mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1614 lines
50 KiB
1614 lines
50 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
#include "opencl_kernels_imgproc.hpp" |
|
#include "opencv2/core/hal/intrin.hpp" |
|
|
|
#include "opencv2/core/openvx/ovx_defs.hpp" |
|
|
|
namespace cv |
|
{ |
|
|
|
template <typename T> |
|
static inline T threshBinary(const T& src, const T& thresh, const T& maxval) |
|
{ |
|
return src > thresh ? maxval : 0; |
|
} |
|
|
|
template <typename T> |
|
static inline T threshBinaryInv(const T& src, const T& thresh, const T& maxval) |
|
{ |
|
return src <= thresh ? maxval : 0; |
|
} |
|
|
|
template <typename T> |
|
static inline T threshTrunc(const T& src, const T& thresh) |
|
{ |
|
return std::min(src, thresh); |
|
} |
|
|
|
template <typename T> |
|
static inline T threshToZero(const T& src, const T& thresh) |
|
{ |
|
return src > thresh ? src : 0; |
|
} |
|
|
|
template <typename T> |
|
static inline T threshToZeroInv(const T& src, const T& thresh) |
|
{ |
|
return src <= thresh ? src : 0; |
|
} |
|
|
|
template <typename T> |
|
static void threshGeneric(Size roi, const T* src, size_t src_step, T* dst, |
|
size_t dst_step, T thresh, T maxval, int type) |
|
{ |
|
int i = 0, j; |
|
switch (type) |
|
{ |
|
case THRESH_BINARY: |
|
for (; i < roi.height; i++, src += src_step, dst += dst_step) |
|
for (j = 0; j < roi.width; j++) |
|
dst[j] = threshBinary<T>(src[j], thresh, maxval); |
|
return; |
|
|
|
case THRESH_BINARY_INV: |
|
for (; i < roi.height; i++, src += src_step, dst += dst_step) |
|
for (j = 0; j < roi.width; j++) |
|
dst[j] = threshBinaryInv<T>(src[j], thresh, maxval); |
|
return; |
|
|
|
case THRESH_TRUNC: |
|
for (; i < roi.height; i++, src += src_step, dst += dst_step) |
|
for (j = 0; j < roi.width; j++) |
|
dst[j] = threshTrunc<T>(src[j], thresh); |
|
return; |
|
|
|
case THRESH_TOZERO: |
|
for (; i < roi.height; i++, src += src_step, dst += dst_step) |
|
for (j = 0; j < roi.width; j++) |
|
dst[j] = threshToZero<T>(src[j], thresh); |
|
return; |
|
|
|
case THRESH_TOZERO_INV: |
|
for (; i < roi.height; i++, src += src_step, dst += dst_step) |
|
for (j = 0; j < roi.width; j++) |
|
dst[j] = threshToZeroInv<T>(src[j], thresh); |
|
return; |
|
|
|
default: |
|
CV_Error( CV_StsBadArg, "" ); return; |
|
} |
|
} |
|
|
|
static void |
|
thresh_8u( const Mat& _src, Mat& _dst, uchar thresh, uchar maxval, int type ) |
|
{ |
|
Size roi = _src.size(); |
|
roi.width *= _src.channels(); |
|
size_t src_step = _src.step; |
|
size_t dst_step = _dst.step; |
|
|
|
if( _src.isContinuous() && _dst.isContinuous() ) |
|
{ |
|
roi.width *= roi.height; |
|
roi.height = 1; |
|
src_step = dst_step = roi.width; |
|
} |
|
|
|
#ifdef HAVE_TEGRA_OPTIMIZATION |
|
if (tegra::useTegra() && tegra::thresh_8u(_src, _dst, roi.width, roi.height, thresh, maxval, type)) |
|
return; |
|
#endif |
|
|
|
#if defined(HAVE_IPP) |
|
CV_IPP_CHECK() |
|
{ |
|
IppiSize sz = { roi.width, roi.height }; |
|
CV_SUPPRESS_DEPRECATED_START |
|
switch( type ) |
|
{ |
|
case THRESH_TRUNC: |
|
if (_src.data == _dst.data && CV_INSTRUMENT_FUN_IPP(ippiThreshold_GT_8u_C1IR, _dst.ptr(), (int)dst_step, sz, thresh) >= 0) |
|
{ |
|
CV_IMPL_ADD(CV_IMPL_IPP); |
|
return; |
|
} |
|
if (CV_INSTRUMENT_FUN_IPP(ippiThreshold_GT_8u_C1R, _src.ptr(), (int)src_step, _dst.ptr(), (int)dst_step, sz, thresh) >= 0) |
|
{ |
|
CV_IMPL_ADD(CV_IMPL_IPP); |
|
return; |
|
} |
|
setIppErrorStatus(); |
|
break; |
|
case THRESH_TOZERO: |
|
if (_src.data == _dst.data && CV_INSTRUMENT_FUN_IPP(ippiThreshold_LTVal_8u_C1IR, _dst.ptr(), (int)dst_step, sz, thresh+1, 0) >= 0) |
|
{ |
|
CV_IMPL_ADD(CV_IMPL_IPP); |
|
return; |
|
} |
|
if (CV_INSTRUMENT_FUN_IPP(ippiThreshold_LTVal_8u_C1R, _src.ptr(), (int)src_step, _dst.ptr(), (int)dst_step, sz, thresh + 1, 0) >= 0) |
|
{ |
|
CV_IMPL_ADD(CV_IMPL_IPP); |
|
return; |
|
} |
|
setIppErrorStatus(); |
|
break; |
|
case THRESH_TOZERO_INV: |
|
if (_src.data == _dst.data && CV_INSTRUMENT_FUN_IPP(ippiThreshold_GTVal_8u_C1IR, _dst.ptr(), (int)dst_step, sz, thresh, 0) >= 0) |
|
{ |
|
CV_IMPL_ADD(CV_IMPL_IPP); |
|
return; |
|
} |
|
if (CV_INSTRUMENT_FUN_IPP(ippiThreshold_GTVal_8u_C1R, _src.ptr(), (int)src_step, _dst.ptr(), (int)dst_step, sz, thresh, 0) >= 0) |
|
{ |
|
CV_IMPL_ADD(CV_IMPL_IPP); |
|
return; |
|
} |
|
setIppErrorStatus(); |
|
break; |
|
} |
|
CV_SUPPRESS_DEPRECATED_END |
|
} |
|
#endif |
|
|
|
int j = 0; |
|
const uchar* src = _src.ptr(); |
|
uchar* dst = _dst.ptr(); |
|
#if CV_SIMD128 |
|
bool useSIMD = checkHardwareSupport( CV_CPU_SSE2 ) || checkHardwareSupport( CV_CPU_NEON ); |
|
if( useSIMD ) |
|
{ |
|
v_uint8x16 thresh_u = v_setall_u8( thresh ); |
|
v_uint8x16 maxval16 = v_setall_u8( maxval ); |
|
|
|
switch( type ) |
|
{ |
|
case THRESH_BINARY: |
|
for( int i = 0; i < roi.height; i++, src += src_step, dst += dst_step ) |
|
{ |
|
for( j = 0; j <= roi.width - 16; j += 16 ) |
|
{ |
|
v_uint8x16 v0; |
|
v0 = v_load( src + j ); |
|
v0 = thresh_u < v0; |
|
v0 = v0 & maxval16; |
|
v_store( dst + j, v0 ); |
|
} |
|
} |
|
break; |
|
|
|
case THRESH_BINARY_INV: |
|
for( int i = 0; i < roi.height; i++, src += src_step, dst += dst_step ) |
|
{ |
|
for( j = 0; j <= roi.width - 16; j += 16 ) |
|
{ |
|
v_uint8x16 v0; |
|
v0 = v_load( src + j ); |
|
v0 = v0 <= thresh_u; |
|
v0 = v0 & maxval16; |
|
v_store( dst + j, v0 ); |
|
} |
|
} |
|
break; |
|
|
|
case THRESH_TRUNC: |
|
for( int i = 0; i < roi.height; i++, src += src_step, dst += dst_step ) |
|
{ |
|
for( j = 0; j <= roi.width - 16; j += 16 ) |
|
{ |
|
v_uint8x16 v0; |
|
v0 = v_load( src + j ); |
|
v0 = v0 - ( v0 - thresh_u ); |
|
v_store( dst + j, v0 ); |
|
} |
|
} |
|
break; |
|
|
|
case THRESH_TOZERO: |
|
for( int i = 0; i < roi.height; i++, src += src_step, dst += dst_step ) |
|
{ |
|
for( j = 0; j <= roi.width - 16; j += 16 ) |
|
{ |
|
v_uint8x16 v0; |
|
v0 = v_load( src + j ); |
|
v0 = ( thresh_u < v0 ) & v0; |
|
v_store( dst + j, v0 ); |
|
} |
|
} |
|
break; |
|
|
|
case THRESH_TOZERO_INV: |
|
for( int i = 0; i < roi.height; i++, src += src_step, dst += dst_step ) |
|
{ |
|
for( j = 0; j <= roi.width - 16; j += 16 ) |
|
{ |
|
v_uint8x16 v0; |
|
v0 = v_load( src + j ); |
|
v0 = ( v0 <= thresh_u ) & v0; |
|
v_store( dst + j, v0 ); |
|
} |
|
} |
|
break; |
|
} |
|
} |
|
#endif |
|
|
|
int j_scalar = j; |
|
if( j_scalar < roi.width ) |
|
{ |
|
const int thresh_pivot = thresh + 1; |
|
uchar tab[256] = {0}; |
|
switch( type ) |
|
{ |
|
case THRESH_BINARY: |
|
memset(tab, 0, thresh_pivot); |
|
if (thresh_pivot < 256) { |
|
memset(tab + thresh_pivot, maxval, 256 - thresh_pivot); |
|
} |
|
break; |
|
case THRESH_BINARY_INV: |
|
memset(tab, maxval, thresh_pivot); |
|
if (thresh_pivot < 256) { |
|
memset(tab + thresh_pivot, 0, 256 - thresh_pivot); |
|
} |
|
break; |
|
case THRESH_TRUNC: |
|
for( int i = 0; i <= thresh; i++ ) |
|
tab[i] = (uchar)i; |
|
if (thresh_pivot < 256) { |
|
memset(tab + thresh_pivot, thresh, 256 - thresh_pivot); |
|
} |
|
break; |
|
case THRESH_TOZERO: |
|
memset(tab, 0, thresh_pivot); |
|
for( int i = thresh_pivot; i < 256; i++ ) |
|
tab[i] = (uchar)i; |
|
break; |
|
case THRESH_TOZERO_INV: |
|
for( int i = 0; i <= thresh; i++ ) |
|
tab[i] = (uchar)i; |
|
if (thresh_pivot < 256) { |
|
memset(tab + thresh_pivot, 0, 256 - thresh_pivot); |
|
} |
|
break; |
|
} |
|
|
|
src = _src.ptr(); |
|
dst = _dst.ptr(); |
|
for( int i = 0; i < roi.height; i++, src += src_step, dst += dst_step ) |
|
{ |
|
j = j_scalar; |
|
#if CV_ENABLE_UNROLLED |
|
for( ; j <= roi.width - 4; j += 4 ) |
|
{ |
|
uchar t0 = tab[src[j]]; |
|
uchar t1 = tab[src[j+1]]; |
|
|
|
dst[j] = t0; |
|
dst[j+1] = t1; |
|
|
|
t0 = tab[src[j+2]]; |
|
t1 = tab[src[j+3]]; |
|
|
|
dst[j+2] = t0; |
|
dst[j+3] = t1; |
|
} |
|
#endif |
|
for( ; j < roi.width; j++ ) |
|
dst[j] = tab[src[j]]; |
|
} |
|
} |
|
} |
|
|
|
static void |
|
thresh_16u(const Mat& _src, Mat& _dst, ushort thresh, ushort maxval, int type) |
|
{ |
|
Size roi = _src.size(); |
|
roi.width *= _src.channels(); |
|
size_t src_step = _src.step / _src.elemSize1(); |
|
size_t dst_step = _dst.step / _dst.elemSize1(); |
|
|
|
if (_src.isContinuous() && _dst.isContinuous()) |
|
{ |
|
roi.width *= roi.height; |
|
roi.height = 1; |
|
src_step = dst_step = roi.width; |
|
} |
|
|
|
// HAVE_TEGRA_OPTIMIZATION not supported |
|
|
|
// HAVE_IPP not supported |
|
|
|
const ushort* src = _src.ptr<ushort>(); |
|
ushort* dst = _dst.ptr<ushort>(); |
|
#if CV_SIMD128 |
|
bool useSIMD = checkHardwareSupport(CV_CPU_SSE2) || checkHardwareSupport(CV_CPU_NEON); |
|
if (useSIMD) |
|
{ |
|
int i, j; |
|
v_uint16x8 thresh_u = v_setall_u16(thresh); |
|
v_uint16x8 maxval16 = v_setall_u16(maxval); |
|
|
|
switch (type) |
|
{ |
|
case THRESH_BINARY: |
|
for (i = 0; i < roi.height; i++, src += src_step, dst += dst_step) |
|
{ |
|
for (j = 0; j <= roi.width - 16; j += 16) |
|
{ |
|
v_uint16x8 v0, v1; |
|
v0 = v_load(src + j); |
|
v1 = v_load(src + j + 8); |
|
v0 = thresh_u < v0; |
|
v1 = thresh_u < v1; |
|
v0 = v0 & maxval16; |
|
v1 = v1 & maxval16; |
|
v_store(dst + j, v0); |
|
v_store(dst + j + 8, v1); |
|
} |
|
|
|
for (; j < roi.width; j++) |
|
dst[j] = threshBinary<ushort>(src[j], thresh, maxval); |
|
} |
|
break; |
|
|
|
case THRESH_BINARY_INV: |
|
for (i = 0; i < roi.height; i++, src += src_step, dst += dst_step) |
|
{ |
|
j = 0; |
|
for (; j <= roi.width - 16; j += 16) |
|
{ |
|
v_uint16x8 v0, v1; |
|
v0 = v_load(src + j); |
|
v1 = v_load(src + j + 8); |
|
v0 = v0 <= thresh_u; |
|
v1 = v1 <= thresh_u; |
|
v0 = v0 & maxval16; |
|
v1 = v1 & maxval16; |
|
v_store(dst + j, v0); |
|
v_store(dst + j + 8, v1); |
|
} |
|
|
|
for (; j < roi.width; j++) |
|
dst[j] = threshBinaryInv<ushort>(src[j], thresh, maxval); |
|
} |
|
break; |
|
|
|
case THRESH_TRUNC: |
|
for (i = 0; i < roi.height; i++, src += src_step, dst += dst_step) |
|
{ |
|
j = 0; |
|
for (; j <= roi.width - 16; j += 16) |
|
{ |
|
v_uint16x8 v0, v1; |
|
v0 = v_load(src + j); |
|
v1 = v_load(src + j + 8); |
|
v0 = v_min(v0, thresh_u); |
|
v1 = v_min(v1, thresh_u); |
|
v_store(dst + j, v0); |
|
v_store(dst + j + 8, v1); |
|
} |
|
|
|
for (; j < roi.width; j++) |
|
dst[j] = threshTrunc<ushort>(src[j], thresh); |
|
} |
|
break; |
|
|
|
case THRESH_TOZERO: |
|
for (i = 0; i < roi.height; i++, src += src_step, dst += dst_step) |
|
{ |
|
j = 0; |
|
for (; j <= roi.width - 16; j += 16) |
|
{ |
|
v_uint16x8 v0, v1; |
|
v0 = v_load(src + j); |
|
v1 = v_load(src + j + 8); |
|
v0 = (thresh_u < v0) & v0; |
|
v1 = (thresh_u < v1) & v1; |
|
v_store(dst + j, v0); |
|
v_store(dst + j + 8, v1); |
|
} |
|
|
|
for (; j < roi.width; j++) |
|
dst[j] = threshToZero<ushort>(src[j], thresh); |
|
} |
|
break; |
|
|
|
case THRESH_TOZERO_INV: |
|
for (i = 0; i < roi.height; i++, src += src_step, dst += dst_step) |
|
{ |
|
j = 0; |
|
for (; j <= roi.width - 16; j += 16) |
|
{ |
|
v_uint16x8 v0, v1; |
|
v0 = v_load(src + j); |
|
v1 = v_load(src + j + 8); |
|
v0 = (v0 <= thresh_u) & v0; |
|
v1 = (v1 <= thresh_u) & v1; |
|
v_store(dst + j, v0); |
|
v_store(dst + j + 8, v1); |
|
} |
|
|
|
for (; j < roi.width; j++) |
|
dst[j] = threshToZeroInv<ushort>(src[j], thresh); |
|
} |
|
break; |
|
} |
|
} |
|
else |
|
#endif |
|
{ |
|
threshGeneric<ushort>(roi, src, src_step, dst, dst_step, thresh, maxval, type); |
|
} |
|
} |
|
|
|
static void |
|
thresh_16s( const Mat& _src, Mat& _dst, short thresh, short maxval, int type ) |
|
{ |
|
Size roi = _src.size(); |
|
roi.width *= _src.channels(); |
|
const short* src = _src.ptr<short>(); |
|
short* dst = _dst.ptr<short>(); |
|
size_t src_step = _src.step/sizeof(src[0]); |
|
size_t dst_step = _dst.step/sizeof(dst[0]); |
|
|
|
if( _src.isContinuous() && _dst.isContinuous() ) |
|
{ |
|
roi.width *= roi.height; |
|
roi.height = 1; |
|
src_step = dst_step = roi.width; |
|
} |
|
|
|
#ifdef HAVE_TEGRA_OPTIMIZATION |
|
if (tegra::useTegra() && tegra::thresh_16s(_src, _dst, roi.width, roi.height, thresh, maxval, type)) |
|
return; |
|
#endif |
|
|
|
#if defined(HAVE_IPP) |
|
CV_IPP_CHECK() |
|
{ |
|
IppiSize sz = { roi.width, roi.height }; |
|
CV_SUPPRESS_DEPRECATED_START |
|
switch( type ) |
|
{ |
|
case THRESH_TRUNC: |
|
if (_src.data == _dst.data && CV_INSTRUMENT_FUN_IPP(ippiThreshold_GT_16s_C1IR, dst, (int)dst_step*sizeof(dst[0]), sz, thresh) >= 0) |
|
{ |
|
CV_IMPL_ADD(CV_IMPL_IPP); |
|
return; |
|
} |
|
if (CV_INSTRUMENT_FUN_IPP(ippiThreshold_GT_16s_C1R, src, (int)src_step*sizeof(src[0]), dst, (int)dst_step*sizeof(dst[0]), sz, thresh) >= 0) |
|
{ |
|
CV_IMPL_ADD(CV_IMPL_IPP); |
|
return; |
|
} |
|
setIppErrorStatus(); |
|
break; |
|
case THRESH_TOZERO: |
|
if (_src.data == _dst.data && CV_INSTRUMENT_FUN_IPP(ippiThreshold_LTVal_16s_C1IR, dst, (int)dst_step*sizeof(dst[0]), sz, thresh + 1, 0) >= 0) |
|
{ |
|
CV_IMPL_ADD(CV_IMPL_IPP); |
|
return; |
|
} |
|
if (CV_INSTRUMENT_FUN_IPP(ippiThreshold_LTVal_16s_C1R, src, (int)src_step*sizeof(src[0]), dst, (int)dst_step*sizeof(dst[0]), sz, thresh + 1, 0) >= 0) |
|
{ |
|
CV_IMPL_ADD(CV_IMPL_IPP); |
|
return; |
|
} |
|
setIppErrorStatus(); |
|
break; |
|
case THRESH_TOZERO_INV: |
|
if (_src.data == _dst.data && CV_INSTRUMENT_FUN_IPP(ippiThreshold_GTVal_16s_C1IR, dst, (int)dst_step*sizeof(dst[0]), sz, thresh, 0) >= 0) |
|
{ |
|
CV_IMPL_ADD(CV_IMPL_IPP); |
|
return; |
|
} |
|
if (CV_INSTRUMENT_FUN_IPP(ippiThreshold_GTVal_16s_C1R, src, (int)src_step*sizeof(src[0]), dst, (int)dst_step*sizeof(dst[0]), sz, thresh, 0) >= 0) |
|
{ |
|
CV_IMPL_ADD(CV_IMPL_IPP); |
|
return; |
|
} |
|
setIppErrorStatus(); |
|
break; |
|
} |
|
CV_SUPPRESS_DEPRECATED_END |
|
} |
|
#endif |
|
|
|
#if CV_SIMD128 |
|
bool useSIMD = checkHardwareSupport( CV_CPU_SSE2 ) || checkHardwareSupport( CV_CPU_NEON ); |
|
if( useSIMD ) |
|
{ |
|
int i, j; |
|
v_int16x8 thresh8 = v_setall_s16( thresh ); |
|
v_int16x8 maxval8 = v_setall_s16( maxval ); |
|
|
|
switch( type ) |
|
{ |
|
case THRESH_BINARY: |
|
for( i = 0; i < roi.height; i++, src += src_step, dst += dst_step ) |
|
{ |
|
j = 0; |
|
for( ; j <= roi.width - 16; j += 16 ) |
|
{ |
|
v_int16x8 v0, v1; |
|
v0 = v_load( src + j ); |
|
v1 = v_load( src + j + 8 ); |
|
v0 = thresh8 < v0; |
|
v1 = thresh8 < v1; |
|
v0 = v0 & maxval8; |
|
v1 = v1 & maxval8; |
|
v_store( dst + j, v0 ); |
|
v_store( dst + j + 8, v1 ); |
|
} |
|
|
|
for( ; j < roi.width; j++ ) |
|
dst[j] = threshBinary<short>(src[j], thresh, maxval); |
|
} |
|
break; |
|
|
|
case THRESH_BINARY_INV: |
|
for( i = 0; i < roi.height; i++, src += src_step, dst += dst_step ) |
|
{ |
|
j = 0; |
|
for( ; j <= roi.width - 16; j += 16 ) |
|
{ |
|
v_int16x8 v0, v1; |
|
v0 = v_load( src + j ); |
|
v1 = v_load( src + j + 8 ); |
|
v0 = v0 <= thresh8; |
|
v1 = v1 <= thresh8; |
|
v0 = v0 & maxval8; |
|
v1 = v1 & maxval8; |
|
v_store( dst + j, v0 ); |
|
v_store( dst + j + 8, v1 ); |
|
} |
|
|
|
for( ; j < roi.width; j++ ) |
|
dst[j] = threshBinaryInv<short>(src[j], thresh, maxval); |
|
} |
|
break; |
|
|
|
case THRESH_TRUNC: |
|
for( i = 0; i < roi.height; i++, src += src_step, dst += dst_step ) |
|
{ |
|
j = 0; |
|
for( ; j <= roi.width - 16; j += 16 ) |
|
{ |
|
v_int16x8 v0, v1; |
|
v0 = v_load( src + j ); |
|
v1 = v_load( src + j + 8 ); |
|
v0 = v_min( v0, thresh8 ); |
|
v1 = v_min( v1, thresh8 ); |
|
v_store( dst + j, v0 ); |
|
v_store( dst + j + 8, v1 ); |
|
} |
|
|
|
for( ; j < roi.width; j++ ) |
|
dst[j] = threshTrunc<short>( src[j], thresh ); |
|
} |
|
break; |
|
|
|
case THRESH_TOZERO: |
|
for( i = 0; i < roi.height; i++, src += src_step, dst += dst_step ) |
|
{ |
|
j = 0; |
|
for( ; j <= roi.width - 16; j += 16 ) |
|
{ |
|
v_int16x8 v0, v1; |
|
v0 = v_load( src + j ); |
|
v1 = v_load( src + j + 8 ); |
|
v0 = ( thresh8 < v0 ) & v0; |
|
v1 = ( thresh8 < v1 ) & v1; |
|
v_store( dst + j, v0 ); |
|
v_store( dst + j + 8, v1 ); |
|
} |
|
|
|
for( ; j < roi.width; j++ ) |
|
dst[j] = threshToZero<short>(src[j], thresh); |
|
} |
|
break; |
|
|
|
case THRESH_TOZERO_INV: |
|
for( i = 0; i < roi.height; i++, src += src_step, dst += dst_step ) |
|
{ |
|
j = 0; |
|
for( ; j <= roi.width - 16; j += 16 ) |
|
{ |
|
v_int16x8 v0, v1; |
|
v0 = v_load( src + j ); |
|
v1 = v_load( src + j + 8 ); |
|
v0 = ( v0 <= thresh8 ) & v0; |
|
v1 = ( v1 <= thresh8 ) & v1; |
|
v_store( dst + j, v0 ); |
|
v_store( dst + j + 8, v1 ); |
|
} |
|
|
|
for( ; j < roi.width; j++ ) |
|
dst[j] = threshToZeroInv<short>(src[j], thresh); |
|
} |
|
break; |
|
default: |
|
CV_Error( CV_StsBadArg, "" ); return; |
|
} |
|
} |
|
else |
|
#endif |
|
{ |
|
threshGeneric<short>(roi, src, src_step, dst, dst_step, thresh, maxval, type); |
|
} |
|
} |
|
|
|
|
|
static void |
|
thresh_32f( const Mat& _src, Mat& _dst, float thresh, float maxval, int type ) |
|
{ |
|
Size roi = _src.size(); |
|
roi.width *= _src.channels(); |
|
const float* src = _src.ptr<float>(); |
|
float* dst = _dst.ptr<float>(); |
|
size_t src_step = _src.step/sizeof(src[0]); |
|
size_t dst_step = _dst.step/sizeof(dst[0]); |
|
|
|
if( _src.isContinuous() && _dst.isContinuous() ) |
|
{ |
|
roi.width *= roi.height; |
|
roi.height = 1; |
|
} |
|
|
|
#ifdef HAVE_TEGRA_OPTIMIZATION |
|
if (tegra::useTegra() && tegra::thresh_32f(_src, _dst, roi.width, roi.height, thresh, maxval, type)) |
|
return; |
|
#endif |
|
|
|
#if defined(HAVE_IPP) |
|
CV_IPP_CHECK() |
|
{ |
|
IppiSize sz = { roi.width, roi.height }; |
|
switch( type ) |
|
{ |
|
case THRESH_TRUNC: |
|
if (0 <= CV_INSTRUMENT_FUN_IPP(ippiThreshold_GT_32f_C1R, src, (int)src_step*sizeof(src[0]), dst, (int)dst_step*sizeof(dst[0]), sz, thresh)) |
|
{ |
|
CV_IMPL_ADD(CV_IMPL_IPP); |
|
return; |
|
} |
|
setIppErrorStatus(); |
|
break; |
|
case THRESH_TOZERO: |
|
if (0 <= CV_INSTRUMENT_FUN_IPP(ippiThreshold_LTVal_32f_C1R, src, (int)src_step*sizeof(src[0]), dst, (int)dst_step*sizeof(dst[0]), sz, thresh + FLT_EPSILON, 0)) |
|
{ |
|
CV_IMPL_ADD(CV_IMPL_IPP); |
|
return; |
|
} |
|
setIppErrorStatus(); |
|
break; |
|
case THRESH_TOZERO_INV: |
|
if (0 <= CV_INSTRUMENT_FUN_IPP(ippiThreshold_GTVal_32f_C1R, src, (int)src_step*sizeof(src[0]), dst, (int)dst_step*sizeof(dst[0]), sz, thresh, 0)) |
|
{ |
|
CV_IMPL_ADD(CV_IMPL_IPP); |
|
return; |
|
} |
|
setIppErrorStatus(); |
|
break; |
|
} |
|
} |
|
#endif |
|
|
|
#if CV_SIMD128 |
|
bool useSIMD = checkHardwareSupport( CV_CPU_SSE2 ) || checkHardwareSupport( CV_CPU_NEON ); |
|
if( useSIMD ) |
|
{ |
|
int i, j; |
|
v_float32x4 thresh4 = v_setall_f32( thresh ); |
|
v_float32x4 maxval4 = v_setall_f32( maxval ); |
|
|
|
switch( type ) |
|
{ |
|
case THRESH_BINARY: |
|
for( i = 0; i < roi.height; i++, src += src_step, dst += dst_step ) |
|
{ |
|
j = 0; |
|
for( ; j <= roi.width - 8; j += 8 ) |
|
{ |
|
v_float32x4 v0, v1; |
|
v0 = v_load( src + j ); |
|
v1 = v_load( src + j + 4 ); |
|
v0 = thresh4 < v0; |
|
v1 = thresh4 < v1; |
|
v0 = v0 & maxval4; |
|
v1 = v1 & maxval4; |
|
v_store( dst + j, v0 ); |
|
v_store( dst + j + 4, v1 ); |
|
} |
|
|
|
for( ; j < roi.width; j++ ) |
|
dst[j] = threshBinary<float>(src[j], thresh, maxval); |
|
} |
|
break; |
|
|
|
case THRESH_BINARY_INV: |
|
for( i = 0; i < roi.height; i++, src += src_step, dst += dst_step ) |
|
{ |
|
j = 0; |
|
for( ; j <= roi.width - 8; j += 8 ) |
|
{ |
|
v_float32x4 v0, v1; |
|
v0 = v_load( src + j ); |
|
v1 = v_load( src + j + 4 ); |
|
v0 = v0 <= thresh4; |
|
v1 = v1 <= thresh4; |
|
v0 = v0 & maxval4; |
|
v1 = v1 & maxval4; |
|
v_store( dst + j, v0 ); |
|
v_store( dst + j + 4, v1 ); |
|
} |
|
|
|
for( ; j < roi.width; j++ ) |
|
dst[j] = threshBinaryInv<float>(src[j], thresh, maxval); |
|
} |
|
break; |
|
|
|
case THRESH_TRUNC: |
|
for( i = 0; i < roi.height; i++, src += src_step, dst += dst_step ) |
|
{ |
|
j = 0; |
|
for( ; j <= roi.width - 8; j += 8 ) |
|
{ |
|
v_float32x4 v0, v1; |
|
v0 = v_load( src + j ); |
|
v1 = v_load( src + j + 4 ); |
|
v0 = v_min( v0, thresh4 ); |
|
v1 = v_min( v1, thresh4 ); |
|
v_store( dst + j, v0 ); |
|
v_store( dst + j + 4, v1 ); |
|
} |
|
|
|
for( ; j < roi.width; j++ ) |
|
dst[j] = threshTrunc<float>(src[j], thresh); |
|
} |
|
break; |
|
|
|
case THRESH_TOZERO: |
|
for( i = 0; i < roi.height; i++, src += src_step, dst += dst_step ) |
|
{ |
|
j = 0; |
|
for( ; j <= roi.width - 8; j += 8 ) |
|
{ |
|
v_float32x4 v0, v1; |
|
v0 = v_load( src + j ); |
|
v1 = v_load( src + j + 4 ); |
|
v0 = ( thresh4 < v0 ) & v0; |
|
v1 = ( thresh4 < v1 ) & v1; |
|
v_store( dst + j, v0 ); |
|
v_store( dst + j + 4, v1 ); |
|
} |
|
|
|
for( ; j < roi.width; j++ ) |
|
dst[j] = threshToZero<float>(src[j], thresh); |
|
} |
|
break; |
|
|
|
case THRESH_TOZERO_INV: |
|
for( i = 0; i < roi.height; i++, src += src_step, dst += dst_step ) |
|
{ |
|
j = 0; |
|
for( ; j <= roi.width - 8; j += 8 ) |
|
{ |
|
v_float32x4 v0, v1; |
|
v0 = v_load( src + j ); |
|
v1 = v_load( src + j + 4 ); |
|
v0 = ( v0 <= thresh4 ) & v0; |
|
v1 = ( v1 <= thresh4 ) & v1; |
|
v_store( dst + j, v0 ); |
|
v_store( dst + j + 4, v1 ); |
|
} |
|
|
|
for( ; j < roi.width; j++ ) |
|
dst[j] = threshToZeroInv<float>(src[j], thresh); |
|
} |
|
break; |
|
default: |
|
CV_Error( CV_StsBadArg, "" ); return; |
|
} |
|
} |
|
else |
|
#endif |
|
{ |
|
threshGeneric<float>(roi, src, src_step, dst, dst_step, thresh, maxval, type); |
|
} |
|
} |
|
|
|
static void |
|
thresh_64f(const Mat& _src, Mat& _dst, double thresh, double maxval, int type) |
|
{ |
|
Size roi = _src.size(); |
|
roi.width *= _src.channels(); |
|
const double* src = _src.ptr<double>(); |
|
double* dst = _dst.ptr<double>(); |
|
size_t src_step = _src.step / sizeof(src[0]); |
|
size_t dst_step = _dst.step / sizeof(dst[0]); |
|
|
|
if (_src.isContinuous() && _dst.isContinuous()) |
|
{ |
|
roi.width *= roi.height; |
|
roi.height = 1; |
|
} |
|
|
|
#if CV_SIMD128_64F |
|
bool useSIMD = checkHardwareSupport( CV_CPU_SSE2 ) || checkHardwareSupport( CV_CPU_NEON ); |
|
if( useSIMD ) |
|
{ |
|
int i, j; |
|
v_float64x2 thresh2 = v_setall_f64( thresh ); |
|
v_float64x2 maxval2 = v_setall_f64( maxval ); |
|
|
|
switch( type ) |
|
{ |
|
case THRESH_BINARY: |
|
for( i = 0; i < roi.height; i++, src += src_step, dst += dst_step ) |
|
{ |
|
j = 0; |
|
for( ; j <= roi.width - 4; j += 4 ) |
|
{ |
|
v_float64x2 v0, v1; |
|
v0 = v_load( src + j ); |
|
v1 = v_load( src + j + 2 ); |
|
v0 = thresh2 < v0; |
|
v1 = thresh2 < v1; |
|
v0 = v0 & maxval2; |
|
v1 = v1 & maxval2; |
|
v_store( dst + j, v0 ); |
|
v_store( dst + j + 2, v1 ); |
|
} |
|
|
|
for( ; j < roi.width; j++ ) |
|
dst[j] = threshBinary<double>(src[j], thresh, maxval); |
|
} |
|
break; |
|
|
|
case THRESH_BINARY_INV: |
|
for( i = 0; i < roi.height; i++, src += src_step, dst += dst_step ) |
|
{ |
|
j = 0; |
|
for( ; j <= roi.width - 4; j += 4 ) |
|
{ |
|
v_float64x2 v0, v1; |
|
v0 = v_load( src + j ); |
|
v1 = v_load( src + j + 2 ); |
|
v0 = v0 <= thresh2; |
|
v1 = v1 <= thresh2; |
|
v0 = v0 & maxval2; |
|
v1 = v1 & maxval2; |
|
v_store( dst + j, v0 ); |
|
v_store( dst + j + 2, v1 ); |
|
} |
|
|
|
for( ; j < roi.width; j++ ) |
|
dst[j] = threshBinaryInv<double>(src[j], thresh, maxval); |
|
} |
|
break; |
|
|
|
case THRESH_TRUNC: |
|
for( i = 0; i < roi.height; i++, src += src_step, dst += dst_step ) |
|
{ |
|
j = 0; |
|
for( ; j <= roi.width - 4; j += 4 ) |
|
{ |
|
v_float64x2 v0, v1; |
|
v0 = v_load( src + j ); |
|
v1 = v_load( src + j + 2 ); |
|
v0 = v_min( v0, thresh2 ); |
|
v1 = v_min( v1, thresh2 ); |
|
v_store( dst + j, v0 ); |
|
v_store( dst + j + 2, v1 ); |
|
} |
|
|
|
for( ; j < roi.width; j++ ) |
|
dst[j] = threshTrunc<double>(src[j], thresh); |
|
} |
|
break; |
|
|
|
case THRESH_TOZERO: |
|
for( i = 0; i < roi.height; i++, src += src_step, dst += dst_step ) |
|
{ |
|
j = 0; |
|
for( ; j <= roi.width - 4; j += 4 ) |
|
{ |
|
v_float64x2 v0, v1; |
|
v0 = v_load( src + j ); |
|
v1 = v_load( src + j + 2 ); |
|
v0 = ( thresh2 < v0 ) & v0; |
|
v1 = ( thresh2 < v1 ) & v1; |
|
v_store( dst + j, v0 ); |
|
v_store( dst + j + 2, v1 ); |
|
} |
|
|
|
for( ; j < roi.width; j++ ) |
|
dst[j] = threshToZero<double>(src[j], thresh); |
|
} |
|
break; |
|
|
|
case THRESH_TOZERO_INV: |
|
for( i = 0; i < roi.height; i++, src += src_step, dst += dst_step ) |
|
{ |
|
j = 0; |
|
for( ; j <= roi.width - 4; j += 4 ) |
|
{ |
|
v_float64x2 v0, v1; |
|
v0 = v_load( src + j ); |
|
v1 = v_load( src + j + 2 ); |
|
v0 = ( v0 <= thresh2 ) & v0; |
|
v1 = ( v1 <= thresh2 ) & v1; |
|
v_store( dst + j, v0 ); |
|
v_store( dst + j + 2, v1 ); |
|
} |
|
|
|
for( ; j < roi.width; j++ ) |
|
dst[j] = threshToZeroInv<double>(src[j], thresh); |
|
} |
|
break; |
|
default: |
|
CV_Error(CV_StsBadArg, ""); return; |
|
} |
|
} |
|
else |
|
#endif |
|
{ |
|
threshGeneric<double>(roi, src, src_step, dst, dst_step, thresh, maxval, type); |
|
} |
|
} |
|
|
|
#ifdef HAVE_IPP |
|
static bool ipp_getThreshVal_Otsu_8u( const unsigned char* _src, int step, Size size, unsigned char &thresh) |
|
{ |
|
CV_INSTRUMENT_REGION_IPP() |
|
|
|
// Performance degradations |
|
#if IPP_VERSION_X100 >= 201800 |
|
IppiSize srcSize = { size.width, size.height }; |
|
|
|
if(CV_INSTRUMENT_FUN_IPP(ippiComputeThreshold_Otsu_8u_C1R, _src, step, srcSize, &thresh) < 0) |
|
return false; |
|
|
|
return true; |
|
#else |
|
CV_UNUSED(_src); CV_UNUSED(step); CV_UNUSED(size); CV_UNUSED(thresh); |
|
return false; |
|
#endif |
|
} |
|
#endif |
|
|
|
static double |
|
getThreshVal_Otsu_8u( const Mat& _src ) |
|
{ |
|
Size size = _src.size(); |
|
int step = (int) _src.step; |
|
if( _src.isContinuous() ) |
|
{ |
|
size.width *= size.height; |
|
size.height = 1; |
|
step = size.width; |
|
} |
|
|
|
#ifdef HAVE_IPP |
|
unsigned char thresh = 0; |
|
CV_IPP_RUN_FAST(ipp_getThreshVal_Otsu_8u(_src.ptr(), step, size, thresh), thresh); |
|
#endif |
|
|
|
const int N = 256; |
|
int i, j, h[N] = {0}; |
|
for( i = 0; i < size.height; i++ ) |
|
{ |
|
const uchar* src = _src.ptr() + step*i; |
|
j = 0; |
|
#if CV_ENABLE_UNROLLED |
|
for( ; j <= size.width - 4; j += 4 ) |
|
{ |
|
int v0 = src[j], v1 = src[j+1]; |
|
h[v0]++; h[v1]++; |
|
v0 = src[j+2]; v1 = src[j+3]; |
|
h[v0]++; h[v1]++; |
|
} |
|
#endif |
|
for( ; j < size.width; j++ ) |
|
h[src[j]]++; |
|
} |
|
|
|
double mu = 0, scale = 1./(size.width*size.height); |
|
for( i = 0; i < N; i++ ) |
|
mu += i*(double)h[i]; |
|
|
|
mu *= scale; |
|
double mu1 = 0, q1 = 0; |
|
double max_sigma = 0, max_val = 0; |
|
|
|
for( i = 0; i < N; i++ ) |
|
{ |
|
double p_i, q2, mu2, sigma; |
|
|
|
p_i = h[i]*scale; |
|
mu1 *= q1; |
|
q1 += p_i; |
|
q2 = 1. - q1; |
|
|
|
if( std::min(q1,q2) < FLT_EPSILON || std::max(q1,q2) > 1. - FLT_EPSILON ) |
|
continue; |
|
|
|
mu1 = (mu1 + i*p_i)/q1; |
|
mu2 = (mu - q1*mu1)/q2; |
|
sigma = q1*q2*(mu1 - mu2)*(mu1 - mu2); |
|
if( sigma > max_sigma ) |
|
{ |
|
max_sigma = sigma; |
|
max_val = i; |
|
} |
|
} |
|
|
|
return max_val; |
|
} |
|
|
|
static double |
|
getThreshVal_Triangle_8u( const Mat& _src ) |
|
{ |
|
Size size = _src.size(); |
|
int step = (int) _src.step; |
|
if( _src.isContinuous() ) |
|
{ |
|
size.width *= size.height; |
|
size.height = 1; |
|
step = size.width; |
|
} |
|
|
|
const int N = 256; |
|
int i, j, h[N] = {0}; |
|
for( i = 0; i < size.height; i++ ) |
|
{ |
|
const uchar* src = _src.ptr() + step*i; |
|
j = 0; |
|
#if CV_ENABLE_UNROLLED |
|
for( ; j <= size.width - 4; j += 4 ) |
|
{ |
|
int v0 = src[j], v1 = src[j+1]; |
|
h[v0]++; h[v1]++; |
|
v0 = src[j+2]; v1 = src[j+3]; |
|
h[v0]++; h[v1]++; |
|
} |
|
#endif |
|
for( ; j < size.width; j++ ) |
|
h[src[j]]++; |
|
} |
|
|
|
int left_bound = 0, right_bound = 0, max_ind = 0, max = 0; |
|
int temp; |
|
bool isflipped = false; |
|
|
|
for( i = 0; i < N; i++ ) |
|
{ |
|
if( h[i] > 0 ) |
|
{ |
|
left_bound = i; |
|
break; |
|
} |
|
} |
|
if( left_bound > 0 ) |
|
left_bound--; |
|
|
|
for( i = N-1; i > 0; i-- ) |
|
{ |
|
if( h[i] > 0 ) |
|
{ |
|
right_bound = i; |
|
break; |
|
} |
|
} |
|
if( right_bound < N-1 ) |
|
right_bound++; |
|
|
|
for( i = 0; i < N; i++ ) |
|
{ |
|
if( h[i] > max) |
|
{ |
|
max = h[i]; |
|
max_ind = i; |
|
} |
|
} |
|
|
|
if( max_ind-left_bound < right_bound-max_ind) |
|
{ |
|
isflipped = true; |
|
i = 0, j = N-1; |
|
while( i < j ) |
|
{ |
|
temp = h[i]; h[i] = h[j]; h[j] = temp; |
|
i++; j--; |
|
} |
|
left_bound = N-1-right_bound; |
|
max_ind = N-1-max_ind; |
|
} |
|
|
|
double thresh = left_bound; |
|
double a, b, dist = 0, tempdist; |
|
|
|
/* |
|
* We do not need to compute precise distance here. Distance is maximized, so some constants can |
|
* be omitted. This speeds up a computation a bit. |
|
*/ |
|
a = max; b = left_bound-max_ind; |
|
for( i = left_bound+1; i <= max_ind; i++ ) |
|
{ |
|
tempdist = a*i + b*h[i]; |
|
if( tempdist > dist) |
|
{ |
|
dist = tempdist; |
|
thresh = i; |
|
} |
|
} |
|
thresh--; |
|
|
|
if( isflipped ) |
|
thresh = N-1-thresh; |
|
|
|
return thresh; |
|
} |
|
|
|
class ThresholdRunner : public ParallelLoopBody |
|
{ |
|
public: |
|
ThresholdRunner(Mat _src, Mat _dst, double _thresh, double _maxval, int _thresholdType) |
|
{ |
|
src = _src; |
|
dst = _dst; |
|
|
|
thresh = _thresh; |
|
maxval = _maxval; |
|
thresholdType = _thresholdType; |
|
} |
|
|
|
void operator () (const Range& range) const CV_OVERRIDE |
|
{ |
|
int row0 = range.start; |
|
int row1 = range.end; |
|
|
|
Mat srcStripe = src.rowRange(row0, row1); |
|
Mat dstStripe = dst.rowRange(row0, row1); |
|
|
|
CALL_HAL(threshold, cv_hal_threshold, srcStripe.data, srcStripe.step, dstStripe.data, dstStripe.step, |
|
srcStripe.cols, srcStripe.rows, srcStripe.depth(), srcStripe.channels(), |
|
thresh, maxval, thresholdType); |
|
|
|
if (srcStripe.depth() == CV_8U) |
|
{ |
|
thresh_8u( srcStripe, dstStripe, (uchar)thresh, (uchar)maxval, thresholdType ); |
|
} |
|
else if( srcStripe.depth() == CV_16S ) |
|
{ |
|
thresh_16s( srcStripe, dstStripe, (short)thresh, (short)maxval, thresholdType ); |
|
} |
|
else if( srcStripe.depth() == CV_16U ) |
|
{ |
|
thresh_16u( srcStripe, dstStripe, (ushort)thresh, (ushort)maxval, thresholdType ); |
|
} |
|
else if( srcStripe.depth() == CV_32F ) |
|
{ |
|
thresh_32f( srcStripe, dstStripe, (float)thresh, (float)maxval, thresholdType ); |
|
} |
|
else if( srcStripe.depth() == CV_64F ) |
|
{ |
|
thresh_64f(srcStripe, dstStripe, thresh, maxval, thresholdType); |
|
} |
|
} |
|
|
|
private: |
|
Mat src; |
|
Mat dst; |
|
|
|
double thresh; |
|
double maxval; |
|
int thresholdType; |
|
}; |
|
|
|
#ifdef HAVE_OPENCL |
|
|
|
static bool ocl_threshold( InputArray _src, OutputArray _dst, double & thresh, double maxval, int thresh_type ) |
|
{ |
|
int type = _src.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type), |
|
kercn = ocl::predictOptimalVectorWidth(_src, _dst), ktype = CV_MAKE_TYPE(depth, kercn); |
|
bool doubleSupport = ocl::Device::getDefault().doubleFPConfig() > 0; |
|
|
|
if ( !(thresh_type == THRESH_BINARY || thresh_type == THRESH_BINARY_INV || thresh_type == THRESH_TRUNC || |
|
thresh_type == THRESH_TOZERO || thresh_type == THRESH_TOZERO_INV) || |
|
(!doubleSupport && depth == CV_64F)) |
|
return false; |
|
|
|
const char * const thresholdMap[] = { "THRESH_BINARY", "THRESH_BINARY_INV", "THRESH_TRUNC", |
|
"THRESH_TOZERO", "THRESH_TOZERO_INV" }; |
|
ocl::Device dev = ocl::Device::getDefault(); |
|
int stride_size = dev.isIntel() && (dev.type() & ocl::Device::TYPE_GPU) ? 4 : 1; |
|
|
|
ocl::Kernel k("threshold", ocl::imgproc::threshold_oclsrc, |
|
format("-D %s -D T=%s -D T1=%s -D STRIDE_SIZE=%d%s", thresholdMap[thresh_type], |
|
ocl::typeToStr(ktype), ocl::typeToStr(depth), stride_size, |
|
doubleSupport ? " -D DOUBLE_SUPPORT" : "")); |
|
if (k.empty()) |
|
return false; |
|
|
|
UMat src = _src.getUMat(); |
|
_dst.create(src.size(), type); |
|
UMat dst = _dst.getUMat(); |
|
|
|
if (depth <= CV_32S) |
|
thresh = cvFloor(thresh); |
|
|
|
const double min_vals[] = { 0, CHAR_MIN, 0, SHRT_MIN, INT_MIN, -FLT_MAX, -DBL_MAX, 0 }; |
|
double min_val = min_vals[depth]; |
|
|
|
k.args(ocl::KernelArg::ReadOnlyNoSize(src), ocl::KernelArg::WriteOnly(dst, cn, kercn), |
|
ocl::KernelArg::Constant(Mat(1, 1, depth, Scalar::all(thresh))), |
|
ocl::KernelArg::Constant(Mat(1, 1, depth, Scalar::all(maxval))), |
|
ocl::KernelArg::Constant(Mat(1, 1, depth, Scalar::all(min_val)))); |
|
|
|
size_t globalsize[2] = { (size_t)dst.cols * cn / kercn, (size_t)dst.rows }; |
|
globalsize[1] = (globalsize[1] + stride_size - 1) / stride_size; |
|
return k.run(2, globalsize, NULL, false); |
|
} |
|
|
|
#endif |
|
|
|
|
|
#ifdef HAVE_OPENVX |
|
#define IMPL_OPENVX_TOZERO 1 |
|
static bool openvx_threshold(Mat src, Mat dst, int thresh, int maxval, int type) |
|
{ |
|
Mat a = src; |
|
|
|
int trueVal, falseVal; |
|
switch (type) |
|
{ |
|
case THRESH_BINARY: |
|
#ifndef VX_VERSION_1_1 |
|
if (maxval != 255) |
|
return false; |
|
#endif |
|
trueVal = maxval; |
|
falseVal = 0; |
|
break; |
|
case THRESH_TOZERO: |
|
#if IMPL_OPENVX_TOZERO |
|
trueVal = 255; |
|
falseVal = 0; |
|
if (dst.data == src.data) |
|
{ |
|
a = Mat(src.size(), src.type()); |
|
src.copyTo(a); |
|
} |
|
break; |
|
#endif |
|
case THRESH_BINARY_INV: |
|
#ifdef VX_VERSION_1_1 |
|
trueVal = 0; |
|
falseVal = maxval; |
|
break; |
|
#endif |
|
case THRESH_TOZERO_INV: |
|
#ifdef VX_VERSION_1_1 |
|
#if IMPL_OPENVX_TOZERO |
|
trueVal = 0; |
|
falseVal = 255; |
|
if (dst.data == src.data) |
|
{ |
|
a = Mat(src.size(), src.type()); |
|
src.copyTo(a); |
|
} |
|
break; |
|
#endif |
|
#endif |
|
case THRESH_TRUNC: |
|
default: |
|
return false; |
|
} |
|
|
|
try |
|
{ |
|
ivx::Context ctx = ovx::getOpenVXContext(); |
|
|
|
ivx::Threshold thh = ivx::Threshold::createBinary(ctx, VX_TYPE_UINT8, thresh); |
|
thh.setValueTrue(trueVal); |
|
thh.setValueFalse(falseVal); |
|
|
|
ivx::Image |
|
ia = ivx::Image::createFromHandle(ctx, VX_DF_IMAGE_U8, |
|
ivx::Image::createAddressing(a.cols*a.channels(), a.rows, 1, (vx_int32)(a.step)), src.data), |
|
ib = ivx::Image::createFromHandle(ctx, VX_DF_IMAGE_U8, |
|
ivx::Image::createAddressing(dst.cols*dst.channels(), dst.rows, 1, (vx_int32)(dst.step)), dst.data); |
|
|
|
ivx::IVX_CHECK_STATUS(vxuThreshold(ctx, ia, thh, ib)); |
|
#if IMPL_OPENVX_TOZERO |
|
if (type == THRESH_TOZERO || type == THRESH_TOZERO_INV) |
|
{ |
|
ivx::Image |
|
ic = ivx::Image::createFromHandle(ctx, VX_DF_IMAGE_U8, |
|
ivx::Image::createAddressing(dst.cols*dst.channels(), dst.rows, 1, (vx_int32)(dst.step)), dst.data); |
|
ivx::IVX_CHECK_STATUS(vxuAnd(ctx, ib, ia, ic)); |
|
} |
|
#endif |
|
} |
|
catch (ivx::RuntimeError & e) |
|
{ |
|
VX_DbgThrow(e.what()); |
|
} |
|
catch (ivx::WrapperError & e) |
|
{ |
|
VX_DbgThrow(e.what()); |
|
} |
|
|
|
return true; |
|
} |
|
#endif |
|
|
|
} |
|
|
|
double cv::threshold( InputArray _src, OutputArray _dst, double thresh, double maxval, int type ) |
|
{ |
|
CV_INSTRUMENT_REGION() |
|
|
|
CV_OCL_RUN_(_src.dims() <= 2 && _dst.isUMat(), |
|
ocl_threshold(_src, _dst, thresh, maxval, type), thresh) |
|
|
|
Mat src = _src.getMat(); |
|
int automatic_thresh = (type & ~CV_THRESH_MASK); |
|
type &= THRESH_MASK; |
|
|
|
CV_Assert( automatic_thresh != (CV_THRESH_OTSU | CV_THRESH_TRIANGLE) ); |
|
if( automatic_thresh == CV_THRESH_OTSU ) |
|
{ |
|
CV_Assert( src.type() == CV_8UC1 ); |
|
thresh = getThreshVal_Otsu_8u( src ); |
|
} |
|
else if( automatic_thresh == CV_THRESH_TRIANGLE ) |
|
{ |
|
CV_Assert( src.type() == CV_8UC1 ); |
|
thresh = getThreshVal_Triangle_8u( src ); |
|
} |
|
|
|
_dst.create( src.size(), src.type() ); |
|
Mat dst = _dst.getMat(); |
|
|
|
if( src.depth() == CV_8U ) |
|
{ |
|
int ithresh = cvFloor(thresh); |
|
thresh = ithresh; |
|
int imaxval = cvRound(maxval); |
|
if( type == THRESH_TRUNC ) |
|
imaxval = ithresh; |
|
imaxval = saturate_cast<uchar>(imaxval); |
|
|
|
if( ithresh < 0 || ithresh >= 255 ) |
|
{ |
|
if( type == THRESH_BINARY || type == THRESH_BINARY_INV || |
|
((type == THRESH_TRUNC || type == THRESH_TOZERO_INV) && ithresh < 0) || |
|
(type == THRESH_TOZERO && ithresh >= 255) ) |
|
{ |
|
int v = type == THRESH_BINARY ? (ithresh >= 255 ? 0 : imaxval) : |
|
type == THRESH_BINARY_INV ? (ithresh >= 255 ? imaxval : 0) : |
|
/*type == THRESH_TRUNC ? imaxval :*/ 0; |
|
dst.setTo(v); |
|
} |
|
else |
|
src.copyTo(dst); |
|
return thresh; |
|
} |
|
|
|
CV_OVX_RUN(!ovx::skipSmallImages<VX_KERNEL_THRESHOLD>(src.cols, src.rows), |
|
openvx_threshold(src, dst, ithresh, imaxval, type), (double)ithresh) |
|
|
|
thresh = ithresh; |
|
maxval = imaxval; |
|
} |
|
else if( src.depth() == CV_16S ) |
|
{ |
|
int ithresh = cvFloor(thresh); |
|
thresh = ithresh; |
|
int imaxval = cvRound(maxval); |
|
if( type == THRESH_TRUNC ) |
|
imaxval = ithresh; |
|
imaxval = saturate_cast<short>(imaxval); |
|
|
|
if( ithresh < SHRT_MIN || ithresh >= SHRT_MAX ) |
|
{ |
|
if( type == THRESH_BINARY || type == THRESH_BINARY_INV || |
|
((type == THRESH_TRUNC || type == THRESH_TOZERO_INV) && ithresh < SHRT_MIN) || |
|
(type == THRESH_TOZERO && ithresh >= SHRT_MAX) ) |
|
{ |
|
int v = type == THRESH_BINARY ? (ithresh >= SHRT_MAX ? 0 : imaxval) : |
|
type == THRESH_BINARY_INV ? (ithresh >= SHRT_MAX ? imaxval : 0) : |
|
/*type == THRESH_TRUNC ? imaxval :*/ 0; |
|
dst.setTo(v); |
|
} |
|
else |
|
src.copyTo(dst); |
|
return thresh; |
|
} |
|
thresh = ithresh; |
|
maxval = imaxval; |
|
} |
|
else if (src.depth() == CV_16U ) |
|
{ |
|
int ithresh = cvFloor(thresh); |
|
thresh = ithresh; |
|
int imaxval = cvRound(maxval); |
|
if (type == THRESH_TRUNC) |
|
imaxval = ithresh; |
|
imaxval = saturate_cast<ushort>(imaxval); |
|
|
|
int ushrt_min = 0; |
|
if (ithresh < ushrt_min || ithresh >= (int)USHRT_MAX) |
|
{ |
|
if (type == THRESH_BINARY || type == THRESH_BINARY_INV || |
|
((type == THRESH_TRUNC || type == THRESH_TOZERO_INV) && ithresh < ushrt_min) || |
|
(type == THRESH_TOZERO && ithresh >= (int)USHRT_MAX)) |
|
{ |
|
int v = type == THRESH_BINARY ? (ithresh >= (int)USHRT_MAX ? 0 : imaxval) : |
|
type == THRESH_BINARY_INV ? (ithresh >= (int)USHRT_MAX ? imaxval : 0) : |
|
/*type == THRESH_TRUNC ? imaxval :*/ 0; |
|
dst.setTo(v); |
|
} |
|
else |
|
src.copyTo(dst); |
|
return thresh; |
|
} |
|
thresh = ithresh; |
|
maxval = imaxval; |
|
} |
|
else if( src.depth() == CV_32F ) |
|
; |
|
else if( src.depth() == CV_64F ) |
|
; |
|
else |
|
CV_Error( CV_StsUnsupportedFormat, "" ); |
|
|
|
parallel_for_(Range(0, dst.rows), |
|
ThresholdRunner(src, dst, thresh, maxval, type), |
|
dst.total()/(double)(1<<16)); |
|
return thresh; |
|
} |
|
|
|
|
|
void cv::adaptiveThreshold( InputArray _src, OutputArray _dst, double maxValue, |
|
int method, int type, int blockSize, double delta ) |
|
{ |
|
CV_INSTRUMENT_REGION() |
|
|
|
Mat src = _src.getMat(); |
|
CV_Assert( src.type() == CV_8UC1 ); |
|
CV_Assert( blockSize % 2 == 1 && blockSize > 1 ); |
|
Size size = src.size(); |
|
|
|
_dst.create( size, src.type() ); |
|
Mat dst = _dst.getMat(); |
|
|
|
if( maxValue < 0 ) |
|
{ |
|
dst = Scalar(0); |
|
return; |
|
} |
|
|
|
CALL_HAL(adaptiveThreshold, cv_hal_adaptiveThreshold, src.data, src.step, dst.data, dst.step, src.cols, src.rows, |
|
maxValue, method, type, blockSize, delta); |
|
|
|
Mat mean; |
|
|
|
if( src.data != dst.data ) |
|
mean = dst; |
|
|
|
if (method == ADAPTIVE_THRESH_MEAN_C) |
|
boxFilter( src, mean, src.type(), Size(blockSize, blockSize), |
|
Point(-1,-1), true, BORDER_REPLICATE|BORDER_ISOLATED ); |
|
else if (method == ADAPTIVE_THRESH_GAUSSIAN_C) |
|
{ |
|
Mat srcfloat,meanfloat; |
|
src.convertTo(srcfloat,CV_32F); |
|
meanfloat=srcfloat; |
|
GaussianBlur(srcfloat, meanfloat, Size(blockSize, blockSize), 0, 0, BORDER_REPLICATE|BORDER_ISOLATED); |
|
meanfloat.convertTo(mean, src.type()); |
|
} |
|
else |
|
CV_Error( CV_StsBadFlag, "Unknown/unsupported adaptive threshold method" ); |
|
|
|
int i, j; |
|
uchar imaxval = saturate_cast<uchar>(maxValue); |
|
int idelta = type == THRESH_BINARY ? cvCeil(delta) : cvFloor(delta); |
|
uchar tab[768]; |
|
|
|
if( type == CV_THRESH_BINARY ) |
|
for( i = 0; i < 768; i++ ) |
|
tab[i] = (uchar)(i - 255 > -idelta ? imaxval : 0); |
|
else if( type == CV_THRESH_BINARY_INV ) |
|
for( i = 0; i < 768; i++ ) |
|
tab[i] = (uchar)(i - 255 <= -idelta ? imaxval : 0); |
|
else |
|
CV_Error( CV_StsBadFlag, "Unknown/unsupported threshold type" ); |
|
|
|
if( src.isContinuous() && mean.isContinuous() && dst.isContinuous() ) |
|
{ |
|
size.width *= size.height; |
|
size.height = 1; |
|
} |
|
|
|
for( i = 0; i < size.height; i++ ) |
|
{ |
|
const uchar* sdata = src.ptr(i); |
|
const uchar* mdata = mean.ptr(i); |
|
uchar* ddata = dst.ptr(i); |
|
|
|
for( j = 0; j < size.width; j++ ) |
|
ddata[j] = tab[sdata[j] - mdata[j] + 255]; |
|
} |
|
} |
|
|
|
CV_IMPL double |
|
cvThreshold( const void* srcarr, void* dstarr, double thresh, double maxval, int type ) |
|
{ |
|
cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr), dst0 = dst; |
|
|
|
CV_Assert( src.size == dst.size && src.channels() == dst.channels() && |
|
(src.depth() == dst.depth() || dst.depth() == CV_8U)); |
|
|
|
thresh = cv::threshold( src, dst, thresh, maxval, type ); |
|
if( dst0.data != dst.data ) |
|
dst.convertTo( dst0, dst0.depth() ); |
|
return thresh; |
|
} |
|
|
|
|
|
CV_IMPL void |
|
cvAdaptiveThreshold( const void *srcIm, void *dstIm, double maxValue, |
|
int method, int type, int blockSize, double delta ) |
|
{ |
|
cv::Mat src = cv::cvarrToMat(srcIm), dst = cv::cvarrToMat(dstIm); |
|
CV_Assert( src.size == dst.size && src.type() == dst.type() ); |
|
cv::adaptiveThreshold( src, dst, maxValue, method, type, blockSize, delta ); |
|
} |
|
|
|
/* End of file. */
|
|
|