxt, CL_MEM_WRITE_ONLY, dbsize); |
|
*minVal = std::numeric_limits<double>::max() , *maxVal = -std::numeric_limits<double>::max(); |
|
if (mask.empty()) |
|
{ |
|
arithmetic_minMax_run(src, mask, dstBuffer, vlen, groupnum, "arithm_op_minMax"); |
|
} |
|
else |
|
{ |
|
arithmetic_minMax_mask_run(src, mask, dstBuffer, vlen, groupnum, "arithm_op_minMax_mask"); |
|
} |
|
T *p = new T[groupnum * vlen * 2]; |
|
memset(p, 0, dbsize); |
|
openCLReadBuffer(clCxt, dstBuffer, (void *)p, dbsize); |
|
if(minVal != NULL){ |
|
for(int i = 0; i < vlen * (int)groupnum; i++) |
|
{ |
|
*minVal = *minVal < p[i] ? *minVal : p[i]; |
|
} |
|
} |
|
if(maxVal != NULL){ |
|
for(int i = vlen * (int)groupnum; i < 2 * vlen * (int)groupnum; i++) |
|
{ |
|
*maxVal = *maxVal > p[i] ? *maxVal : p[i]; |
|
} |
|
} |
|
delete[] p; |
|
openCLFree(dstBuffer); |
|
} |
|
|
|
typedef void (*minMaxFunc)(const oclMat &src, double *minVal, double *maxVal, const oclMat &mask); |
|
void cv::ocl::minMax(const oclMat &src, double *minVal, double *maxVal, const oclMat &mask) |
|
{ |
|
CV_Assert(src.oclchannels() == 1); |
|
if(src.clCxt->impl->double_support == 0 && src.depth() == CV_64F) |
|
{ |
|
CV_Error(CV_GpuNotSupported, "select device don't support double"); |
|
} |
|
static minMaxFunc functab[8] = |
|
{ |
|
arithmetic_minMax<uchar>, |
|
arithmetic_minMax<char>, |
|
arithmetic_minMax<ushort>, |
|
arithmetic_minMax<short>, |
|
arithmetic_minMax<int>, |
|
arithmetic_minMax<float>, |
|
arithmetic_minMax<double>, |
|
0 |
|
}; |
|
minMaxFunc func; |
|
func = functab[src.depth()]; |
|
func(src, minVal, maxVal, mask); |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////////////// |
|
/////////////////////////////////// norm ///////////////////////////////////// |
|
////////////////////////////////////////////////////////////////////////////// |
|
double cv::ocl::norm(const oclMat &src1, int normType) |
|
{ |
|
return norm(src1, oclMat(src1.size(), src1.type(), Scalar::all(0)), normType); |
|
} |
|
|
|
double cv::ocl::norm(const oclMat &src1, const oclMat &src2, int normType) |
|
{ |
|
bool isRelative = (normType & NORM_RELATIVE) != 0; |
|
normType &= 7; |
|
CV_Assert(src1.depth() <= CV_32S && src1.type() == src2.type() && ( normType == NORM_INF || normType == NORM_L1 || normType == NORM_L2)); |
|
int channels = src1.oclchannels(), i = 0, *p; |
|
double r = 0; |
|
oclMat gm1(src1.size(), src1.type()); |
|
int min_int = (normType == NORM_INF ? CL_INT_MIN : 0); |
|
Mat m(1, 1, CV_MAKETYPE(CV_32S, channels), cv::Scalar::all(min_int)); |
|
oclMat gm2(m), emptyMat; |
|
switch(normType) |
|
{ |
|
case NORM_INF: |
|
// arithmetic_run(src1, src2, gm1, "arithm_op_absdiff"); |
|
//arithmetic_minMax_run(gm1,emptyMat, gm2,"arithm_op_max"); |
|
m = (gm2); |
|
p = (int *)m.data; |
|
r = -std::numeric_limits<double>::max(); |
|
for(i = 0; i < channels; i++) |
|
{ |
|
r = std::max(r, (double)p[i]); |
|
} |
|
break; |
|
case NORM_L1: |
|
//arithmetic_run(src1, src2, gm1, "arithm_op_absdiff"); |
|
//arithmetic_sum_run(gm1, gm2,"arithm_op_sum"); |
|
m = (gm2); |
|
p = (int *)m.data; |
|
for(i = 0; i < channels; i++) |
|
{ |
|
r = r + (double)p[i]; |
|
} |
|
break; |
|
case NORM_L2: |
|
//arithmetic_run(src1, src2, gm1, "arithm_op_absdiff"); |
|
//arithmetic_sum_run(gm1, gm2,"arithm_op_squares_sum"); |
|
m = (gm2); |
|
p = (int *)m.data; |
|
for(i = 0; i < channels; i++) |
|
{ |
|
r = r + (double)p[i]; |
|
} |
|
r = std::sqrt(r); |
|
break; |
|
} |
|
if(isRelative) |
|
r = r / norm(src2, normType); |
|
return r; |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////////////// |
|
////////////////////////////////// flip ////////////////////////////////////// |
|
////////////////////////////////////////////////////////////////////////////// |
|
static void arithmetic_flip_rows_run(const oclMat &src, oclMat &dst, string kernelName) |
|
{ |
|
if(src.clCxt -> impl -> double_support == 0 && src.type() == CV_64F) |
|
{ |
|
CV_Error(CV_GpuNotSupported, "Selected device don't support double\r\n"); |
|
return; |
|
} |
|
|
|
CV_Assert(src.cols == dst.cols && src.rows == dst.rows); |
|
|
|
CV_Assert(src.type() == dst.type()); |
|
|
|
Context *clCxt = src.clCxt; |
|
int channels = dst.oclchannels(); |
|
int depth = dst.depth(); |
|
|
|
int vector_lengths[4][7] = {{4, 4, 4, 4, 1, 1, 1}, |
|
{4, 4, 4, 4, 1, 1, 1}, |
|
{4, 4, 4, 4, 1, 1, 1}, |
|
{4, 4, 4, 4, 1, 1, 1} |
|
}; |
|
|
|
size_t vector_length = vector_lengths[channels - 1][depth]; |
|
int offset_cols = ((dst.offset % dst.step) / dst.elemSize1()) & (vector_length - 1); |
|
|
|
int cols = divUp(dst.cols * channels + offset_cols, vector_length); |
|
int rows = divUp(dst.rows, 2); |
|
|
|
size_t localThreads[3] = { 64, 4, 1 }; |
|
size_t globalThreads[3] = { divUp(cols, localThreads[0]) *localThreads[0], |
|
divUp(rows, localThreads[1]) *localThreads[1], |
|
1 |
|
}; |
|
|
|
int dst_step1 = dst.cols * dst.elemSize(); |
|
vector<pair<size_t , const void *> > args; |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&src.data )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src.step )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src.offset )); |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&dst.data )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.step )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.offset )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.rows )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&cols )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&rows )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&dst_step1 )); |
|
|
|
openCLExecuteKernel(clCxt, &arithm_flip, kernelName, globalThreads, localThreads, args, -1, depth); |
|
} |
|
static void arithmetic_flip_cols_run(const oclMat &src, oclMat &dst, string kernelName, bool isVertical) |
|
{ |
|
if(src.clCxt -> impl -> double_support == 0 && src.type() == CV_64F) |
|
{ |
|
CV_Error(CV_GpuNotSupported, "Selected device don't support double\r\n"); |
|
return; |
|
} |
|
|
|
CV_Assert(src.cols == dst.cols && src.rows == dst.rows); |
|
CV_Assert(src.type() == dst.type()); |
|
|
|
Context *clCxt = src.clCxt; |
|
int channels = dst.oclchannels(); |
|
int depth = dst.depth(); |
|
|
|
int vector_lengths[4][7] = {{1, 1, 1, 1, 1, 1, 1}, |
|
{1, 1, 1, 1, 1, 1, 1}, |
|
{1, 1, 1, 1, 1, 1, 1}, |
|
{1, 1, 1, 1, 1, 1, 1} |
|
}; |
|
|
|
size_t vector_length = vector_lengths[channels - 1][depth]; |
|
int offset_cols = ((dst.offset % dst.step) / dst.elemSize()) & (vector_length - 1); |
|
int cols = divUp(dst.cols + offset_cols, vector_length); |
|
cols = isVertical ? cols : divUp(cols, 2); |
|
int rows = isVertical ? divUp(dst.rows, 2) : dst.rows; |
|
|
|
size_t localThreads[3] = { 64, 4, 1 }; |
|
size_t globalThreads[3] = { divUp(cols, localThreads[0]) *localThreads[0], |
|
divUp(rows, localThreads[1]) *localThreads[1], |
|
1 |
|
}; |
|
|
|
int dst_step1 = dst.cols * dst.elemSize(); |
|
vector<pair<size_t , const void *> > args; |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&src.data )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src.step )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src.offset )); |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&dst.data )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.step )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.offset )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.rows )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.cols )); |
|
|
|
if(isVertical) |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&rows )); |
|
else |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&cols )); |
|
|
|
args.push_back( make_pair( sizeof(cl_int), (void *)&dst_step1 )); |
|
|
|
const char **kernelString = isVertical ? &arithm_flip_rc : &arithm_flip; |
|
|
|
openCLExecuteKernel(clCxt, kernelString, kernelName, globalThreads, localThreads, args, src.oclchannels(), depth); |
|
} |
|
void cv::ocl::flip(const oclMat &src, oclMat &dst, int flipCode) |
|
{ |
|
dst.create(src.size(), src.type()); |
|
if(flipCode == 0) |
|
{ |
|
arithmetic_flip_rows_run(src, dst, "arithm_flip_rows"); |
|
} |
|
else if(flipCode > 0) |
|
arithmetic_flip_cols_run(src, dst, "arithm_flip_cols", false); |
|
else |
|
arithmetic_flip_cols_run(src, dst, "arithm_flip_rc", true); |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////////////// |
|
////////////////////////////////// LUT ////////////////////////////////////// |
|
////////////////////////////////////////////////////////////////////////////// |
|
static void arithmetic_lut_run(const oclMat &src1, const oclMat &src2, oclMat &dst, string kernelName) |
|
{ |
|
Context *clCxt = src1.clCxt; |
|
int channels = src1.oclchannels(); |
|
int rows = src1.rows; |
|
int cols = src1.cols; |
|
//int step = src1.step; |
|
int src_step = src1.step / src1.elemSize(); |
|
int dst_step = dst.step / dst.elemSize(); |
|
int whole_rows = src1.wholerows; |
|
int whole_cols = src1.wholecols; |
|
int src_offset = src1.offset / src1.elemSize(); |
|
int dst_offset = dst.offset / dst.elemSize(); |
|
int lut_offset = src2.offset / src2.elemSize(); |
|
int left_col = 0, right_col = 0; |
|
size_t localSize[] = {16, 16, 1}; |
|
//cl_kernel kernel = openCLGetKernelFromSource(clCxt,&arithm_LUT,kernelName); |
|
size_t globalSize[] = {(cols + localSize[0] - 1) / localSize[0] *localSize[0], (rows + localSize[1] - 1) / localSize[1] *localSize[1], 1}; |
|
if(channels == 1 && cols > 6) |
|
{ |
|
left_col = 4 - (dst_offset & 3); |
|
left_col &= 3; |
|
dst_offset += left_col; |
|
src_offset += left_col; |
|
cols -= left_col; |
|
right_col = cols & 3; |
|
cols -= right_col; |
|
globalSize[0] = (cols / 4 + localSize[0] - 1) / localSize[0] * localSize[0]; |
|
} |
|
else if(channels == 1) |
|
{ |
|
left_col = cols; |
|
right_col = 0; |
|
cols = 0; |
|
globalSize[0] = 0; |
|
} |
|
CV_Assert(clCxt == dst.clCxt); |
|
CV_Assert(src1.cols == dst.cols); |
|
CV_Assert(src1.rows == dst.rows); |
|
CV_Assert(src1.oclchannels() == dst.oclchannels()); |
|
// CV_Assert(src1.step == dst.step); |
|
vector<pair<size_t , const void *> > args; |
|
|
|
if(globalSize[0] != 0) |
|
{ |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&dst.data )); |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&src1.data )); |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&src2.data )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&rows )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&cols )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&channels )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&whole_rows )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&whole_cols )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src_offset )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&dst_offset )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&lut_offset )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src_step )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&dst_step )); |
|
openCLExecuteKernel(clCxt, &arithm_LUT, kernelName, globalSize, localSize, args, src1.oclchannels(), src1.depth()); |
|
} |
|
if(channels == 1 && (left_col != 0 || right_col != 0)) |
|
{ |
|
src_offset = src1.offset; |
|
dst_offset = dst.offset; |
|
localSize[0] = 1; |
|
localSize[1] = 256; |
|
globalSize[0] = left_col + right_col; |
|
globalSize[1] = (rows + localSize[1] - 1) / localSize[1] * localSize[1]; |
|
//kernel = openCLGetKernelFromSource(clCxt,&arithm_LUT,"LUT2"); |
|
args.clear(); |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&dst.data )); |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&src1.data )); |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&src2.data )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&rows )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&left_col )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&channels )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&whole_rows )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&cols )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src_offset )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&dst_offset )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&lut_offset )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src_step )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&dst_step )); |
|
openCLExecuteKernel(clCxt, &arithm_LUT, "LUT2", globalSize, localSize, args, src1.oclchannels(), src1.depth()); |
|
} |
|
} |
|
|
|
void cv::ocl::LUT(const oclMat &src, const oclMat &lut, oclMat &dst) |
|
{ |
|
int cn = src.channels(); |
|
CV_Assert(src.depth() == CV_8U); |
|
CV_Assert((lut.oclchannels() == 1 || lut.oclchannels() == cn) && lut.rows == 1 && lut.cols == 256); |
|
dst.create(src.size(), CV_MAKETYPE(lut.depth(), cn)); |
|
//oclMat _lut(lut); |
|
string kernelName = "LUT"; |
|
arithmetic_lut_run(src, lut, dst, kernelName); |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////////////// |
|
//////////////////////////////// exp log ///////////////////////////////////// |
|
////////////////////////////////////////////////////////////////////////////// |
|
static void arithmetic_exp_log_run(const oclMat &src, oclMat &dst, string kernelName, const char **kernelString) |
|
{ |
|
dst.create(src.size(), src.type()); |
|
CV_Assert(src.cols == dst.cols && |
|
src.rows == dst.rows ); |
|
|
|
CV_Assert(src.type() == dst.type()); |
|
CV_Assert( src.type() == CV_32F || src.type() == CV_64F); |
|
|
|
Context *clCxt = src.clCxt; |
|
if(clCxt -> impl -> double_support == 0 && src.type() == CV_64F) |
|
{ |
|
CV_Error(CV_GpuNotSupported, "Selected device don't support double\r\n"); |
|
return; |
|
} |
|
//int channels = dst.oclchannels(); |
|
int depth = dst.depth(); |
|
|
|
size_t localThreads[3] = { 64, 4, 1 }; |
|
size_t globalThreads[3] = { divUp(dst.cols, localThreads[0]) *localThreads[0], |
|
divUp(dst.rows, localThreads[1]) *localThreads[1], |
|
1 |
|
}; |
|
|
|
vector<pair<size_t , const void *> > args; |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src.rows )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src.cols )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src.step )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.step )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src.offset )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.offset )); |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&src.data )); |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&dst.data )); |
|
|
|
openCLExecuteKernel(clCxt, kernelString, kernelName, globalThreads, localThreads, args, -1, depth); |
|
} |
|
void cv::ocl::exp(const oclMat &src, oclMat &dst) |
|
{ |
|
arithmetic_exp_log_run(src, dst, "arithm_exp", &arithm_exp); |
|
} |
|
|
|
void cv::ocl::log(const oclMat &src, oclMat &dst) |
|
{ |
|
arithmetic_exp_log_run(src, dst, "arithm_log", &arithm_log); |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////////////// |
|
////////////////////////////// magnitude phase /////////////////////////////// |
|
////////////////////////////////////////////////////////////////////////////// |
|
static void arithmetic_magnitude_phase_run(const oclMat &src1, const oclMat &src2, oclMat &dst, string kernelName) |
|
{ |
|
if(src1.clCxt -> impl -> double_support == 0 && src1.type() == CV_64F) |
|
{ |
|
CV_Error(CV_GpuNotSupported, "Selected device don't support double\r\n"); |
|
return; |
|
} |
|
|
|
Context *clCxt = src1.clCxt; |
|
int channels = dst.oclchannels(); |
|
int depth = dst.depth(); |
|
|
|
size_t vector_length = 1; |
|
int offset_cols = ((dst.offset % dst.step) / dst.elemSize1()) & (vector_length - 1); |
|
int cols = divUp(dst.cols * channels + offset_cols, vector_length); |
|
int rows = dst.rows; |
|
|
|
size_t localThreads[3] = { 64, 4, 1 }; |
|
size_t globalThreads[3] = { divUp(cols, localThreads[0]) *localThreads[0], |
|
divUp(rows, localThreads[1]) *localThreads[1], |
|
1 |
|
}; |
|
|
|
vector<pair<size_t , const void *> > args; |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&src1.data )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src1.step )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src1.offset )); |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&src2.data )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src2.step )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src2.offset )); |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&dst.data )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.step )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.offset )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.rows )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&cols )); |
|
|
|
openCLExecuteKernel(clCxt, &arithm_magnitude, kernelName, globalThreads, localThreads, args, -1, depth); |
|
} |
|
|
|
void cv::ocl::magnitude(const oclMat &src1, const oclMat &src2, oclMat &dst) |
|
{ |
|
CV_Assert(src1.type() == src2.type() && src1.size() == src2.size() && |
|
(src1.depth() == CV_32F || src1.depth() == CV_64F)); |
|
|
|
dst.create(src1.size(), src1.type()); |
|
arithmetic_magnitude_phase_run(src1, src2, dst, "arithm_magnitude"); |
|
} |
|
|
|
static void arithmetic_phase_run(const oclMat &src1, const oclMat &src2, oclMat &dst, string kernelName, const char **kernelString) |
|
{ |
|
if(src1.clCxt -> impl -> double_support == 0 && src1.type() == CV_64F) |
|
{ |
|
CV_Error(CV_GpuNotSupported, "Selected device don't support double\r\n"); |
|
return; |
|
} |
|
|
|
CV_Assert(src1.cols == src2.cols && src2.cols == dst.cols && src1.rows == src2.rows && src2.rows == dst.rows); |
|
CV_Assert(src1.type() == src2.type() && src1.type() == dst.type()); |
|
|
|
Context *clCxt = src1.clCxt; |
|
int channels = dst.oclchannels(); |
|
int depth = dst.depth(); |
|
|
|
size_t vector_length = 1; |
|
int offset_cols = ((dst.offset % dst.step) / dst.elemSize1()) & (vector_length - 1); |
|
int cols = divUp(dst.cols * channels + offset_cols, vector_length); |
|
int rows = dst.rows; |
|
|
|
size_t localThreads[3] = { 64, 4, 1 }; |
|
size_t globalThreads[3] = { divUp(cols, localThreads[0]) *localThreads[0], |
|
divUp(rows, localThreads[1]) *localThreads[1], |
|
1 |
|
}; |
|
|
|
int dst_step1 = dst.cols * dst.elemSize(); |
|
vector<pair<size_t , const void *> > args; |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&src1.data )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src1.step )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src1.offset )); |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&src2.data )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src2.step )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src2.offset )); |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&dst.data )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.step )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.offset )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.rows )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&cols )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&dst_step1 )); |
|
|
|
openCLExecuteKernel(clCxt, kernelString, kernelName, globalThreads, localThreads, args, -1, depth); |
|
} |
|
void cv::ocl::phase(const oclMat &x, const oclMat &y, oclMat &Angle , bool angleInDegrees) |
|
{ |
|
CV_Assert(x.type() == y.type() && x.size() == y.size() && (x.depth() == CV_32F || x.depth() == CV_64F)); |
|
Angle.create(x.size(), x.type()); |
|
string kernelName = angleInDegrees ? "arithm_phase_indegrees" : "arithm_phase_inradians"; |
|
if(angleInDegrees) |
|
{ |
|
arithmetic_phase_run(x, y, Angle, kernelName, &arithm_phase); |
|
//cout<<"1"<<endl; |
|
} |
|
else |
|
{ |
|
arithmetic_phase_run(x, y, Angle, kernelName, &arithm_phase); |
|
//cout<<"2"<<endl; |
|
} |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////////////// |
|
////////////////////////////////// cartToPolar /////////////////////////////// |
|
////////////////////////////////////////////////////////////////////////////// |
|
static void arithmetic_cartToPolar_run(const oclMat &src1, const oclMat &src2, oclMat &dst_mag, oclMat &dst_cart, |
|
string kernelName, bool angleInDegrees) |
|
{ |
|
if(src1.clCxt -> impl -> double_support == 0 && src1.type() == CV_64F) |
|
{ |
|
CV_Error(CV_GpuNotSupported, "Selected device don't support double\r\n"); |
|
return; |
|
} |
|
|
|
Context *clCxt = src1.clCxt; |
|
int channels = src1.oclchannels(); |
|
int depth = src1.depth(); |
|
|
|
int cols = src1.cols * channels; |
|
int rows = src1.rows; |
|
|
|
size_t localThreads[3] = { 64, 4, 1 }; |
|
size_t globalThreads[3] = { divUp(cols, localThreads[0]) *localThreads[0], |
|
divUp(rows, localThreads[1]) *localThreads[1], |
|
1 |
|
}; |
|
|
|
int tmp = angleInDegrees ? 1 : 0; |
|
vector<pair<size_t , const void *> > args; |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&src1.data )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src1.step )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src1.offset )); |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&src2.data )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src2.step )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src2.offset )); |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&dst_mag.data )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&dst_mag.step )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&dst_mag.offset )); |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&dst_cart.data )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&dst_cart.step )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&dst_cart.offset )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&rows )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&cols )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&tmp )); |
|
|
|
openCLExecuteKernel(clCxt, &arithm_cartToPolar, kernelName, globalThreads, localThreads, args, -1, depth); |
|
} |
|
void cv::ocl::cartToPolar(const oclMat &x, const oclMat &y, oclMat &mag, oclMat &angle, bool angleInDegrees) |
|
{ |
|
CV_Assert(x.type() == y.type() && x.size() == y.size() && (x.depth() == CV_32F || x.depth() == CV_64F)); |
|
|
|
mag.create(x.size(), x.type()); |
|
angle.create(x.size(), x.type()); |
|
|
|
arithmetic_cartToPolar_run(x, y, mag, angle, "arithm_cartToPolar", angleInDegrees); |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////////////// |
|
////////////////////////////////// polarToCart /////////////////////////////// |
|
////////////////////////////////////////////////////////////////////////////// |
|
static void arithmetic_ptc_run(const oclMat &src1, const oclMat &src2, oclMat &dst1, oclMat &dst2, bool angleInDegrees, |
|
string kernelName) |
|
{ |
|
if(src1.clCxt -> impl -> double_support == 0 && src1.type() == CV_64F) |
|
{ |
|
CV_Error(CV_GpuNotSupported, "Selected device don't support double\r\n"); |
|
return; |
|
} |
|
|
|
Context *clCxt = src2.clCxt; |
|
int channels = src2.oclchannels(); |
|
int depth = src2.depth(); |
|
|
|
int cols = src2.cols * channels; |
|
int rows = src2.rows; |
|
|
|
size_t localThreads[3] = { 64, 4, 1 }; |
|
size_t globalThreads[3] = { divUp(cols, localThreads[0]) *localThreads[0], |
|
divUp(rows, localThreads[1]) *localThreads[1], |
|
1 |
|
}; |
|
|
|
int tmp = angleInDegrees ? 1 : 0; |
|
vector<pair<size_t , const void *> > args; |
|
if(src1.data) |
|
{ |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&src1.data )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src1.step )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src1.offset )); |
|
} |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&src2.data )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src2.step )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src2.offset )); |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&dst1.data )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&dst1.step )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&dst1.offset )); |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&dst2.data )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&dst2.step )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&dst2.offset )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&rows )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&cols )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&tmp )); |
|
|
|
openCLExecuteKernel(clCxt, &arithm_polarToCart, kernelName, globalThreads, localThreads, args, -1, depth); |
|
} |
|
|
|
void cv::ocl::polarToCart(const oclMat &magnitude, const oclMat &angle, oclMat &x, oclMat &y, bool angleInDegrees) |
|
{ |
|
CV_Assert(angle.depth() == CV_32F || angle.depth() == CV_64F); |
|
|
|
x.create(angle.size(), angle.type()); |
|
y.create(angle.size(), angle.type()); |
|
|
|
if( magnitude.data ) |
|
{ |
|
CV_Assert( magnitude.size() == angle.size() && magnitude.type() == angle.type() ); |
|
arithmetic_ptc_run(magnitude, angle, x, y, angleInDegrees, "arithm_polarToCart_mag"); |
|
} |
|
else |
|
arithmetic_ptc_run(magnitude, angle, x, y, angleInDegrees, "arithm_polarToCart"); |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////////////// |
|
/////////////////////////////////// minMaxLoc //////////////////////////////// |
|
////////////////////////////////////////////////////////////////////////////// |
|
static void arithmetic_minMaxLoc_run(const oclMat &src, cl_mem &dst, int vlen , int groupnum) |
|
{ |
|
vector<pair<size_t , const void *> > args; |
|
int all_cols = src.step / (vlen * src.elemSize1()); |
|
int pre_cols = (src.offset % src.step) / (vlen * src.elemSize1()); |
|
int sec_cols = all_cols - (src.offset % src.step + src.cols * src.elemSize1() - 1) / (vlen * src.elemSize1()) - 1; |
|
int invalid_cols = pre_cols + sec_cols; |
|
int cols = all_cols - invalid_cols , elemnum = cols * src.rows;; |
|
int offset = src.offset / (vlen * src.elemSize1()); |
|
int repeat_s = src.offset / src.elemSize1() - offset * vlen; |
|
int repeat_e = (offset + cols) * vlen - src.offset / src.elemSize1() - src.cols; |
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&cols )); |
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&invalid_cols )); |
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&offset)); |
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&elemnum)); |
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&groupnum)); |
|
args.push_back( make_pair( sizeof(cl_mem) , (void *)&src.data)); |
|
args.push_back( make_pair( sizeof(cl_mem) , (void *)&dst )); |
|
char build_options[50]; |
|
sprintf(build_options, "-D DEPTH_%d -D REPEAT_S%d -D REPEAT_E%d", src.depth(), repeat_s, repeat_e); |
|
size_t gt[3] = {groupnum * 256, 1, 1}, lt[3] = {256, 1, 1}; |
|
openCLExecuteKernel(src.clCxt, &arithm_minMaxLoc, "arithm_op_minMaxLoc", gt, lt, args, -1, -1, build_options); |
|
} |
|
|
|
static void arithmetic_minMaxLoc_mask_run(const oclMat &src, const oclMat &mask, cl_mem &dst, int vlen, int groupnum) |
|
{ |
|
vector<pair<size_t , const void *> > args; |
|
size_t gt[3] = {groupnum * 256, 1, 1}, lt[3] = {256, 1, 1}; |
|
char build_options[50]; |
|
if(src.oclchannels() == 1) |
|
{ |
|
int cols = (src.cols - 1) / vlen + 1; |
|
int invalid_cols = src.step / (vlen * src.elemSize1()) - cols; |
|
int offset = src.offset / src.elemSize1(); |
|
int repeat_me = vlen - (mask.cols % vlen == 0 ? vlen : mask.cols % vlen); |
|
int minvalid_cols = mask.step / (vlen * mask.elemSize1()) - cols; |
|
int moffset = mask.offset / mask.elemSize1(); |
|
int elemnum = cols * src.rows; |
|
sprintf(build_options, "-D DEPTH_%d -D REPEAT_E%d", src.depth(), repeat_me); |
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&cols )); |
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&invalid_cols )); |
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&offset)); |
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&elemnum)); |
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&groupnum)); |
|
args.push_back( make_pair( sizeof(cl_mem) , (void *)&src.data)); |
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&minvalid_cols )); |
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&moffset )); |
|
args.push_back( make_pair( sizeof(cl_mem) , (void *)&mask.data )); |
|
args.push_back( make_pair( sizeof(cl_mem) , (void *)&dst )); |
|
// printf("elemnum:%d,cols:%d,invalid_cols:%d,offset:%d,minvalid_cols:%d,moffset:%d,repeat_e:%d\r\n", |
|
// elemnum,cols,invalid_cols,offset,minvalid_cols,moffset,repeat_me); |
|
openCLExecuteKernel(src.clCxt, &arithm_minMaxLoc_mask, "arithm_op_minMaxLoc_mask", gt, lt, args, -1, -1, build_options); |
|
} |
|
} |
|
template<typename T> |
|
void arithmetic_minMaxLoc(const oclMat &src, double *minVal, double *maxVal, |
|
Point *minLoc, Point *maxLoc, const oclMat &mask) |
|
{ |
|
CV_Assert(src.oclchannels() == 1); |
|
size_t groupnum = src.clCxt->impl->maxComputeUnits; |
|
CV_Assert(groupnum != 0); |
|
int minloc = -1 , maxloc = -1; |
|
int vlen = 4, dbsize = groupnum * vlen * 4 * sizeof(T) ; |
|
Context *clCxt = src.clCxt; |
|
cl_mem dstBuffer = openCLCreateBuffer(clCxt, CL_MEM_WRITE_ONLY, dbsize); |
|
*minVal = std::numeric_limits<double>::max() , *maxVal = -std::numeric_limits<double>::max(); |
|
if (mask.empty()) |
|
{ |
|
arithmetic_minMaxLoc_run(src, dstBuffer, vlen, groupnum); |
|
} |
|
else |
|
{ |
|
arithmetic_minMaxLoc_mask_run(src, mask, dstBuffer, vlen, groupnum); |
|
} |
|
T *p = new T[groupnum * vlen * 4]; |
|
memset(p, 0, dbsize); |
|
openCLReadBuffer(clCxt, dstBuffer, (void *)p, dbsize); |
|
for(int i = 0; i < vlen * (int)groupnum; i++) |
|
{ |
|
*minVal = (*minVal < p[i] || p[i + 2 * vlen * groupnum] == -1) ? *minVal : p[i]; |
|
minloc = (*minVal < p[i] || p[i + 2 * vlen * groupnum] == -1) ? minloc : cvRound(p[i + 2 * vlen * groupnum]); |
|
} |
|
for(int i = vlen * (int)groupnum; i < 2 * vlen * (int)groupnum; i++) |
|
{ |
|
*maxVal = (*maxVal > p[i] || p[i + 2 * vlen * groupnum] == -1) ? *maxVal : p[i]; |
|
maxloc = (*maxVal > p[i] || p[i + 2 * vlen * groupnum] == -1) ? maxloc : cvRound(p[i + 2 * vlen * groupnum]); |
|
} |
|
|
|
int pre_rows = src.offset / src.step; |
|
int pre_cols = (src.offset % src.step) / src.elemSize1(); |
|
int wholecols = src.step / src.elemSize1(); |
|
if( minLoc ) |
|
{ |
|
if( minloc >= 0 ) |
|
{ |
|
minLoc->y = minloc / wholecols - pre_rows; |
|
minLoc->x = minloc % wholecols - pre_cols; |
|
} |
|
else |
|
minLoc->x = minLoc->y = -1; |
|
} |
|
if( maxLoc ) |
|
{ |
|
if( maxloc >= 0 ) |
|
{ |
|
maxLoc->y = maxloc / wholecols - pre_rows; |
|
maxLoc->x = maxloc % wholecols - pre_cols; |
|
} |
|
else |
|
maxLoc->x = maxLoc->y = -1; |
|
} |
|
delete[] p; |
|
openCLSafeCall(clReleaseMemObject(dstBuffer)); |
|
} |
|
|
|
typedef void (*minMaxLocFunc)(const oclMat &src, double *minVal, double *maxVal, |
|
Point *minLoc, Point *maxLoc, const oclMat &mask); |
|
void cv::ocl::minMaxLoc(const oclMat &src, double *minVal, double *maxVal, |
|
Point *minLoc, Point *maxLoc, const oclMat &mask) |
|
{ |
|
if(src.clCxt->impl->double_support == 0 && src.depth() == CV_64F) |
|
{ |
|
CV_Error(CV_GpuNotSupported, "select device don't support double"); |
|
} |
|
static minMaxLocFunc functab[2] = |
|
{ |
|
arithmetic_minMaxLoc<float>, |
|
arithmetic_minMaxLoc<double> |
|
}; |
|
|
|
minMaxLocFunc func; |
|
func = functab[src.clCxt->impl->double_support]; |
|
func(src, minVal, maxVal, minLoc, maxLoc, mask); |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////////////// |
|
///////////////////////////// countNonZero /////////////////////////////////// |
|
////////////////////////////////////////////////////////////////////////////// |
|
static void arithmetic_countNonZero_run(const oclMat &src, cl_mem &dst, int vlen , int groupnum, string kernelName) |
|
{ |
|
vector<pair<size_t , const void *> > args; |
|
int all_cols = src.step / (vlen * src.elemSize1()); |
|
int pre_cols = (src.offset % src.step) / (vlen * src.elemSize1()); |
|
int sec_cols = all_cols - (src.offset % src.step + src.cols * src.elemSize() - 1) / (vlen * src.elemSize1()) - 1; |
|
int invalid_cols = pre_cols + sec_cols; |
|
int cols = all_cols - invalid_cols , elemnum = cols * src.rows;; |
|
int offset = src.offset / (vlen * src.elemSize1()); |
|
int repeat_s = src.offset / src.elemSize1() - offset * vlen; |
|
int repeat_e = (offset + cols) * vlen - src.offset / src.elemSize1() - src.cols * src.oclchannels(); |
|
|
|
char build_options[50]; |
|
sprintf(build_options, "-D DEPTH_%d -D REPEAT_S%d -D REPEAT_E%d", src.depth(), repeat_s, repeat_e); |
|
|
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&cols )); |
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&invalid_cols )); |
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&offset)); |
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&elemnum)); |
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&groupnum)); |
|
args.push_back( make_pair( sizeof(cl_mem) , (void *)&src.data)); |
|
args.push_back( make_pair( sizeof(cl_mem) , (void *)&dst )); |
|
size_t gt[3] = {groupnum * 256, 1, 1}, lt[3] = {256, 1, 1}; |
|
openCLExecuteKernel(src.clCxt, &arithm_nonzero, kernelName, gt, lt, args, -1, -1, build_options); |
|
} |
|
|
|
int cv::ocl::countNonZero(const oclMat &src) |
|
{ |
|
size_t groupnum = src.clCxt->impl->maxComputeUnits; |
|
if(src.clCxt->impl->double_support == 0 && src.depth() == CV_64F) |
|
{ |
|
CV_Error(CV_GpuNotSupported, "select device don't support double"); |
|
} |
|
CV_Assert(groupnum != 0); |
|
groupnum = groupnum * 2; |
|
int vlen = 8 , dbsize = groupnum * vlen; |
|
//cl_ulong start, end; |
|
Context *clCxt = src.clCxt; |
|
string kernelName = "arithm_op_nonzero"; |
|
int *p = new int[dbsize], nonzero = 0; |
|
cl_mem dstBuffer = openCLCreateBuffer(clCxt, CL_MEM_WRITE_ONLY, dbsize * sizeof(int)); |
|
arithmetic_countNonZero_run(src, dstBuffer, vlen, groupnum, kernelName); |
|
|
|
memset(p, 0, dbsize * sizeof(int)); |
|
openCLReadBuffer(clCxt, dstBuffer, (void *)p, dbsize * sizeof(int)); |
|
for(int i = 0; i < dbsize; i++) |
|
{ |
|
nonzero += p[i]; |
|
} |
|
delete[] p; |
|
openCLSafeCall(clReleaseMemObject(dstBuffer)); |
|
return nonzero; |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////////////// |
|
////////////////////////////////bitwise_op//////////////////////////////////// |
|
////////////////////////////////////////////////////////////////////////////// |
|
static void bitwise_run(const oclMat &src1, oclMat &dst, string kernelName, const char **kernelString) |
|
{ |
|
dst.create(src1.size(), src1.type()); |
|
|
|
|
|
Context *clCxt = src1.clCxt; |
|
int channels = dst.oclchannels(); |
|
int depth = dst.depth(); |
|
|
|
int vector_lengths[4][7] = {{4, 4, 4, 4, 1, 1, 1}, |
|
{4, 4, 4, 4, 1, 1, 1}, |
|
{4, 4, 4, 4, 1, 1, 1}, |
|
{4, 4, 4, 4, 1, 1, 1} |
|
}; |
|
|
|
size_t vector_length = vector_lengths[channels - 1][depth]; |
|
int offset_cols = (dst.offset / dst.elemSize1()) & (vector_length - 1); |
|
int cols = divUp(dst.cols * channels + offset_cols, vector_length); |
|
|
|
size_t localThreads[3] = { 64, 4, 1 }; |
|
size_t globalThreads[3] = { divUp(cols, localThreads[0]) *localThreads[0], |
|
divUp(dst.rows, localThreads[1]) *localThreads[1], |
|
1 |
|
}; |
|
|
|
int dst_step1 = dst.cols * dst.elemSize(); |
|
vector<pair<size_t , const void *> > args; |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&src1.data )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src1.step )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src1.offset )); |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&dst.data )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.step )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.offset )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src1.rows )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&cols )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&dst_step1 )); |
|
|
|
openCLExecuteKernel(clCxt, kernelString, kernelName, globalThreads, localThreads, args, -1, depth); |
|
} |
|
|
|
|
|
template<typename T> |
|
void bitwise_run(const oclMat &src1, const oclMat &src2, oclMat &dst, string kernelName, const char **kernelString, void *_scalar) |
|
{ |
|
dst.create(src1.size(), src1.type()); |
|
CV_Assert(src1.cols == src2.cols && src2.cols == dst.cols && |
|
src1.rows == src2.rows && src2.rows == dst.rows); |
|
|
|
CV_Assert(src1.type() == src2.type() && src1.type() == dst.type()); |
|
|
|
Context *clCxt = src1.clCxt; |
|
int channels = dst.oclchannels(); |
|
int depth = dst.depth(); |
|
|
|
int vector_lengths[4][7] = {{4, 4, 4, 4, 1, 1, 1}, |
|
{4, 4, 4, 4, 1, 1, 1}, |
|
{4, 4, 4, 4, 1, 1, 1}, |
|
{4, 4, 4, 4, 1, 1, 1} |
|
}; |
|
|
|
size_t vector_length = vector_lengths[channels - 1][depth]; |
|
int offset_cols = (dst.offset / dst.elemSize1()) & (vector_length - 1); |
|
int cols = divUp(dst.cols * channels + offset_cols, vector_length); |
|
|
|
size_t localThreads[3] = { 64, 4, 1 }; |
|
size_t globalThreads[3] = { divUp(cols, localThreads[0]) *localThreads[0], |
|
divUp(dst.rows, localThreads[1]) *localThreads[1], |
|
1 |
|
}; |
|
|
|
int dst_step1 = dst.cols * dst.elemSize(); |
|
vector<pair<size_t , const void *> > args; |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&src1.data )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src1.step )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src1.offset )); |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&src2.data )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src2.step )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src2.offset )); |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&dst.data )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.step )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.offset )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src1.rows )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&cols )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&dst_step1 )); |
|
|
|
if(_scalar != NULL) |
|
{ |
|
double scalar1 = *((double *)_scalar); |
|
T scalar = (T)scalar1; |
|
args.push_back( make_pair( sizeof(T), (void *)&scalar )); |
|
} |
|
|
|
openCLExecuteKernel(clCxt, kernelString, kernelName, globalThreads, localThreads, args, -1, depth); |
|
} |
|
static void bitwise_run(const oclMat &src1, const oclMat &src2, oclMat &dst, string kernelName, const char **kernelString) |
|
{ |
|
bitwise_run<char>(src1, src2, dst, kernelName, kernelString, (void *)NULL); |
|
} |
|
static void bitwise_run(const oclMat &src1, const oclMat &src2, oclMat &dst, const oclMat &mask, string kernelName, const char **kernelString) |
|
{ |
|
dst.create(src1.size(), src1.type()); |
|
CV_Assert(src1.cols == src2.cols && src2.cols == dst.cols && |
|
src1.rows == src2.rows && src2.rows == dst.rows && |
|
src1.rows == mask.rows && src1.cols == mask.cols); |
|
|
|
CV_Assert(src1.type() == src2.type() && src1.type() == dst.type()); |
|
CV_Assert(mask.type() == CV_8U); |
|
|
|
Context *clCxt = src1.clCxt; |
|
int channels = dst.oclchannels(); |
|
int depth = dst.depth(); |
|
|
|
int vector_lengths[4][7] = {{4, 4, 2, 2, 1, 1, 1}, |
|
{2, 2, 1, 1, 1, 1, 1}, |
|
{4, 4, 2, 2 , 1, 1, 1}, |
|
{1, 1, 1, 1, 1, 1, 1} |
|
}; |
|
|
|
size_t vector_length = vector_lengths[channels - 1][depth]; |
|
int offset_cols = ((dst.offset % dst.step) / dst.elemSize()) & (vector_length - 1); |
|
int cols = divUp(dst.cols + offset_cols, vector_length); |
|
|
|
size_t localThreads[3] = { 64, 4, 1 }; |
|
size_t globalThreads[3] = { divUp(cols, localThreads[0]) *localThreads[0], |
|
divUp(dst.rows, localThreads[1]) *localThreads[1], |
|
1 |
|
}; |
|
|
|
int dst_step1 = dst.cols * dst.elemSize(); |
|
vector<pair<size_t , const void *> > args; |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&src1.data )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src1.step )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src1.offset )); |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&src2.data )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src2.step )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src2.offset )); |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&mask.data )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&mask.step )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&mask.offset )); |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&dst.data )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.step )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.offset )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src1.rows )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&cols )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&dst_step1 )); |
|
|
|
openCLExecuteKernel(clCxt, kernelString, kernelName, globalThreads, localThreads, args, channels, depth); |
|
} |
|
|
|
|
|
template <typename WT , typename CL_WT> |
|
void bitwise_scalar_run(const oclMat &src1, const Scalar &src2, oclMat &dst, const oclMat &mask, string kernelName, const char **kernelString, int isMatSubScalar) |
|
{ |
|
dst.create(src1.size(), src1.type()); |
|
|
|
CV_Assert(src1.cols == dst.cols && src1.rows == dst.rows && |
|
src1.type() == dst.type()); |
|
|
|
|
|
if(mask.data) |
|
{ |
|
CV_Assert(mask.type() == CV_8U && src1.rows == mask.rows && src1.cols == mask.cols); |
|
} |
|
|
|
Context *clCxt = src1.clCxt; |
|
int channels = dst.oclchannels(); |
|
int depth = dst.depth(); |
|
|
|
WT s[4] = { saturate_cast<WT>(src2.val[0]), saturate_cast<WT>(src2.val[1]), |
|
saturate_cast<WT>(src2.val[2]), saturate_cast<WT>(src2.val[3]) |
|
}; |
|
|
|
int vector_lengths[4][7] = {{4, 4, 2, 2, 1, 1, 1}, |
|
{2, 2, 1, 1, 1, 1, 1}, |
|
{4, 4, 2, 2 , 1, 1, 1}, |
|
{1, 1, 1, 1, 1, 1, 1} |
|
}; |
|
|
|
size_t vector_length = vector_lengths[channels - 1][depth]; |
|
int offset_cols = ((dst.offset % dst.step) / dst.elemSize()) & (vector_length - 1); |
|
int cols = divUp(dst.cols + offset_cols, vector_length); |
|
|
|
size_t localThreads[3] = { 64, 4, 1 }; |
|
size_t globalThreads[3] = { divUp(cols, localThreads[0]) *localThreads[0], |
|
divUp(dst.rows, localThreads[1]) *localThreads[1], |
|
1 |
|
}; |
|
|
|
int dst_step1 = dst.cols * dst.elemSize(); |
|
vector<pair<size_t , const void *> > args; |
|
args.push_back( make_pair( sizeof(cl_mem) , (void *)&src1.data )); |
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&src1.step )); |
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&src1.offset)); |
|
args.push_back( make_pair( sizeof(cl_mem) , (void *)&dst.data )); |
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&dst.step )); |
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&dst.offset)); |
|
|
|
if(mask.data) |
|
{ |
|
args.push_back( make_pair( sizeof(cl_mem) , (void *)&mask.data )); |
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&mask.step )); |
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&mask.offset)); |
|
} |
|
args.push_back( make_pair( sizeof(CL_WT) , (void *)&s )); |
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&src1.rows )); |
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&cols )); |
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&dst_step1 )); |
|
if(isMatSubScalar != 0) |
|
{ |
|
isMatSubScalar = isMatSubScalar > 0 ? 1 : 0; |
|
args.push_back( make_pair( sizeof(cl_int) , (void *)&isMatSubScalar)); |
|
} |
|
|
|
openCLExecuteKernel(clCxt, kernelString, kernelName, globalThreads, localThreads, args, channels, depth); |
|
} |
|
|
|
|
|
typedef void (*BitwiseFuncS)(const oclMat &src1, const Scalar &src2, oclMat &dst, const oclMat &mask, string kernelName, const char **kernelString, int isMatSubScalar); |
|
|
|
|
|
static void bitwise_scalar(const oclMat &src1, const Scalar &src2, oclMat &dst, const oclMat &mask, string kernelName, const char **kernelString, int isMatSubScalar) |
|
{ |
|
static BitwiseFuncS tab[8] = |
|
{ |
|
#if 0 |
|
bitwise_scalar_run<unsigned char>, |
|
bitwise_scalar_run<char>, |
|
bitwise_scalar_run<unsigned short>, |
|
bitwise_scalar_run<short>, |
|
bitwise_scalar_run<int>, |
|
bitwise_scalar_run<float>, |
|
bitwise_scalar_run<double>, |
|
0 |
|
#else |
|
|
|
bitwise_scalar_run<unsigned char, cl_uchar4>, |
|
bitwise_scalar_run<char, cl_char4>, |
|
bitwise_scalar_run<unsigned short, cl_ushort4>, |
|
bitwise_scalar_run<short, cl_short4>, |
|
bitwise_scalar_run<int, cl_int4>, |
|
bitwise_scalar_run<float, cl_float4>, |
|
bitwise_scalar_run<double, cl_double4>, |
|
0 |
|
#endif |
|
}; |
|
BitwiseFuncS func = tab[src1.depth()]; |
|
if(func == 0) |
|
cv::ocl::error("Unsupported arithmetic operation", __FILE__, __LINE__); |
|
func(src1, src2, dst, mask, kernelName, kernelString, isMatSubScalar); |
|
} |
|
static void bitwise_scalar(const oclMat &src1, const Scalar &src2, oclMat &dst, const oclMat &mask, string kernelName, const char **kernelString) |
|
{ |
|
bitwise_scalar(src1, src2, dst, mask, kernelName, kernelString, 0); |
|
} |
|
|
|
void cv::ocl::bitwise_not(const oclMat &src, oclMat &dst) |
|
{ |
|
if(src.clCxt -> impl -> double_support == 0 && src.type() == CV_64F) |
|
{ |
|
cout << "Selected device do not support double" << endl; |
|
return; |
|
} |
|
dst.create(src.size(), src.type()); |
|
string kernelName = "arithm_bitwise_not"; |
|
bitwise_run(src, dst, kernelName, &arithm_bitwise_not); |
|
} |
|
|
|
void cv::ocl::bitwise_or(const oclMat &src1, const oclMat &src2, oclMat &dst, const oclMat &mask) |
|
{ |
|
// dst.create(src1.size(),src1.type()); |
|
if(src1.clCxt -> impl -> double_support == 0 && src1.type() == CV_64F) |
|
{ |
|
cout << "Selected device do not support double" << endl; |
|
return; |
|
} |
|
oclMat emptyMat; |
|
string kernelName = mask.empty() ? "arithm_bitwise_or" : "arithm_bitwise_or_with_mask"; |
|
if (mask.empty()) |
|
bitwise_run(src1, src2, dst, kernelName, &arithm_bitwise_or); |
|
else |
|
bitwise_run(src1, src2, dst, mask, kernelName, &arithm_bitwise_or_mask); |
|
} |
|
|
|
|
|
void cv::ocl::bitwise_or(const oclMat &src1, const Scalar &src2, oclMat &dst, const oclMat &mask) |
|
{ |
|
if(src1.clCxt -> impl -> double_support == 0 && src1.type() == CV_64F) |
|
{ |
|
cout << "Selected device do not support double" << endl; |
|
return; |
|
} |
|
string kernelName = mask.data ? "arithm_s_bitwise_or_with_mask" : "arithm_s_bitwise_or"; |
|
if (mask.data) |
|
bitwise_scalar( src1, src2, dst, mask, kernelName, &arithm_bitwise_or_scalar_mask); |
|
else |
|
bitwise_scalar( src1, src2, dst, mask, kernelName, &arithm_bitwise_or_scalar); |
|
} |
|
|
|
void cv::ocl::bitwise_and(const oclMat &src1, const oclMat &src2, oclMat &dst, const oclMat &mask) |
|
{ |
|
// dst.create(src1.size(),src1.type()); |
|
if(src1.clCxt -> impl -> double_support == 0 && src1.type() == CV_64F) |
|
{ |
|
cout << "Selected device do not support double" << endl; |
|
return; |
|
} |
|
oclMat emptyMat; |
|
|
|
string kernelName = mask.empty() ? "arithm_bitwise_and" : "arithm_bitwise_and_with_mask"; |
|
|
|
if (mask.empty()) |
|
bitwise_run(src1, src2, dst, kernelName, &arithm_bitwise_and); |
|
else |
|
bitwise_run(src1, src2, dst, mask, kernelName, &arithm_bitwise_and_mask); |
|
} |
|
|
|
void cv::ocl::bitwise_and(const oclMat &src1, const Scalar &src2, oclMat &dst, const oclMat &mask) |
|
{ |
|
if(src1.clCxt -> impl -> double_support == 0 && src1.type() == CV_64F) |
|
{ |
|
cout << "Selected device do not support double" << endl; |
|
return; |
|
} |
|
string kernelName = mask.data ? "arithm_s_bitwise_and_with_mask" : "arithm_s_bitwise_and"; |
|
if (mask.data) |
|
bitwise_scalar(src1, src2, dst, mask, kernelName, &arithm_bitwise_and_scalar_mask); |
|
else |
|
bitwise_scalar(src1, src2, dst, mask, kernelName, &arithm_bitwise_and_scalar); |
|
} |
|
|
|
void cv::ocl::bitwise_xor(const oclMat &src1, const oclMat &src2, oclMat &dst, const oclMat &mask) |
|
{ |
|
if(src1.clCxt -> impl -> double_support == 0 && src1.type() == CV_64F) |
|
{ |
|
cout << "Selected device do not support double" << endl; |
|
return; |
|
} |
|
oclMat emptyMat; |
|
string kernelName = mask.empty() ? "arithm_bitwise_xor" : "arithm_bitwise_xor_with_mask"; |
|
|
|
|
|
if (mask.empty()) |
|
bitwise_run(src1, src2, dst, kernelName, &arithm_bitwise_xor); |
|
else |
|
bitwise_run(src1, src2, dst, mask, kernelName, &arithm_bitwise_xor_mask); |
|
} |
|
|
|
|
|
void cv::ocl::bitwise_xor(const oclMat &src1, const Scalar &src2, oclMat &dst, const oclMat &mask) |
|
{ |
|
|
|
if(src1.clCxt -> impl -> double_support == 0 && src1.type() == CV_64F) |
|
{ |
|
cout << "Selected device do not support double" << endl; |
|
return; |
|
} |
|
string kernelName = mask.data ? "arithm_s_bitwise_xor_with_mask" : "arithm_s_bitwise_xor"; |
|
if (mask.data) |
|
bitwise_scalar( src1, src2, dst, mask, kernelName, &arithm_bitwise_xor_scalar_mask); |
|
else |
|
bitwise_scalar( src1, src2, dst, mask, kernelName, &arithm_bitwise_xor_scalar); |
|
} |
|
|
|
oclMat cv::ocl::operator ~ (const oclMat &src) |
|
{ |
|
return oclMatExpr(src, oclMat(), MAT_NOT); |
|
} |
|
|
|
oclMat cv::ocl::operator | (const oclMat &src1, const oclMat &src2) |
|
{ |
|
return oclMatExpr(src1, src2, MAT_OR); |
|
} |
|
|
|
oclMat cv::ocl::operator & (const oclMat &src1, const oclMat &src2) |
|
{ |
|
return oclMatExpr(src1, src2, MAT_AND); |
|
} |
|
|
|
oclMat cv::ocl::operator ^ (const oclMat &src1, const oclMat &src2) |
|
{ |
|
return oclMatExpr(src1, src2, MAT_XOR); |
|
} |
|
|
|
cv::ocl::oclMatExpr cv::ocl::operator + (const oclMat &src1, const oclMat &src2) |
|
{ |
|
return oclMatExpr(src1, src2, cv::ocl::MAT_ADD); |
|
} |
|
|
|
cv::ocl::oclMatExpr cv::ocl::operator - (const oclMat &src1, const oclMat &src2) |
|
{ |
|
return oclMatExpr(src1, src2, cv::ocl::MAT_SUB); |
|
} |
|
|
|
cv::ocl::oclMatExpr cv::ocl::operator * (const oclMat &src1, const oclMat &src2) |
|
{ |
|
return oclMatExpr(src1, src2, cv::ocl::MAT_MUL); |
|
} |
|
|
|
cv::ocl::oclMatExpr cv::ocl::operator / (const oclMat &src1, const oclMat &src2) |
|
{ |
|
return oclMatExpr(src1, src2, cv::ocl::MAT_DIV); |
|
} |
|
|
|
void oclMatExpr::assign(oclMat& m) const |
|
{ |
|
switch (op) |
|
{ |
|
case MAT_ADD: |
|
add(a, b, m); |
|
break; |
|
case MAT_SUB: |
|
subtract(a, b, m); |
|
break; |
|
case MAT_MUL: |
|
multiply(a, b, m); |
|
break; |
|
case MAT_DIV: |
|
divide(a, b, m); |
|
break; |
|
case MAT_NOT: |
|
bitwise_not(a, m); |
|
break; |
|
case MAT_AND: |
|
bitwise_and(a, b, m); |
|
break; |
|
case MAT_OR: |
|
bitwise_or(a, b, m); |
|
break; |
|
case MAT_XOR: |
|
bitwise_xor(a, b, m); |
|
break; |
|
} |
|
} |
|
|
|
oclMatExpr::operator oclMat() const |
|
{ |
|
oclMat m; |
|
assign(m); |
|
return m; |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////////////// |
|
/////////////////////////////// transpose //////////////////////////////////// |
|
////////////////////////////////////////////////////////////////////////////// |
|
#define TILE_DIM (32) |
|
#define BLOCK_ROWS (256/TILE_DIM) |
|
static void transpose_run(const oclMat &src, oclMat &dst, string kernelName) |
|
{ |
|
if(src.clCxt -> impl -> double_support == 0 && src.type() == CV_64F) |
|
{ |
|
CV_Error(CV_GpuNotSupported, "Selected device don't support double\r\n"); |
|
return; |
|
} |
|
|
|
CV_Assert(src.cols == dst.rows && src.rows == dst.cols); |
|
|
|
Context *clCxt = src.clCxt; |
|
int channels = src.oclchannels(); |
|
int depth = src.depth(); |
|
|
|
int vector_lengths[4][7] = {{1, 0, 0, 0, 1, 1, 0}, |
|
{0, 0, 1, 1, 0, 0, 0}, |
|
{0, 0, 0, 0 , 0, 0, 0}, |
|
{1, 1, 0, 0, 0, 0, 0} |
|
}; |
|
|
|
size_t vector_length = vector_lengths[channels - 1][depth]; |
|
int offset_cols = ((dst.offset % dst.step) / dst.elemSize()) & (vector_length - 1); |
|
int cols = divUp(src.cols + offset_cols, vector_length); |
|
|
|
size_t localThreads[3] = { TILE_DIM, BLOCK_ROWS, 1 }; |
|
size_t globalThreads[3] = { divUp(cols, TILE_DIM) *localThreads[0], |
|
divUp(src.rows, TILE_DIM) *localThreads[1], |
|
1 |
|
}; |
|
|
|
vector<pair<size_t , const void *> > args; |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&src.data )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src.step )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src.offset )); |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&dst.data )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.step )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.offset )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src.rows )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&cols )); |
|
|
|
openCLExecuteKernel(clCxt, &arithm_transpose, kernelName, globalThreads, localThreads, args, channels, depth); |
|
} |
|
|
|
void cv::ocl::transpose(const oclMat &src, oclMat &dst) |
|
{ |
|
CV_Assert(src.type() == CV_8UC1 || src.type() == CV_8UC3 || src.type() == CV_8UC4 || src.type() == CV_8SC3 || src.type() == CV_8SC4 || |
|
src.type() == CV_16UC2 || src.type() == CV_16SC2 || src.type() == CV_32SC1 || src.type() == CV_32FC1); |
|
|
|
oclMat emptyMat; |
|
|
|
if( src.data == dst.data && dst.cols == dst.rows ) |
|
transpose_run( src, emptyMat, "transposeI_"); |
|
else |
|
{ |
|
dst.create(src.cols, src.rows, src.type()); |
|
transpose_run( src, dst, "transpose"); |
|
} |
|
} |
|
|
|
void cv::ocl::addWeighted(const oclMat &src1, double alpha, const oclMat &src2, double beta, double gama, oclMat &dst) |
|
{ |
|
dst.create(src1.size(), src1.type()); |
|
CV_Assert(src1.cols == src2.cols && src2.cols == dst.cols && |
|
src1.rows == src2.rows && src2.rows == dst.rows); |
|
CV_Assert(src1.type() == src2.type() && src1.type() == dst.type()); |
|
|
|
Context *clCxt = src1.clCxt; |
|
int channels = dst.oclchannels(); |
|
int depth = dst.depth(); |
|
|
|
|
|
int vector_lengths[4][7] = {{4, 0, 4, 4, 4, 4, 4}, |
|
{4, 0, 4, 4, 4, 4, 4}, |
|
{4, 0, 4, 4, 4, 4, 4}, |
|
{4, 0, 4, 4, 4, 4, 4} |
|
}; |
|
|
|
|
|
size_t vector_length = vector_lengths[channels - 1][depth]; |
|
int offset_cols = (dst.offset / dst.elemSize1()) & (vector_length - 1); |
|
int cols = divUp(dst.cols * channels + offset_cols, vector_length); |
|
|
|
size_t localThreads[3] = { 256, 1, 1 }; |
|
size_t globalThreads[3] = { divUp(cols, localThreads[0]) *localThreads[0], |
|
divUp(dst.rows, localThreads[1]) *localThreads[1], |
|
1 |
|
}; |
|
|
|
int dst_step1 = dst.cols * dst.elemSize(); |
|
vector<pair<size_t , const void *> > args; |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&src1.data )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src1.step )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src1.offset)); |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&src2.data )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src2.step )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src2.offset)); |
|
|
|
if(src1.clCxt -> impl -> double_support != 0) |
|
{ |
|
args.push_back( make_pair( sizeof(cl_double), (void *)&alpha )); |
|
args.push_back( make_pair( sizeof(cl_double), (void *)&beta )); |
|
args.push_back( make_pair( sizeof(cl_double), (void *)&gama )); |
|
} |
|
else |
|
{ |
|
float alpha_f = alpha, beta_f = beta, gama_f = gama; |
|
args.push_back( make_pair( sizeof(cl_float), (void *)&alpha_f )); |
|
args.push_back( make_pair( sizeof(cl_float), (void *)&beta_f )); |
|
args.push_back( make_pair( sizeof(cl_float), (void *)&gama_f )); |
|
} |
|
|
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&dst.data )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.step )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.offset)); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src1.rows )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&cols )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&dst_step1 )); |
|
|
|
openCLExecuteKernel(clCxt, &arithm_addWeighted, "addWeighted", globalThreads, localThreads, args, -1, depth); |
|
} |
|
|
|
void cv::ocl::magnitudeSqr(const oclMat &src1, const oclMat &src2, oclMat &dst) |
|
{ |
|
CV_Assert(src1.type() == src2.type() && src1.size() == src2.size() && |
|
(src1.depth() == CV_32F )); |
|
|
|
dst.create(src1.size(), src1.type()); |
|
|
|
|
|
Context *clCxt = src1.clCxt; |
|
int channels = dst.oclchannels(); |
|
int depth = dst.depth(); |
|
|
|
|
|
int vector_lengths[4][7] = {{4, 0, 4, 4, 4, 4, 4}, |
|
{4, 0, 4, 4, 4, 4, 4}, |
|
{4, 0, 4, 4, 4, 4, 4}, |
|
{4, 0, 4, 4, 4, 4, 4} |
|
}; |
|
|
|
|
|
size_t vector_length = vector_lengths[channels - 1][depth]; |
|
int offset_cols = (dst.offset / dst.elemSize1()) & (vector_length - 1); |
|
int cols = divUp(dst.cols * channels + offset_cols, vector_length); |
|
|
|
size_t localThreads[3] = { 256, 1, 1 }; |
|
size_t globalThreads[3] = { divUp(cols, localThreads[0]) *localThreads[0], |
|
divUp(dst.rows, localThreads[1]) *localThreads[1], |
|
1 |
|
}; |
|
|
|
int dst_step1 = dst.cols * dst.elemSize(); |
|
vector<pair<size_t , const void *> > args; |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&src1.data )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src1.step )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src1.offset)); |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&src2.data )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src2.step )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src2.offset)); |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&dst.data )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.step )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.offset)); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src1.rows )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&cols )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&dst_step1 )); |
|
|
|
openCLExecuteKernel(clCxt, &arithm_magnitudeSqr, "magnitudeSqr", globalThreads, localThreads, args, 1, depth); |
|
} |
|
|
|
void cv::ocl::magnitudeSqr(const oclMat &src1, oclMat &dst) |
|
{ |
|
CV_Assert (src1.depth() == CV_32F ); |
|
CV_Assert(src1.size() == dst.size()); |
|
|
|
dst.create(src1.size(), CV_32FC1); |
|
|
|
|
|
Context *clCxt = src1.clCxt; |
|
int channels = dst.oclchannels(); |
|
int depth = dst.depth(); |
|
|
|
|
|
int vector_lengths[4][7] = {{4, 0, 4, 4, 4, 4, 4}, |
|
{4, 0, 4, 4, 4, 4, 4}, |
|
{4, 0, 4, 4, 4, 4, 4}, |
|
{4, 0, 4, 4, 4, 4, 4} |
|
}; |
|
|
|
|
|
size_t vector_length = vector_lengths[channels - 1][depth]; |
|
int offset_cols = (dst.offset / dst.elemSize1()) & (vector_length - 1); |
|
int cols = divUp(dst.cols * channels + offset_cols, vector_length); |
|
|
|
size_t localThreads[3] = { 256, 1, 1 }; |
|
size_t globalThreads[3] = { divUp(cols, localThreads[0]) *localThreads[0], |
|
divUp(dst.rows, localThreads[1]) *localThreads[1], |
|
1 |
|
}; |
|
|
|
int dst_step1 = dst.cols * dst.elemSize(); |
|
vector<pair<size_t , const void *> > args; |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&src1.data )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src1.step )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src1.offset)); |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&dst.data )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.step )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.offset)); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src1.rows )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&cols )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&dst_step1 )); |
|
|
|
openCLExecuteKernel(clCxt, &arithm_magnitudeSqr, "magnitudeSqr", globalThreads, localThreads, args, 2, depth); |
|
} |
|
|
|
static void arithmetic_pow_run(const oclMat &src1, double p, oclMat &dst, string kernelName, const char **kernelString) |
|
{ |
|
CV_Assert(src1.cols == dst.cols && src1.rows == dst.rows); |
|
CV_Assert(src1.type() == dst.type()); |
|
|
|
Context *clCxt = src1.clCxt; |
|
int channels = dst.oclchannels(); |
|
int depth = dst.depth(); |
|
|
|
size_t vector_length = 1; |
|
int offset_cols = ((dst.offset % dst.step) / dst.elemSize1()) & (vector_length - 1); |
|
int cols = divUp(dst.cols * channels + offset_cols, vector_length); |
|
int rows = dst.rows; |
|
|
|
size_t localThreads[3] = { 64, 4, 1 }; |
|
size_t globalThreads[3] = { divUp(cols, localThreads[0]) *localThreads[0], |
|
divUp(rows, localThreads[1]) *localThreads[1], |
|
1 |
|
}; |
|
|
|
int dst_step1 = dst.cols * dst.elemSize(); |
|
vector<pair<size_t , const void *> > args; |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&src1.data )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src1.step )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&src1.offset )); |
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&dst.data )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.step )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.offset )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.rows )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&cols )); |
|
args.push_back( make_pair( sizeof(cl_int), (void *)&dst_step1 )); |
|
if(src1.clCxt -> impl -> double_support == 0) |
|
{ |
|
float pf = p; |
|
args.push_back( make_pair( sizeof(cl_float), (void *)&pf )); |
|
} |
|
else |
|
args.push_back( make_pair( sizeof(cl_double), (void *)&p )); |
|
|
|
openCLExecuteKernel(clCxt, kernelString, kernelName, globalThreads, localThreads, args, -1, depth); |
|
} |
|
void cv::ocl::pow(const oclMat &x, double p, oclMat &y) |
|
{ |
|
if(x.clCxt -> impl -> double_support == 0 && x.type() == CV_64F) |
|
{ |
|
cout << "Selected device do not support double" << endl; |
|
return; |
|
} |
|
|
|
CV_Assert((x.type() == y.type() && x.size() == y.size() && x.depth() == CV_32F) || x.depth() == CV_64F); |
|
y.create(x.size(), x.type()); |
|
string kernelName = "arithm_pow"; |
|
|
|
arithmetic_pow_run(x, p, y, kernelName, &arithm_pow); |
|
}
|
|
|