Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

460 lines
9.4 KiB

/* ssterf.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "clapack.h"
/* Table of constant values */
static integer c__0 = 0;
static integer c__1 = 1;
static real c_b32 = 1.f;
/* Subroutine */ int ssterf_(integer *n, real *d__, real *e, integer *info)
{
/* System generated locals */
integer i__1;
real r__1, r__2, r__3;
/* Builtin functions */
double sqrt(doublereal), r_sign(real *, real *);
/* Local variables */
real c__;
integer i__, l, m;
real p, r__, s;
integer l1;
real bb, rt1, rt2, eps, rte;
integer lsv;
real eps2, oldc;
integer lend, jtot;
extern /* Subroutine */ int slae2_(real *, real *, real *, real *, real *)
;
real gamma, alpha, sigma, anorm;
extern doublereal slapy2_(real *, real *);
integer iscale;
real oldgam;
extern doublereal slamch_(char *);
real safmin;
extern /* Subroutine */ int xerbla_(char *, integer *);
real safmax;
extern /* Subroutine */ int slascl_(char *, integer *, integer *, real *,
real *, integer *, integer *, real *, integer *, integer *);
integer lendsv;
real ssfmin;
integer nmaxit;
real ssfmax;
extern doublereal slanst_(char *, integer *, real *, real *);
extern /* Subroutine */ int slasrt_(char *, integer *, real *, integer *);
/* -- LAPACK routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* SSTERF computes all eigenvalues of a symmetric tridiagonal matrix */
/* using the Pal-Walker-Kahan variant of the QL or QR algorithm. */
/* Arguments */
/* ========= */
/* N (input) INTEGER */
/* The order of the matrix. N >= 0. */
/* D (input/output) REAL array, dimension (N) */
/* On entry, the n diagonal elements of the tridiagonal matrix. */
/* On exit, if INFO = 0, the eigenvalues in ascending order. */
/* E (input/output) REAL array, dimension (N-1) */
/* On entry, the (n-1) subdiagonal elements of the tridiagonal */
/* matrix. */
/* On exit, E has been destroyed. */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -i, the i-th argument had an illegal value */
/* > 0: the algorithm failed to find all of the eigenvalues in */
/* a total of 30*N iterations; if INFO = i, then i */
/* elements of E have not converged to zero. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input parameters. */
/* Parameter adjustments */
--e;
--d__;
/* Function Body */
*info = 0;
/* Quick return if possible */
if (*n < 0) {
*info = -1;
i__1 = -(*info);
xerbla_("SSTERF", &i__1);
return 0;
}
if (*n <= 1) {
return 0;
}
/* Determine the unit roundoff for this environment. */
eps = slamch_("E");
/* Computing 2nd power */
r__1 = eps;
eps2 = r__1 * r__1;
safmin = slamch_("S");
safmax = 1.f / safmin;
ssfmax = sqrt(safmax) / 3.f;
ssfmin = sqrt(safmin) / eps2;
/* Compute the eigenvalues of the tridiagonal matrix. */
nmaxit = *n * 30;
sigma = 0.f;
jtot = 0;
/* Determine where the matrix splits and choose QL or QR iteration */
/* for each block, according to whether top or bottom diagonal */
/* element is smaller. */
l1 = 1;
L10:
if (l1 > *n) {
goto L170;
}
if (l1 > 1) {
e[l1 - 1] = 0.f;
}
i__1 = *n - 1;
for (m = l1; m <= i__1; ++m) {
if ((r__3 = e[m], dabs(r__3)) <= sqrt((r__1 = d__[m], dabs(r__1))) *
sqrt((r__2 = d__[m + 1], dabs(r__2))) * eps) {
e[m] = 0.f;
goto L30;
}
/* L20: */
}
m = *n;
L30:
l = l1;
lsv = l;
lend = m;
lendsv = lend;
l1 = m + 1;
if (lend == l) {
goto L10;
}
/* Scale submatrix in rows and columns L to LEND */
i__1 = lend - l + 1;
anorm = slanst_("I", &i__1, &d__[l], &e[l]);
iscale = 0;
if (anorm > ssfmax) {
iscale = 1;
i__1 = lend - l + 1;
slascl_("G", &c__0, &c__0, &anorm, &ssfmax, &i__1, &c__1, &d__[l], n,
info);
i__1 = lend - l;
slascl_("G", &c__0, &c__0, &anorm, &ssfmax, &i__1, &c__1, &e[l], n,
info);
} else if (anorm < ssfmin) {
iscale = 2;
i__1 = lend - l + 1;
slascl_("G", &c__0, &c__0, &anorm, &ssfmin, &i__1, &c__1, &d__[l], n,
info);
i__1 = lend - l;
slascl_("G", &c__0, &c__0, &anorm, &ssfmin, &i__1, &c__1, &e[l], n,
info);
}
i__1 = lend - 1;
for (i__ = l; i__ <= i__1; ++i__) {
/* Computing 2nd power */
r__1 = e[i__];
e[i__] = r__1 * r__1;
/* L40: */
}
/* Choose between QL and QR iteration */
if ((r__1 = d__[lend], dabs(r__1)) < (r__2 = d__[l], dabs(r__2))) {
lend = lsv;
l = lendsv;
}
if (lend >= l) {
/* QL Iteration */
/* Look for small subdiagonal element. */
L50:
if (l != lend) {
i__1 = lend - 1;
for (m = l; m <= i__1; ++m) {
if ((r__2 = e[m], dabs(r__2)) <= eps2 * (r__1 = d__[m] * d__[
m + 1], dabs(r__1))) {
goto L70;
}
/* L60: */
}
}
m = lend;
L70:
if (m < lend) {
e[m] = 0.f;
}
p = d__[l];
if (m == l) {
goto L90;
}
/* If remaining matrix is 2 by 2, use SLAE2 to compute its */
/* eigenvalues. */
if (m == l + 1) {
rte = sqrt(e[l]);
slae2_(&d__[l], &rte, &d__[l + 1], &rt1, &rt2);
d__[l] = rt1;
d__[l + 1] = rt2;
e[l] = 0.f;
l += 2;
if (l <= lend) {
goto L50;
}
goto L150;
}
if (jtot == nmaxit) {
goto L150;
}
++jtot;
/* Form shift. */
rte = sqrt(e[l]);
sigma = (d__[l + 1] - p) / (rte * 2.f);
r__ = slapy2_(&sigma, &c_b32);
sigma = p - rte / (sigma + r_sign(&r__, &sigma));
c__ = 1.f;
s = 0.f;
gamma = d__[m] - sigma;
p = gamma * gamma;
/* Inner loop */
i__1 = l;
for (i__ = m - 1; i__ >= i__1; --i__) {
bb = e[i__];
r__ = p + bb;
if (i__ != m - 1) {
e[i__ + 1] = s * r__;
}
oldc = c__;
c__ = p / r__;
s = bb / r__;
oldgam = gamma;
alpha = d__[i__];
gamma = c__ * (alpha - sigma) - s * oldgam;
d__[i__ + 1] = oldgam + (alpha - gamma);
if (c__ != 0.f) {
p = gamma * gamma / c__;
} else {
p = oldc * bb;
}
/* L80: */
}
e[l] = s * p;
d__[l] = sigma + gamma;
goto L50;
/* Eigenvalue found. */
L90:
d__[l] = p;
++l;
if (l <= lend) {
goto L50;
}
goto L150;
} else {
/* QR Iteration */
/* Look for small superdiagonal element. */
L100:
i__1 = lend + 1;
for (m = l; m >= i__1; --m) {
if ((r__2 = e[m - 1], dabs(r__2)) <= eps2 * (r__1 = d__[m] * d__[
m - 1], dabs(r__1))) {
goto L120;
}
/* L110: */
}
m = lend;
L120:
if (m > lend) {
e[m - 1] = 0.f;
}
p = d__[l];
if (m == l) {
goto L140;
}
/* If remaining matrix is 2 by 2, use SLAE2 to compute its */
/* eigenvalues. */
if (m == l - 1) {
rte = sqrt(e[l - 1]);
slae2_(&d__[l], &rte, &d__[l - 1], &rt1, &rt2);
d__[l] = rt1;
d__[l - 1] = rt2;
e[l - 1] = 0.f;
l += -2;
if (l >= lend) {
goto L100;
}
goto L150;
}
if (jtot == nmaxit) {
goto L150;
}
++jtot;
/* Form shift. */
rte = sqrt(e[l - 1]);
sigma = (d__[l - 1] - p) / (rte * 2.f);
r__ = slapy2_(&sigma, &c_b32);
sigma = p - rte / (sigma + r_sign(&r__, &sigma));
c__ = 1.f;
s = 0.f;
gamma = d__[m] - sigma;
p = gamma * gamma;
/* Inner loop */
i__1 = l - 1;
for (i__ = m; i__ <= i__1; ++i__) {
bb = e[i__];
r__ = p + bb;
if (i__ != m) {
e[i__ - 1] = s * r__;
}
oldc = c__;
c__ = p / r__;
s = bb / r__;
oldgam = gamma;
alpha = d__[i__ + 1];
gamma = c__ * (alpha - sigma) - s * oldgam;
d__[i__] = oldgam + (alpha - gamma);
if (c__ != 0.f) {
p = gamma * gamma / c__;
} else {
p = oldc * bb;
}
/* L130: */
}
e[l - 1] = s * p;
d__[l] = sigma + gamma;
goto L100;
/* Eigenvalue found. */
L140:
d__[l] = p;
--l;
if (l >= lend) {
goto L100;
}
goto L150;
}
/* Undo scaling if necessary */
L150:
if (iscale == 1) {
i__1 = lendsv - lsv + 1;
slascl_("G", &c__0, &c__0, &ssfmax, &anorm, &i__1, &c__1, &d__[lsv],
n, info);
}
if (iscale == 2) {
i__1 = lendsv - lsv + 1;
slascl_("G", &c__0, &c__0, &ssfmin, &anorm, &i__1, &c__1, &d__[lsv],
n, info);
}
/* Check for no convergence to an eigenvalue after a total */
/* of N*MAXIT iterations. */
if (jtot < nmaxit) {
goto L10;
}
i__1 = *n - 1;
for (i__ = 1; i__ <= i__1; ++i__) {
if (e[i__] != 0.f) {
++(*info);
}
/* L160: */
}
goto L180;
/* Sort eigenvalues in increasing order. */
L170:
slasrt_("I", n, &d__[1], info);
L180:
return 0;
/* End of SSTERF */
} /* ssterf_ */