mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
212 lines
7.4 KiB
212 lines
7.4 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
|
|
using namespace cv; |
|
using namespace cv::cuda; |
|
|
|
#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER) |
|
|
|
Ptr<cuda::HoughLinesDetector> cv::cuda::createHoughLinesDetector(float, float, int, bool, int) { throw_no_cuda(); return Ptr<HoughLinesDetector>(); } |
|
|
|
#else /* !defined (HAVE_CUDA) */ |
|
|
|
namespace cv { namespace cuda { namespace device |
|
{ |
|
namespace hough |
|
{ |
|
int buildPointList_gpu(PtrStepSzb src, unsigned int* list); |
|
} |
|
|
|
namespace hough_lines |
|
{ |
|
void linesAccum_gpu(const unsigned int* list, int count, PtrStepSzi accum, float rho, float theta, size_t sharedMemPerBlock, bool has20); |
|
int linesGetResult_gpu(PtrStepSzi accum, float2* out, int* votes, int maxSize, float rho, float theta, int threshold, bool doSort); |
|
} |
|
}}} |
|
|
|
namespace |
|
{ |
|
class HoughLinesDetectorImpl : public HoughLinesDetector |
|
{ |
|
public: |
|
HoughLinesDetectorImpl(float rho, float theta, int threshold, bool doSort, int maxLines) : |
|
rho_(rho), theta_(theta), threshold_(threshold), doSort_(doSort), maxLines_(maxLines) |
|
{ |
|
} |
|
|
|
void detect(InputArray src, OutputArray lines, Stream& stream); |
|
void downloadResults(InputArray d_lines, OutputArray h_lines, OutputArray h_votes, Stream& stream); |
|
|
|
void setRho(float rho) { rho_ = rho; } |
|
float getRho() const { return rho_; } |
|
|
|
void setTheta(float theta) { theta_ = theta; } |
|
float getTheta() const { return theta_; } |
|
|
|
void setThreshold(int threshold) { threshold_ = threshold; } |
|
int getThreshold() const { return threshold_; } |
|
|
|
void setDoSort(bool doSort) { doSort_ = doSort; } |
|
bool getDoSort() const { return doSort_; } |
|
|
|
void setMaxLines(int maxLines) { maxLines_ = maxLines; } |
|
int getMaxLines() const { return maxLines_; } |
|
|
|
void write(FileStorage& fs) const |
|
{ |
|
writeFormat(fs); |
|
fs << "name" << "HoughLinesDetector_CUDA" |
|
<< "rho" << rho_ |
|
<< "theta" << theta_ |
|
<< "threshold" << threshold_ |
|
<< "doSort" << doSort_ |
|
<< "maxLines" << maxLines_; |
|
} |
|
|
|
void read(const FileNode& fn) |
|
{ |
|
CV_Assert( String(fn["name"]) == "HoughLinesDetector_CUDA" ); |
|
rho_ = (float)fn["rho"]; |
|
theta_ = (float)fn["theta"]; |
|
threshold_ = (int)fn["threshold"]; |
|
doSort_ = (int)fn["doSort"] != 0; |
|
maxLines_ = (int)fn["maxLines"]; |
|
} |
|
|
|
private: |
|
float rho_; |
|
float theta_; |
|
int threshold_; |
|
bool doSort_; |
|
int maxLines_; |
|
|
|
GpuMat accum_; |
|
GpuMat list_; |
|
GpuMat result_; |
|
}; |
|
|
|
void HoughLinesDetectorImpl::detect(InputArray _src, OutputArray lines, Stream& stream) |
|
{ |
|
// TODO : implement async version |
|
CV_UNUSED(stream); |
|
|
|
using namespace cv::cuda::device::hough; |
|
using namespace cv::cuda::device::hough_lines; |
|
|
|
GpuMat src = _src.getGpuMat(); |
|
|
|
CV_Assert( src.type() == CV_8UC1 ); |
|
CV_Assert( src.cols < std::numeric_limits<unsigned short>::max() ); |
|
CV_Assert( src.rows < std::numeric_limits<unsigned short>::max() ); |
|
|
|
ensureSizeIsEnough(1, src.size().area(), CV_32SC1, list_); |
|
unsigned int* srcPoints = list_.ptr<unsigned int>(); |
|
|
|
const int pointsCount = buildPointList_gpu(src, srcPoints); |
|
if (pointsCount == 0) |
|
{ |
|
lines.release(); |
|
return; |
|
} |
|
|
|
const int numangle = cvRound(CV_PI / theta_); |
|
const int numrho = cvRound(((src.cols + src.rows) * 2 + 1) / rho_); |
|
CV_Assert( numangle > 0 && numrho > 0 ); |
|
|
|
ensureSizeIsEnough(numangle + 2, numrho + 2, CV_32SC1, accum_); |
|
accum_.setTo(Scalar::all(0)); |
|
|
|
DeviceInfo devInfo; |
|
linesAccum_gpu(srcPoints, pointsCount, accum_, rho_, theta_, devInfo.sharedMemPerBlock(), devInfo.supports(FEATURE_SET_COMPUTE_20)); |
|
|
|
ensureSizeIsEnough(2, maxLines_, CV_32FC2, result_); |
|
|
|
int linesCount = linesGetResult_gpu(accum_, result_.ptr<float2>(0), result_.ptr<int>(1), maxLines_, rho_, theta_, threshold_, doSort_); |
|
|
|
if (linesCount == 0) |
|
{ |
|
lines.release(); |
|
return; |
|
} |
|
|
|
result_.cols = linesCount; |
|
result_.copyTo(lines); |
|
} |
|
|
|
void HoughLinesDetectorImpl::downloadResults(InputArray _d_lines, OutputArray h_lines, OutputArray h_votes, Stream& stream) |
|
{ |
|
GpuMat d_lines = _d_lines.getGpuMat(); |
|
|
|
if (d_lines.empty()) |
|
{ |
|
h_lines.release(); |
|
if (h_votes.needed()) |
|
h_votes.release(); |
|
return; |
|
} |
|
|
|
CV_Assert( d_lines.rows == 2 && d_lines.type() == CV_32FC2 ); |
|
|
|
if (stream) |
|
d_lines.row(0).download(h_lines, stream); |
|
else |
|
d_lines.row(0).download(h_lines); |
|
|
|
if (h_votes.needed()) |
|
{ |
|
GpuMat d_votes(1, d_lines.cols, CV_32SC1, d_lines.ptr<int>(1)); |
|
if (stream) |
|
d_votes.download(h_votes, stream); |
|
else |
|
d_votes.download(h_votes); |
|
} |
|
} |
|
} |
|
|
|
Ptr<HoughLinesDetector> cv::cuda::createHoughLinesDetector(float rho, float theta, int threshold, bool doSort, int maxLines) |
|
{ |
|
return makePtr<HoughLinesDetectorImpl>(rho, theta, threshold, doSort, maxLines); |
|
} |
|
|
|
#endif /* !defined (HAVE_CUDA) */
|
|
|