Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
Alexander Alekhin 0428dce27d Merge remote-tracking branch 'upstream/3.4' into merge-3.4 4 years ago
..
face_detector Restore face detection train.prototxt from #9516 5 years ago
CMakeLists.txt Merge pull request #16150 from alalek:cmake_avoid_deprecated_link_private 5 years ago
README.md
action_recognition.py
classification.cpp
classification.py
colorization.cpp
colorization.py
common.hpp
common.py
custom_layers.hpp
dasiamrpn_tracker.py Merge pull request #18033 from ieliz:dasiamrpn 5 years ago
edge_detection.py
fast_neural_style.py fix pylint warnings 5 years ago
human_parsing.cpp dnn: add a human parsing cpp sample 5 years ago
human_parsing.py Merge pull request #16472 from l-bat:cp_vton 5 years ago
js_face_recognition.html
mask_rcnn.py Merge pull request #17394 from huningxin:fix_segmentation_py 5 years ago
mobilenet_ssd_accuracy.py fix pylint warnings 5 years ago
models.yml Merge pull request #18184 from cabelo:yolov4-in-model 5 years ago
object_detection.cpp Merge remote-tracking branch 'upstream/3.4' into merge-3.4 5 years ago
object_detection.py Merge pull request #17332 from l-bat:fix_nms 5 years ago
openpose.cpp
openpose.py
optical_flow.py support flownet2 with arbitary input size 5 years ago
segmentation.cpp
segmentation.py Merge pull request #17394 from huningxin:fix_segmentation_py 5 years ago
shrink_tf_graph_weights.py
siamrpnpp.py Merge pull request #17647 from jinyup100:add-siamrpnpp 5 years ago
text_detection.cpp add OpenCV sample for digit and text recongnition, and provide multiple OCR models. 5 years ago
text_detection.py add OpenCV sample for digit and text recongnition, and provide multiple OCR models. 5 years ago
tf_text_graph_common.py dnn: EfficientDet 5 years ago
tf_text_graph_efficientdet.py dnn: EfficientDet 5 years ago
tf_text_graph_faster_rcnn.py
tf_text_graph_mask_rcnn.py
tf_text_graph_ssd.py Determine SSD input shape 5 years ago
virtual_try_on.py Fixed virtual try on sample 5 years ago

README.md

OpenCV deep learning module samples

Model Zoo

Check a wiki for a list of tested models.

If OpenCV is built with Intel's Inference Engine support you can use Intel's pre-trained models.

There are different preprocessing parameters such mean subtraction or scale factors for different models. You may check the most popular models and their parameters at models.yml configuration file. It might be also used for aliasing samples parameters. In example,

python object_detection.py opencv_fd --model /path/to/caffemodel --config /path/to/prototxt

Check -h option to know which values are used by default:

python object_detection.py opencv_fd -h

Face detection

An origin model with single precision floating point weights has been quantized using TensorFlow framework. To achieve the best accuracy run the model on BGR images resized to 300x300 applying mean subtraction of values (104, 177, 123) for each blue, green and red channels correspondingly.

The following are accuracy metrics obtained using COCO object detection evaluation tool on FDDB dataset (see script) applying resize to 300x300 and keeping an origin images' sizes.

AP - Average Precision                            | FP32/FP16 | UINT8          | FP32/FP16 | UINT8          |
AR - Average Recall                               | 300x300   | 300x300        | any size  | any size       |
--------------------------------------------------|-----------|----------------|-----------|----------------|
AP @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] | 0.408     | 0.408          | 0.378     | 0.328 (-0.050) |
AP @[ IoU=0.50      | area=   all | maxDets=100 ] | 0.849     | 0.849          | 0.797     | 0.790 (-0.007) |
AP @[ IoU=0.75      | area=   all | maxDets=100 ] | 0.251     | 0.251          | 0.208     | 0.140 (-0.068) |
AP @[ IoU=0.50:0.95 | area= small | maxDets=100 ] | 0.050     | 0.051 (+0.001) | 0.107     | 0.070 (-0.037) |
AP @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] | 0.381     | 0.379 (-0.002) | 0.380     | 0.368 (-0.012) |
AP @[ IoU=0.50:0.95 | area= large | maxDets=100 ] | 0.455     | 0.455          | 0.412     | 0.337 (-0.075) |
AR @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] | 0.299     | 0.299          | 0.279     | 0.246 (-0.033) |
AR @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] | 0.482     | 0.482          | 0.476     | 0.436 (-0.040) |
AR @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] | 0.496     | 0.496          | 0.491     | 0.451 (-0.040) |
AR @[ IoU=0.50:0.95 | area= small | maxDets=100 ] | 0.189     | 0.193 (+0.004) | 0.284     | 0.232 (-0.052) |
AR @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] | 0.481     | 0.480 (-0.001) | 0.470     | 0.458 (-0.012) |
AR @[ IoU=0.50:0.95 | area= large | maxDets=100 ] | 0.528     | 0.528          | 0.520     | 0.462 (-0.058) |

References