Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1290 lines
43 KiB
1290 lines
43 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// Intel License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of Intel Corporation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
#include <functional> |
|
|
|
using namespace std; |
|
using namespace cv; |
|
|
|
namespace |
|
{ |
|
///////////////////////////////////// |
|
// Common |
|
|
|
template <typename T, class A> void releaseVector(vector<T, A>& v) |
|
{ |
|
vector<T, A> empty; |
|
empty.swap(v); |
|
} |
|
|
|
double toRad(double a) |
|
{ |
|
return a * CV_PI / 180.0; |
|
} |
|
|
|
bool notNull(float v) |
|
{ |
|
return fabs(v) > numeric_limits<float>::epsilon(); |
|
} |
|
|
|
class GHT_Pos : public GeneralizedHough |
|
{ |
|
public: |
|
GHT_Pos(); |
|
|
|
protected: |
|
void setTemplateImpl(const Mat& edges, const Mat& dx, const Mat& dy, Point templCenter); |
|
void detectImpl(const Mat& edges, const Mat& dx, const Mat& dy, OutputArray positions, OutputArray votes); |
|
void releaseImpl(); |
|
|
|
virtual void processTempl() = 0; |
|
virtual void processImage() = 0; |
|
|
|
void filterMinDist(); |
|
void convertTo(OutputArray positions, OutputArray votes); |
|
|
|
double minDist; |
|
|
|
Size templSize; |
|
Point templCenter; |
|
Mat templEdges; |
|
Mat templDx; |
|
Mat templDy; |
|
|
|
Size imageSize; |
|
Mat imageEdges; |
|
Mat imageDx; |
|
Mat imageDy; |
|
|
|
vector<Vec4f> posOutBuf; |
|
vector<Vec3i> voteOutBuf; |
|
}; |
|
|
|
GHT_Pos::GHT_Pos() |
|
{ |
|
minDist = 1.0; |
|
} |
|
|
|
void GHT_Pos::setTemplateImpl(const Mat& edges, const Mat& dx, const Mat& dy, Point templCenter_) |
|
{ |
|
templSize = edges.size(); |
|
templCenter = templCenter_; |
|
edges.copyTo(templEdges); |
|
dx.copyTo(templDx); |
|
dy.copyTo(templDy); |
|
|
|
processTempl(); |
|
} |
|
|
|
void GHT_Pos::detectImpl(const Mat& edges, const Mat& dx, const Mat& dy, OutputArray positions, OutputArray votes) |
|
{ |
|
imageSize = edges.size(); |
|
edges.copyTo(imageEdges); |
|
dx.copyTo(imageDx); |
|
dy.copyTo(imageDy); |
|
|
|
posOutBuf.clear(); |
|
voteOutBuf.clear(); |
|
|
|
processImage(); |
|
|
|
if (!posOutBuf.empty()) |
|
{ |
|
if (minDist > 1) |
|
filterMinDist(); |
|
convertTo(positions, votes); |
|
} |
|
else |
|
{ |
|
positions.release(); |
|
if (votes.needed()) |
|
votes.release(); |
|
} |
|
} |
|
|
|
void GHT_Pos::releaseImpl() |
|
{ |
|
templSize = Size(); |
|
templCenter = Point(-1, -1); |
|
templEdges.release(); |
|
templDx.release(); |
|
templDy.release(); |
|
|
|
imageSize = Size(); |
|
imageEdges.release(); |
|
imageDx.release(); |
|
imageDy.release(); |
|
|
|
releaseVector(posOutBuf); |
|
releaseVector(voteOutBuf); |
|
} |
|
|
|
#define votes_cmp_gt(l1, l2) (aux[l1][0] > aux[l2][0]) |
|
static CV_IMPLEMENT_QSORT_EX( sortIndexies, size_t, votes_cmp_gt, const Vec3i* ) |
|
|
|
void GHT_Pos::filterMinDist() |
|
{ |
|
size_t oldSize = posOutBuf.size(); |
|
const bool hasVotes = !voteOutBuf.empty(); |
|
|
|
CV_Assert(!hasVotes || voteOutBuf.size() == oldSize); |
|
|
|
vector<Vec4f> oldPosBuf(posOutBuf); |
|
vector<Vec3i> oldVoteBuf(voteOutBuf); |
|
|
|
vector<size_t> indexies(oldSize); |
|
for (size_t i = 0; i < oldSize; ++i) |
|
indexies[i] = i; |
|
sortIndexies(&indexies[0], oldSize, &oldVoteBuf[0]); |
|
|
|
posOutBuf.clear(); |
|
voteOutBuf.clear(); |
|
|
|
const int cellSize = cvRound(minDist); |
|
const int gridWidth = (imageSize.width + cellSize - 1) / cellSize; |
|
const int gridHeight = (imageSize.height + cellSize - 1) / cellSize; |
|
|
|
vector< vector<Point2f> > grid(gridWidth * gridHeight); |
|
|
|
const double minDist2 = minDist * minDist; |
|
|
|
for (size_t i = 0; i < oldSize; ++i) |
|
{ |
|
const size_t ind = indexies[i]; |
|
|
|
Point2f p(oldPosBuf[ind][0], oldPosBuf[ind][1]); |
|
|
|
bool good = true; |
|
|
|
const int xCell = static_cast<int>(p.x / cellSize); |
|
const int yCell = static_cast<int>(p.y / cellSize); |
|
|
|
int x1 = xCell - 1; |
|
int y1 = yCell - 1; |
|
int x2 = xCell + 1; |
|
int y2 = yCell + 1; |
|
|
|
// boundary check |
|
x1 = std::max(0, x1); |
|
y1 = std::max(0, y1); |
|
x2 = std::min(gridWidth - 1, x2); |
|
y2 = std::min(gridHeight - 1, y2); |
|
|
|
for (int yy = y1; yy <= y2; ++yy) |
|
{ |
|
for (int xx = x1; xx <= x2; ++xx) |
|
{ |
|
const vector<Point2f>& m = grid[yy * gridWidth + xx]; |
|
|
|
for(size_t j = 0; j < m.size(); ++j) |
|
{ |
|
const Point2f d = p - m[j]; |
|
|
|
if (d.ddot(d) < minDist2) |
|
{ |
|
good = false; |
|
goto break_out; |
|
} |
|
} |
|
} |
|
} |
|
|
|
break_out: |
|
|
|
if(good) |
|
{ |
|
grid[yCell * gridWidth + xCell].push_back(p); |
|
|
|
posOutBuf.push_back(oldPosBuf[ind]); |
|
if (hasVotes) |
|
voteOutBuf.push_back(oldVoteBuf[ind]); |
|
} |
|
} |
|
} |
|
|
|
void GHT_Pos::convertTo(OutputArray _positions, OutputArray _votes) |
|
{ |
|
const int total = static_cast<int>(posOutBuf.size()); |
|
const bool hasVotes = !voteOutBuf.empty(); |
|
|
|
CV_Assert(!hasVotes || voteOutBuf.size() == posOutBuf.size()); |
|
|
|
_positions.create(1, total, CV_32FC4); |
|
Mat positions = _positions.getMat(); |
|
Mat(1, total, CV_32FC4, &posOutBuf[0]).copyTo(positions); |
|
|
|
if (_votes.needed()) |
|
{ |
|
if (!hasVotes) |
|
_votes.release(); |
|
else |
|
{ |
|
_votes.create(1, total, CV_32SC3); |
|
Mat votes = _votes.getMat(); |
|
Mat(1, total, CV_32SC3, &voteOutBuf[0]).copyTo(votes); |
|
} |
|
} |
|
} |
|
|
|
///////////////////////////////////// |
|
// POSITION Ballard |
|
|
|
class GHT_Ballard_Pos : public GHT_Pos |
|
{ |
|
public: |
|
AlgorithmInfo* info() const; |
|
|
|
GHT_Ballard_Pos(); |
|
|
|
protected: |
|
void releaseImpl(); |
|
|
|
void processTempl(); |
|
void processImage(); |
|
|
|
virtual void calcHist(); |
|
virtual void findPosInHist(); |
|
|
|
int levels; |
|
int votesThreshold; |
|
double dp; |
|
|
|
vector< vector<Point> > r_table; |
|
Mat hist; |
|
}; |
|
|
|
CV_INIT_ALGORITHM(GHT_Ballard_Pos, "GeneralizedHough.POSITION", |
|
obj.info()->addParam(obj, "minDist", obj.minDist, false, 0, 0, |
|
"Minimum distance between the centers of the detected objects."); |
|
obj.info()->addParam(obj, "levels", obj.levels, false, 0, 0, |
|
"R-Table levels."); |
|
obj.info()->addParam(obj, "votesThreshold", obj.votesThreshold, false, 0, 0, |
|
"The accumulator threshold for the template centers at the detection stage. The smaller it is, the more false positions may be detected."); |
|
obj.info()->addParam(obj, "dp", obj.dp, false, 0, 0, |
|
"Inverse ratio of the accumulator resolution to the image resolution.")) |
|
|
|
GHT_Ballard_Pos::GHT_Ballard_Pos() |
|
{ |
|
levels = 360; |
|
votesThreshold = 100; |
|
dp = 1.0; |
|
} |
|
|
|
void GHT_Ballard_Pos::releaseImpl() |
|
{ |
|
GHT_Pos::releaseImpl(); |
|
|
|
releaseVector(r_table); |
|
hist.release(); |
|
} |
|
|
|
void GHT_Ballard_Pos::processTempl() |
|
{ |
|
CV_Assert(templEdges.type() == CV_8UC1); |
|
CV_Assert(templDx.type() == CV_32FC1 && templDx.size() == templSize); |
|
CV_Assert(templDy.type() == templDx.type() && templDy.size() == templSize); |
|
CV_Assert(levels > 0); |
|
|
|
const double thetaScale = levels / 360.0; |
|
|
|
r_table.resize(levels + 1); |
|
for_each(r_table.begin(), r_table.end(), mem_fun_ref(&vector<Point>::clear)); |
|
|
|
for (int y = 0; y < templSize.height; ++y) |
|
{ |
|
const uchar* edgesRow = templEdges.ptr(y); |
|
const float* dxRow = templDx.ptr<float>(y); |
|
const float* dyRow = templDy.ptr<float>(y); |
|
|
|
for (int x = 0; x < templSize.width; ++x) |
|
{ |
|
const Point p(x, y); |
|
|
|
if (edgesRow[x] && (notNull(dyRow[x]) || notNull(dxRow[x]))) |
|
{ |
|
const float theta = fastAtan2(dyRow[x], dxRow[x]); |
|
const int n = cvRound(theta * thetaScale); |
|
r_table[n].push_back(p - templCenter); |
|
} |
|
} |
|
} |
|
} |
|
|
|
void GHT_Ballard_Pos::processImage() |
|
{ |
|
calcHist(); |
|
findPosInHist(); |
|
} |
|
|
|
void GHT_Ballard_Pos::calcHist() |
|
{ |
|
CV_Assert(imageEdges.type() == CV_8UC1); |
|
CV_Assert(imageDx.type() == CV_32FC1 && imageDx.size() == imageSize); |
|
CV_Assert(imageDy.type() == imageDx.type() && imageDy.size() == imageSize); |
|
CV_Assert(levels > 0 && r_table.size() == static_cast<size_t>(levels + 1)); |
|
CV_Assert(dp > 0.0); |
|
|
|
const double thetaScale = levels / 360.0; |
|
const double idp = 1.0 / dp; |
|
|
|
hist.create(cvCeil(imageSize.height * idp) + 2, cvCeil(imageSize.width * idp) + 2, CV_32SC1); |
|
hist.setTo(0); |
|
|
|
const int rows = hist.rows - 2; |
|
const int cols = hist.cols - 2; |
|
|
|
for (int y = 0; y < imageSize.height; ++y) |
|
{ |
|
const uchar* edgesRow = imageEdges.ptr(y); |
|
const float* dxRow = imageDx.ptr<float>(y); |
|
const float* dyRow = imageDy.ptr<float>(y); |
|
|
|
for (int x = 0; x < imageSize.width; ++x) |
|
{ |
|
const Point p(x, y); |
|
|
|
if (edgesRow[x] && (notNull(dyRow[x]) || notNull(dxRow[x]))) |
|
{ |
|
const float theta = fastAtan2(dyRow[x], dxRow[x]); |
|
const int n = cvRound(theta * thetaScale); |
|
|
|
const vector<Point>& r_row = r_table[n]; |
|
|
|
for (size_t j = 0; j < r_row.size(); ++j) |
|
{ |
|
Point c = p - r_row[j]; |
|
|
|
c.x = cvRound(c.x * idp); |
|
c.y = cvRound(c.y * idp); |
|
|
|
if (c.x >= 0 && c.x < cols && c.y >= 0 && c.y < rows) |
|
++hist.at<int>(c.y + 1, c.x + 1); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
void GHT_Ballard_Pos::findPosInHist() |
|
{ |
|
CV_Assert(votesThreshold > 0); |
|
|
|
const int histRows = hist.rows - 2; |
|
const int histCols = hist.cols - 2; |
|
|
|
for(int y = 0; y < histRows; ++y) |
|
{ |
|
const int* prevRow = hist.ptr<int>(y); |
|
const int* curRow = hist.ptr<int>(y + 1); |
|
const int* nextRow = hist.ptr<int>(y + 2); |
|
|
|
for(int x = 0; x < histCols; ++x) |
|
{ |
|
const int votes = curRow[x + 1]; |
|
|
|
if (votes > votesThreshold && votes > curRow[x] && votes >= curRow[x + 2] && votes > prevRow[x + 1] && votes >= nextRow[x + 1]) |
|
{ |
|
posOutBuf.push_back(Vec4f(static_cast<float>(x * dp), static_cast<float>(y * dp), 1.0f, 0.0f)); |
|
voteOutBuf.push_back(Vec3i(votes, 0, 0)); |
|
} |
|
} |
|
} |
|
} |
|
|
|
///////////////////////////////////// |
|
// POSITION & SCALE |
|
|
|
class GHT_Ballard_PosScale : public GHT_Ballard_Pos |
|
{ |
|
public: |
|
AlgorithmInfo* info() const; |
|
|
|
GHT_Ballard_PosScale(); |
|
|
|
protected: |
|
void calcHist(); |
|
void findPosInHist(); |
|
|
|
double minScale; |
|
double maxScale; |
|
double scaleStep; |
|
|
|
class Worker; |
|
friend class Worker; |
|
}; |
|
|
|
CV_INIT_ALGORITHM(GHT_Ballard_PosScale, "GeneralizedHough.POSITION_SCALE", |
|
obj.info()->addParam(obj, "minDist", obj.minDist, false, 0, 0, |
|
"Minimum distance between the centers of the detected objects."); |
|
obj.info()->addParam(obj, "levels", obj.levels, false, 0, 0, |
|
"R-Table levels."); |
|
obj.info()->addParam(obj, "votesThreshold", obj.votesThreshold, false, 0, 0, |
|
"The accumulator threshold for the template centers at the detection stage. The smaller it is, the more false positions may be detected."); |
|
obj.info()->addParam(obj, "dp", obj.dp, false, 0, 0, |
|
"Inverse ratio of the accumulator resolution to the image resolution."); |
|
obj.info()->addParam(obj, "minScale", obj.minScale, false, 0, 0, |
|
"Minimal scale to detect."); |
|
obj.info()->addParam(obj, "maxScale", obj.maxScale, false, 0, 0, |
|
"Maximal scale to detect."); |
|
obj.info()->addParam(obj, "scaleStep", obj.scaleStep, false, 0, 0, |
|
"Scale step.")) |
|
|
|
GHT_Ballard_PosScale::GHT_Ballard_PosScale() |
|
{ |
|
minScale = 0.5; |
|
maxScale = 2.0; |
|
scaleStep = 0.05; |
|
} |
|
|
|
class GHT_Ballard_PosScale::Worker : public ParallelLoopBody |
|
{ |
|
public: |
|
explicit Worker(GHT_Ballard_PosScale* base_) : base(base_) {} |
|
|
|
void operator ()(const Range& range) const; |
|
|
|
private: |
|
GHT_Ballard_PosScale* base; |
|
}; |
|
|
|
void GHT_Ballard_PosScale::Worker::operator ()(const Range& range) const |
|
{ |
|
const double thetaScale = base->levels / 360.0; |
|
const double idp = 1.0 / base->dp; |
|
|
|
for (int s = range.start; s < range.end; ++s) |
|
{ |
|
const double scale = base->minScale + s * base->scaleStep; |
|
|
|
Mat curHist(base->hist.size[1], base->hist.size[2], CV_32SC1, base->hist.ptr(s + 1), base->hist.step[1]); |
|
|
|
for (int y = 0; y < base->imageSize.height; ++y) |
|
{ |
|
const uchar* edgesRow = base->imageEdges.ptr(y); |
|
const float* dxRow = base->imageDx.ptr<float>(y); |
|
const float* dyRow = base->imageDy.ptr<float>(y); |
|
|
|
for (int x = 0; x < base->imageSize.width; ++x) |
|
{ |
|
const Point2d p(x, y); |
|
|
|
if (edgesRow[x] && (notNull(dyRow[x]) || notNull(dxRow[x]))) |
|
{ |
|
const float theta = fastAtan2(dyRow[x], dxRow[x]); |
|
const int n = cvRound(theta * thetaScale); |
|
|
|
const vector<Point>& r_row = base->r_table[n]; |
|
|
|
for (size_t j = 0; j < r_row.size(); ++j) |
|
{ |
|
Point2d d = r_row[j]; |
|
Point2d c = p - d * scale; |
|
|
|
c.x *= idp; |
|
c.y *= idp; |
|
|
|
if (c.x >= 0 && c.x < base->hist.size[2] - 2 && c.y >= 0 && c.y < base->hist.size[1] - 2) |
|
++curHist.at<int>(cvRound(c.y + 1), cvRound(c.x + 1)); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
void GHT_Ballard_PosScale::calcHist() |
|
{ |
|
CV_Assert(imageEdges.type() == CV_8UC1); |
|
CV_Assert(imageDx.type() == CV_32FC1 && imageDx.size() == imageSize); |
|
CV_Assert(imageDy.type() == imageDx.type() && imageDy.size() == imageSize); |
|
CV_Assert(levels > 0 && r_table.size() == static_cast<size_t>(levels + 1)); |
|
CV_Assert(dp > 0.0); |
|
CV_Assert(minScale > 0.0 && minScale < maxScale); |
|
CV_Assert(scaleStep > 0.0); |
|
|
|
const double idp = 1.0 / dp; |
|
const int scaleRange = cvCeil((maxScale - minScale) / scaleStep); |
|
|
|
const int sizes[] = {scaleRange + 2, cvCeil(imageSize.height * idp) + 2, cvCeil(imageSize.width * idp) + 2}; |
|
hist.create(3, sizes, CV_32SC1); |
|
hist.setTo(0); |
|
|
|
parallel_for_(Range(0, scaleRange), Worker(this)); |
|
} |
|
|
|
void GHT_Ballard_PosScale::findPosInHist() |
|
{ |
|
CV_Assert(votesThreshold > 0); |
|
|
|
const int scaleRange = hist.size[0] - 2; |
|
const int histRows = hist.size[1] - 2; |
|
const int histCols = hist.size[2] - 2; |
|
|
|
for (int s = 0; s < scaleRange; ++s) |
|
{ |
|
const float scale = static_cast<float>(minScale + s * scaleStep); |
|
|
|
const Mat prevHist(histRows + 2, histCols + 2, CV_32SC1, hist.ptr(s), hist.step[1]); |
|
const Mat curHist(histRows + 2, histCols + 2, CV_32SC1, hist.ptr(s + 1), hist.step[1]); |
|
const Mat nextHist(histRows + 2, histCols + 2, CV_32SC1, hist.ptr(s + 2), hist.step[1]); |
|
|
|
for(int y = 0; y < histRows; ++y) |
|
{ |
|
const int* prevHistRow = prevHist.ptr<int>(y + 1); |
|
const int* prevRow = curHist.ptr<int>(y); |
|
const int* curRow = curHist.ptr<int>(y + 1); |
|
const int* nextRow = curHist.ptr<int>(y + 2); |
|
const int* nextHistRow = nextHist.ptr<int>(y + 1); |
|
|
|
for(int x = 0; x < histCols; ++x) |
|
{ |
|
const int votes = curRow[x + 1]; |
|
|
|
if (votes > votesThreshold && |
|
votes > curRow[x] && |
|
votes >= curRow[x + 2] && |
|
votes > prevRow[x + 1] && |
|
votes >= nextRow[x + 1] && |
|
votes > prevHistRow[x + 1] && |
|
votes >= nextHistRow[x + 1]) |
|
{ |
|
posOutBuf.push_back(Vec4f(static_cast<float>(x * dp), static_cast<float>(y * dp), scale, 0.0f)); |
|
voteOutBuf.push_back(Vec3i(votes, votes, 0)); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
///////////////////////////////////// |
|
// POSITION & ROTATION |
|
|
|
class GHT_Ballard_PosRotation : public GHT_Ballard_Pos |
|
{ |
|
public: |
|
AlgorithmInfo* info() const; |
|
|
|
GHT_Ballard_PosRotation(); |
|
|
|
protected: |
|
void calcHist(); |
|
void findPosInHist(); |
|
|
|
double minAngle; |
|
double maxAngle; |
|
double angleStep; |
|
|
|
class Worker; |
|
friend class Worker; |
|
}; |
|
|
|
CV_INIT_ALGORITHM(GHT_Ballard_PosRotation, "GeneralizedHough.POSITION_ROTATION", |
|
obj.info()->addParam(obj, "minDist", obj.minDist, false, 0, 0, |
|
"Minimum distance between the centers of the detected objects."); |
|
obj.info()->addParam(obj, "levels", obj.levels, false, 0, 0, |
|
"R-Table levels."); |
|
obj.info()->addParam(obj, "votesThreshold", obj.votesThreshold, false, 0, 0, |
|
"The accumulator threshold for the template centers at the detection stage. The smaller it is, the more false positions may be detected."); |
|
obj.info()->addParam(obj, "dp", obj.dp, false, 0, 0, |
|
"Inverse ratio of the accumulator resolution to the image resolution."); |
|
obj.info()->addParam(obj, "minAngle", obj.minAngle, false, 0, 0, |
|
"Minimal rotation angle to detect in degrees."); |
|
obj.info()->addParam(obj, "maxAngle", obj.maxAngle, false, 0, 0, |
|
"Maximal rotation angle to detect in degrees."); |
|
obj.info()->addParam(obj, "angleStep", obj.angleStep, false, 0, 0, |
|
"Angle step in degrees.")) |
|
|
|
GHT_Ballard_PosRotation::GHT_Ballard_PosRotation() |
|
{ |
|
minAngle = 0.0; |
|
maxAngle = 360.0; |
|
angleStep = 1.0; |
|
} |
|
|
|
class GHT_Ballard_PosRotation::Worker : public ParallelLoopBody |
|
{ |
|
public: |
|
explicit Worker(GHT_Ballard_PosRotation* base_) : base(base_) {} |
|
|
|
void operator ()(const Range& range) const; |
|
|
|
private: |
|
GHT_Ballard_PosRotation* base; |
|
}; |
|
|
|
void GHT_Ballard_PosRotation::Worker::operator ()(const Range& range) const |
|
{ |
|
const double thetaScale = base->levels / 360.0; |
|
const double idp = 1.0 / base->dp; |
|
|
|
for (int a = range.start; a < range.end; ++a) |
|
{ |
|
const double angle = base->minAngle + a * base->angleStep; |
|
|
|
const double sinA = ::sin(toRad(angle)); |
|
const double cosA = ::cos(toRad(angle)); |
|
|
|
Mat curHist(base->hist.size[1], base->hist.size[2], CV_32SC1, base->hist.ptr(a + 1), base->hist.step[1]); |
|
|
|
for (int y = 0; y < base->imageSize.height; ++y) |
|
{ |
|
const uchar* edgesRow = base->imageEdges.ptr(y); |
|
const float* dxRow = base->imageDx.ptr<float>(y); |
|
const float* dyRow = base->imageDy.ptr<float>(y); |
|
|
|
for (int x = 0; x < base->imageSize.width; ++x) |
|
{ |
|
const Point2d p(x, y); |
|
|
|
if (edgesRow[x] && (notNull(dyRow[x]) || notNull(dxRow[x]))) |
|
{ |
|
double theta = fastAtan2(dyRow[x], dxRow[x]) - angle; |
|
if (theta < 0) |
|
theta += 360.0; |
|
const int n = cvRound(theta * thetaScale); |
|
|
|
const vector<Point>& r_row = base->r_table[n]; |
|
|
|
for (size_t j = 0; j < r_row.size(); ++j) |
|
{ |
|
Point2d d = r_row[j]; |
|
Point2d c = p - Point2d(d.x * cosA - d.y * sinA, d.x * sinA + d.y * cosA); |
|
|
|
c.x *= idp; |
|
c.y *= idp; |
|
|
|
if (c.x >= 0 && c.x < base->hist.size[2] - 2 && c.y >= 0 && c.y < base->hist.size[1] - 2) |
|
++curHist.at<int>(cvRound(c.y + 1), cvRound(c.x + 1)); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
void GHT_Ballard_PosRotation::calcHist() |
|
{ |
|
CV_Assert(imageEdges.type() == CV_8UC1); |
|
CV_Assert(imageDx.type() == CV_32FC1 && imageDx.size() == imageSize); |
|
CV_Assert(imageDy.type() == imageDx.type() && imageDy.size() == imageSize); |
|
CV_Assert(levels > 0 && r_table.size() == static_cast<size_t>(levels + 1)); |
|
CV_Assert(dp > 0.0); |
|
CV_Assert(minAngle >= 0.0 && minAngle < maxAngle && maxAngle <= 360.0); |
|
CV_Assert(angleStep > 0.0 && angleStep < 360.0); |
|
|
|
const double idp = 1.0 / dp; |
|
const int angleRange = cvCeil((maxAngle - minAngle) / angleStep); |
|
|
|
const int sizes[] = {angleRange + 2, cvCeil(imageSize.height * idp) + 2, cvCeil(imageSize.width * idp) + 2}; |
|
hist.create(3, sizes, CV_32SC1); |
|
hist.setTo(0); |
|
|
|
parallel_for_(Range(0, angleRange), Worker(this)); |
|
} |
|
|
|
void GHT_Ballard_PosRotation::findPosInHist() |
|
{ |
|
CV_Assert(votesThreshold > 0); |
|
|
|
const int angleRange = hist.size[0] - 2; |
|
const int histRows = hist.size[1] - 2; |
|
const int histCols = hist.size[2] - 2; |
|
|
|
for (int a = 0; a < angleRange; ++a) |
|
{ |
|
const float angle = static_cast<float>(minAngle + a * angleStep); |
|
|
|
const Mat prevHist(histRows + 2, histCols + 2, CV_32SC1, hist.ptr(a), hist.step[1]); |
|
const Mat curHist(histRows + 2, histCols + 2, CV_32SC1, hist.ptr(a + 1), hist.step[1]); |
|
const Mat nextHist(histRows + 2, histCols + 2, CV_32SC1, hist.ptr(a + 2), hist.step[1]); |
|
|
|
for(int y = 0; y < histRows; ++y) |
|
{ |
|
const int* prevHistRow = prevHist.ptr<int>(y + 1); |
|
const int* prevRow = curHist.ptr<int>(y); |
|
const int* curRow = curHist.ptr<int>(y + 1); |
|
const int* nextRow = curHist.ptr<int>(y + 2); |
|
const int* nextHistRow = nextHist.ptr<int>(y + 1); |
|
|
|
for(int x = 0; x < histCols; ++x) |
|
{ |
|
const int votes = curRow[x + 1]; |
|
|
|
if (votes > votesThreshold && |
|
votes > curRow[x] && |
|
votes >= curRow[x + 2] && |
|
votes > prevRow[x + 1] && |
|
votes >= nextRow[x + 1] && |
|
votes > prevHistRow[x + 1] && |
|
votes >= nextHistRow[x + 1]) |
|
{ |
|
posOutBuf.push_back(Vec4f(static_cast<float>(x * dp), static_cast<float>(y * dp), 1.0f, angle)); |
|
voteOutBuf.push_back(Vec3i(votes, 0, votes)); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
///////////////////////////////////////// |
|
// POSITION & SCALE & ROTATION |
|
|
|
double clampAngle(double a) |
|
{ |
|
double res = a; |
|
|
|
while (res > 360.0) |
|
res -= 360.0; |
|
while (res < 0) |
|
res += 360.0; |
|
|
|
return res; |
|
} |
|
|
|
bool angleEq(double a, double b, double eps = 1.0) |
|
{ |
|
return (fabs(clampAngle(a - b)) <= eps); |
|
} |
|
|
|
class GHT_Guil_Full : public GHT_Pos |
|
{ |
|
public: |
|
AlgorithmInfo* info() const; |
|
|
|
GHT_Guil_Full(); |
|
|
|
protected: |
|
void releaseImpl(); |
|
|
|
void processTempl(); |
|
void processImage(); |
|
|
|
struct ContourPoint |
|
{ |
|
Point2d pos; |
|
double theta; |
|
}; |
|
|
|
struct Feature |
|
{ |
|
ContourPoint p1; |
|
ContourPoint p2; |
|
|
|
double alpha12; |
|
double d12; |
|
|
|
Point2d r1; |
|
Point2d r2; |
|
}; |
|
|
|
void buildFeatureList(const Mat& edges, const Mat& dx, const Mat& dy, vector< vector<Feature> >& features, Point2d center = Point2d()); |
|
void getContourPoints(const Mat& edges, const Mat& dx, const Mat& dy, vector<ContourPoint>& points); |
|
|
|
void calcOrientation(); |
|
void calcScale(double angle); |
|
void calcPosition(double angle, int angleVotes, double scale, int scaleVotes); |
|
|
|
int maxSize; |
|
double xi; |
|
int levels; |
|
double angleEpsilon; |
|
|
|
double minAngle; |
|
double maxAngle; |
|
double angleStep; |
|
int angleThresh; |
|
|
|
double minScale; |
|
double maxScale; |
|
double scaleStep; |
|
int scaleThresh; |
|
|
|
double dp; |
|
int posThresh; |
|
|
|
vector< vector<Feature> > templFeatures; |
|
vector< vector<Feature> > imageFeatures; |
|
|
|
vector< pair<double, int> > angles; |
|
vector< pair<double, int> > scales; |
|
}; |
|
|
|
CV_INIT_ALGORITHM(GHT_Guil_Full, "GeneralizedHough.POSITION_SCALE_ROTATION", |
|
obj.info()->addParam(obj, "minDist", obj.minDist, false, 0, 0, |
|
"Minimum distance between the centers of the detected objects."); |
|
obj.info()->addParam(obj, "maxSize", obj.maxSize, false, 0, 0, |
|
"Maximal size of inner buffers."); |
|
obj.info()->addParam(obj, "xi", obj.xi, false, 0, 0, |
|
"Angle difference in degrees between two points in feature."); |
|
obj.info()->addParam(obj, "levels", obj.levels, false, 0, 0, |
|
"Feature table levels."); |
|
obj.info()->addParam(obj, "angleEpsilon", obj.angleEpsilon, false, 0, 0, |
|
"Maximal difference between angles that treated as equal."); |
|
obj.info()->addParam(obj, "minAngle", obj.minAngle, false, 0, 0, |
|
"Minimal rotation angle to detect in degrees."); |
|
obj.info()->addParam(obj, "maxAngle", obj.maxAngle, false, 0, 0, |
|
"Maximal rotation angle to detect in degrees."); |
|
obj.info()->addParam(obj, "angleStep", obj.angleStep, false, 0, 0, |
|
"Angle step in degrees."); |
|
obj.info()->addParam(obj, "angleThresh", obj.angleThresh, false, 0, 0, |
|
"Angle threshold."); |
|
obj.info()->addParam(obj, "minScale", obj.minScale, false, 0, 0, |
|
"Minimal scale to detect."); |
|
obj.info()->addParam(obj, "maxScale", obj.maxScale, false, 0, 0, |
|
"Maximal scale to detect."); |
|
obj.info()->addParam(obj, "scaleStep", obj.scaleStep, false, 0, 0, |
|
"Scale step."); |
|
obj.info()->addParam(obj, "scaleThresh", obj.scaleThresh, false, 0, 0, |
|
"Scale threshold."); |
|
obj.info()->addParam(obj, "dp", obj.dp, false, 0, 0, |
|
"Inverse ratio of the accumulator resolution to the image resolution."); |
|
obj.info()->addParam(obj, "posThresh", obj.posThresh, false, 0, 0, |
|
"Position threshold.")) |
|
|
|
GHT_Guil_Full::GHT_Guil_Full() |
|
{ |
|
maxSize = 1000; |
|
xi = 90.0; |
|
levels = 360; |
|
angleEpsilon = 1.0; |
|
|
|
minAngle = 0.0; |
|
maxAngle = 360.0; |
|
angleStep = 1.0; |
|
angleThresh = 15000; |
|
|
|
minScale = 0.5; |
|
maxScale = 2.0; |
|
scaleStep = 0.05; |
|
scaleThresh = 1000; |
|
|
|
dp = 1.0; |
|
posThresh = 100; |
|
} |
|
|
|
void GHT_Guil_Full::releaseImpl() |
|
{ |
|
GHT_Pos::releaseImpl(); |
|
|
|
releaseVector(templFeatures); |
|
releaseVector(imageFeatures); |
|
|
|
releaseVector(angles); |
|
releaseVector(scales); |
|
} |
|
|
|
void GHT_Guil_Full::processTempl() |
|
{ |
|
buildFeatureList(templEdges, templDx, templDy, templFeatures, templCenter); |
|
} |
|
|
|
void GHT_Guil_Full::processImage() |
|
{ |
|
buildFeatureList(imageEdges, imageDx, imageDy, imageFeatures); |
|
|
|
calcOrientation(); |
|
|
|
for (size_t i = 0; i < angles.size(); ++i) |
|
{ |
|
const double angle = angles[i].first; |
|
const int angleVotes = angles[i].second; |
|
|
|
calcScale(angle); |
|
|
|
for (size_t j = 0; j < scales.size(); ++j) |
|
{ |
|
const double scale = scales[j].first; |
|
const int scaleVotes = scales[j].second; |
|
|
|
calcPosition(angle, angleVotes, scale, scaleVotes); |
|
} |
|
} |
|
} |
|
|
|
void GHT_Guil_Full::buildFeatureList(const Mat& edges, const Mat& dx, const Mat& dy, vector< vector<Feature> >& features, Point2d center) |
|
{ |
|
CV_Assert(levels > 0); |
|
|
|
const double maxDist = sqrt((double) templSize.width * templSize.width + templSize.height * templSize.height) * maxScale; |
|
|
|
const double alphaScale = levels / 360.0; |
|
|
|
vector<ContourPoint> points; |
|
getContourPoints(edges, dx, dy, points); |
|
|
|
features.resize(levels + 1); |
|
for_each(features.begin(), features.end(), mem_fun_ref(&vector<Feature>::clear)); |
|
for_each(features.begin(), features.end(), bind2nd(mem_fun_ref(&vector<Feature>::reserve), maxSize)); |
|
|
|
for (size_t i = 0; i < points.size(); ++i) |
|
{ |
|
ContourPoint p1 = points[i]; |
|
|
|
for (size_t j = 0; j < points.size(); ++j) |
|
{ |
|
ContourPoint p2 = points[j]; |
|
|
|
if (angleEq(p1.theta - p2.theta, xi, angleEpsilon)) |
|
{ |
|
const Point2d d = p1.pos - p2.pos; |
|
|
|
Feature f; |
|
|
|
f.p1 = p1; |
|
f.p2 = p2; |
|
|
|
f.alpha12 = clampAngle(fastAtan2((float)d.y, (float)d.x) - p1.theta); |
|
f.d12 = norm(d); |
|
|
|
if (f.d12 > maxDist) |
|
continue; |
|
|
|
f.r1 = p1.pos - center; |
|
f.r2 = p2.pos - center; |
|
|
|
const int n = cvRound(f.alpha12 * alphaScale); |
|
|
|
if (features[n].size() < static_cast<size_t>(maxSize)) |
|
features[n].push_back(f); |
|
} |
|
} |
|
} |
|
} |
|
|
|
void GHT_Guil_Full::getContourPoints(const Mat& edges, const Mat& dx, const Mat& dy, vector<ContourPoint>& points) |
|
{ |
|
CV_Assert(edges.type() == CV_8UC1); |
|
CV_Assert(dx.type() == CV_32FC1 && dx.size == edges.size); |
|
CV_Assert(dy.type() == dx.type() && dy.size == edges.size); |
|
|
|
points.clear(); |
|
points.reserve(edges.size().area()); |
|
|
|
for (int y = 0; y < edges.rows; ++y) |
|
{ |
|
const uchar* edgesRow = edges.ptr(y); |
|
const float* dxRow = dx.ptr<float>(y); |
|
const float* dyRow = dy.ptr<float>(y); |
|
|
|
for (int x = 0; x < edges.cols; ++x) |
|
{ |
|
if (edgesRow[x] && (notNull(dyRow[x]) || notNull(dxRow[x]))) |
|
{ |
|
ContourPoint p; |
|
|
|
p.pos = Point2d(x, y); |
|
p.theta = fastAtan2(dyRow[x], dxRow[x]); |
|
|
|
points.push_back(p); |
|
} |
|
} |
|
} |
|
} |
|
|
|
void GHT_Guil_Full::calcOrientation() |
|
{ |
|
CV_Assert(levels > 0); |
|
CV_Assert(templFeatures.size() == static_cast<size_t>(levels + 1)); |
|
CV_Assert(imageFeatures.size() == templFeatures.size()); |
|
CV_Assert(minAngle >= 0.0 && minAngle < maxAngle && maxAngle <= 360.0); |
|
CV_Assert(angleStep > 0.0 && angleStep < 360.0); |
|
CV_Assert(angleThresh > 0); |
|
|
|
const double iAngleStep = 1.0 / angleStep; |
|
const int angleRange = cvCeil((maxAngle - minAngle) * iAngleStep); |
|
|
|
vector<int> OHist(angleRange + 1, 0); |
|
for (int i = 0; i <= levels; ++i) |
|
{ |
|
const vector<Feature>& templRow = templFeatures[i]; |
|
const vector<Feature>& imageRow = imageFeatures[i]; |
|
|
|
for (size_t j = 0; j < templRow.size(); ++j) |
|
{ |
|
Feature templF = templRow[j]; |
|
|
|
for (size_t k = 0; k < imageRow.size(); ++k) |
|
{ |
|
Feature imF = imageRow[k]; |
|
|
|
const double angle = clampAngle(imF.p1.theta - templF.p1.theta); |
|
if (angle >= minAngle && angle <= maxAngle) |
|
{ |
|
const int n = cvRound((angle - minAngle) * iAngleStep); |
|
++OHist[n]; |
|
} |
|
} |
|
} |
|
} |
|
|
|
angles.clear(); |
|
|
|
for (int n = 0; n < angleRange; ++n) |
|
{ |
|
if (OHist[n] >= angleThresh) |
|
{ |
|
const double angle = minAngle + n * angleStep; |
|
angles.push_back(make_pair(angle, OHist[n])); |
|
} |
|
} |
|
} |
|
|
|
void GHT_Guil_Full::calcScale(double angle) |
|
{ |
|
CV_Assert(levels > 0); |
|
CV_Assert(templFeatures.size() == static_cast<size_t>(levels + 1)); |
|
CV_Assert(imageFeatures.size() == templFeatures.size()); |
|
CV_Assert(minScale > 0.0 && minScale < maxScale); |
|
CV_Assert(scaleStep > 0.0); |
|
CV_Assert(scaleThresh > 0); |
|
|
|
const double iScaleStep = 1.0 / scaleStep; |
|
const int scaleRange = cvCeil((maxScale - minScale) * iScaleStep); |
|
|
|
vector<int> SHist(scaleRange + 1, 0); |
|
|
|
for (int i = 0; i <= levels; ++i) |
|
{ |
|
const vector<Feature>& templRow = templFeatures[i]; |
|
const vector<Feature>& imageRow = imageFeatures[i]; |
|
|
|
for (size_t j = 0; j < templRow.size(); ++j) |
|
{ |
|
Feature templF = templRow[j]; |
|
|
|
templF.p1.theta += angle; |
|
|
|
for (size_t k = 0; k < imageRow.size(); ++k) |
|
{ |
|
Feature imF = imageRow[k]; |
|
|
|
if (angleEq(imF.p1.theta, templF.p1.theta, angleEpsilon)) |
|
{ |
|
const double scale = imF.d12 / templF.d12; |
|
if (scale >= minScale && scale <= maxScale) |
|
{ |
|
const int s = cvRound((scale - minScale) * iScaleStep); |
|
++SHist[s]; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
scales.clear(); |
|
|
|
for (int s = 0; s < scaleRange; ++s) |
|
{ |
|
if (SHist[s] >= scaleThresh) |
|
{ |
|
const double scale = minScale + s * scaleStep; |
|
scales.push_back(make_pair(scale, SHist[s])); |
|
} |
|
} |
|
} |
|
|
|
void GHT_Guil_Full::calcPosition(double angle, int angleVotes, double scale, int scaleVotes) |
|
{ |
|
CV_Assert(levels > 0); |
|
CV_Assert(templFeatures.size() == static_cast<size_t>(levels + 1)); |
|
CV_Assert(imageFeatures.size() == templFeatures.size()); |
|
CV_Assert(dp > 0.0); |
|
CV_Assert(posThresh > 0); |
|
|
|
const double sinVal = sin(toRad(angle)); |
|
const double cosVal = cos(toRad(angle)); |
|
const double idp = 1.0 / dp; |
|
|
|
const int histRows = cvCeil(imageSize.height * idp); |
|
const int histCols = cvCeil(imageSize.width * idp); |
|
|
|
Mat DHist(histRows + 2, histCols + 2, CV_32SC1, Scalar::all(0)); |
|
|
|
for (int i = 0; i <= levels; ++i) |
|
{ |
|
const vector<Feature>& templRow = templFeatures[i]; |
|
const vector<Feature>& imageRow = imageFeatures[i]; |
|
|
|
for (size_t j = 0; j < templRow.size(); ++j) |
|
{ |
|
Feature templF = templRow[j]; |
|
|
|
templF.p1.theta += angle; |
|
|
|
templF.r1 *= scale; |
|
templF.r2 *= scale; |
|
|
|
templF.r1 = Point2d(cosVal * templF.r1.x - sinVal * templF.r1.y, sinVal * templF.r1.x + cosVal * templF.r1.y); |
|
templF.r2 = Point2d(cosVal * templF.r2.x - sinVal * templF.r2.y, sinVal * templF.r2.x + cosVal * templF.r2.y); |
|
|
|
for (size_t k = 0; k < imageRow.size(); ++k) |
|
{ |
|
Feature imF = imageRow[k]; |
|
|
|
if (angleEq(imF.p1.theta, templF.p1.theta, angleEpsilon)) |
|
{ |
|
Point2d c1, c2; |
|
|
|
c1 = imF.p1.pos - templF.r1; |
|
c1 *= idp; |
|
|
|
c2 = imF.p2.pos - templF.r2; |
|
c2 *= idp; |
|
|
|
if (fabs(c1.x - c2.x) > 1 || fabs(c1.y - c2.y) > 1) |
|
continue; |
|
|
|
if (c1.y >= 0 && c1.y < histRows && c1.x >= 0 && c1.x < histCols) |
|
++DHist.at<int>(cvRound(c1.y) + 1, cvRound(c1.x) + 1); |
|
} |
|
} |
|
} |
|
} |
|
|
|
for(int y = 0; y < histRows; ++y) |
|
{ |
|
const int* prevRow = DHist.ptr<int>(y); |
|
const int* curRow = DHist.ptr<int>(y + 1); |
|
const int* nextRow = DHist.ptr<int>(y + 2); |
|
|
|
for(int x = 0; x < histCols; ++x) |
|
{ |
|
const int votes = curRow[x + 1]; |
|
|
|
if (votes > posThresh && votes > curRow[x] && votes >= curRow[x + 2] && votes > prevRow[x + 1] && votes >= nextRow[x + 1]) |
|
{ |
|
posOutBuf.push_back(Vec4f(static_cast<float>(x * dp), static_cast<float>(y * dp), static_cast<float>(scale), static_cast<float>(angle))); |
|
voteOutBuf.push_back(Vec3i(votes, scaleVotes, angleVotes)); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
Ptr<GeneralizedHough> cv::GeneralizedHough::create(int method) |
|
{ |
|
switch (method) |
|
{ |
|
case GHT_POSITION: |
|
CV_Assert( !GHT_Ballard_Pos_info_auto.name().empty() ); |
|
return new GHT_Ballard_Pos(); |
|
|
|
case (GHT_POSITION | GHT_SCALE): |
|
CV_Assert( !GHT_Ballard_PosScale_info_auto.name().empty() ); |
|
return new GHT_Ballard_PosScale(); |
|
|
|
case (GHT_POSITION | GHT_ROTATION): |
|
CV_Assert( !GHT_Ballard_PosRotation_info_auto.name().empty() ); |
|
return new GHT_Ballard_PosRotation(); |
|
|
|
case (GHT_POSITION | GHT_SCALE | GHT_ROTATION): |
|
CV_Assert( !GHT_Guil_Full_info_auto.name().empty() ); |
|
return new GHT_Guil_Full(); |
|
} |
|
|
|
CV_Error(CV_StsBadArg, "Unsupported method"); |
|
return Ptr<GeneralizedHough>(); |
|
} |
|
|
|
cv::GeneralizedHough::~GeneralizedHough() |
|
{ |
|
} |
|
|
|
void cv::GeneralizedHough::setTemplate(InputArray _templ, int cannyThreshold, Point templCenter) |
|
{ |
|
Mat templ = _templ.getMat(); |
|
|
|
CV_Assert(templ.type() == CV_8UC1); |
|
CV_Assert(cannyThreshold > 0); |
|
|
|
Canny(templ, edges_, cannyThreshold / 2, cannyThreshold); |
|
Sobel(templ, dx_, CV_32F, 1, 0); |
|
Sobel(templ, dy_, CV_32F, 0, 1); |
|
|
|
if (templCenter == Point(-1, -1)) |
|
templCenter = Point(templ.cols / 2, templ.rows / 2); |
|
|
|
setTemplateImpl(edges_, dx_, dy_, templCenter); |
|
} |
|
|
|
void cv::GeneralizedHough::setTemplate(InputArray _edges, InputArray _dx, InputArray _dy, Point templCenter) |
|
{ |
|
Mat edges = _edges.getMat(); |
|
Mat dx = _dx.getMat(); |
|
Mat dy = _dy.getMat(); |
|
|
|
if (templCenter == Point(-1, -1)) |
|
templCenter = Point(edges.cols / 2, edges.rows / 2); |
|
|
|
setTemplateImpl(edges, dx, dy, templCenter); |
|
} |
|
|
|
void cv::GeneralizedHough::detect(InputArray _image, OutputArray positions, OutputArray votes, int cannyThreshold) |
|
{ |
|
Mat image = _image.getMat(); |
|
|
|
CV_Assert(image.type() == CV_8UC1); |
|
CV_Assert(cannyThreshold > 0); |
|
|
|
Canny(image, edges_, cannyThreshold / 2, cannyThreshold); |
|
Sobel(image, dx_, CV_32F, 1, 0); |
|
Sobel(image, dy_, CV_32F, 0, 1); |
|
|
|
detectImpl(edges_, dx_, dy_, positions, votes); |
|
} |
|
|
|
void cv::GeneralizedHough::detect(InputArray _edges, InputArray _dx, InputArray _dy, OutputArray positions, OutputArray votes) |
|
{ |
|
cv::Mat edges = _edges.getMat(); |
|
cv::Mat dx = _dx.getMat(); |
|
cv::Mat dy = _dy.getMat(); |
|
|
|
detectImpl(edges, dx, dy, positions, votes); |
|
} |
|
|
|
void cv::GeneralizedHough::release() |
|
{ |
|
edges_.release(); |
|
dx_.release(); |
|
dy_.release(); |
|
releaseImpl(); |
|
}
|
|
|