mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
323 lines
9.9 KiB
323 lines
9.9 KiB
/* slasd8.f -- translated by f2c (version 20061008). |
|
You must link the resulting object file with libf2c: |
|
on Microsoft Windows system, link with libf2c.lib; |
|
on Linux or Unix systems, link with .../path/to/libf2c.a -lm |
|
or, if you install libf2c.a in a standard place, with -lf2c -lm |
|
-- in that order, at the end of the command line, as in |
|
cc *.o -lf2c -lm |
|
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., |
|
|
|
http://www.netlib.org/f2c/libf2c.zip |
|
*/ |
|
|
|
#include "clapack.h" |
|
|
|
|
|
/* Table of constant values */ |
|
|
|
static integer c__1 = 1; |
|
static integer c__0 = 0; |
|
static real c_b8 = 1.f; |
|
|
|
/* Subroutine */ int slasd8_(integer *icompq, integer *k, real *d__, real * |
|
z__, real *vf, real *vl, real *difl, real *difr, integer *lddifr, |
|
real *dsigma, real *work, integer *info) |
|
{ |
|
/* System generated locals */ |
|
integer difr_dim1, difr_offset, i__1, i__2; |
|
real r__1, r__2; |
|
|
|
/* Builtin functions */ |
|
double sqrt(doublereal), r_sign(real *, real *); |
|
|
|
/* Local variables */ |
|
integer i__, j; |
|
real dj, rho; |
|
integer iwk1, iwk2, iwk3; |
|
real temp; |
|
extern doublereal sdot_(integer *, real *, integer *, real *, integer *); |
|
integer iwk2i, iwk3i; |
|
extern doublereal snrm2_(integer *, real *, integer *); |
|
real diflj, difrj, dsigj; |
|
extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, |
|
integer *); |
|
extern doublereal slamc3_(real *, real *); |
|
extern /* Subroutine */ int slasd4_(integer *, integer *, real *, real *, |
|
real *, real *, real *, real *, integer *), xerbla_(char *, |
|
integer *); |
|
real dsigjp; |
|
extern /* Subroutine */ int slascl_(char *, integer *, integer *, real *, |
|
real *, integer *, integer *, real *, integer *, integer *), slaset_(char *, integer *, integer *, real *, real *, |
|
real *, integer *); |
|
|
|
|
|
/* -- LAPACK auxiliary routine (version 3.2) -- */ |
|
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ |
|
/* October 2006 */ |
|
|
|
/* .. Scalar Arguments .. */ |
|
/* .. */ |
|
/* .. Array Arguments .. */ |
|
/* .. */ |
|
|
|
/* Purpose */ |
|
/* ======= */ |
|
|
|
/* SLASD8 finds the square roots of the roots of the secular equation, */ |
|
/* as defined by the values in DSIGMA and Z. It makes the appropriate */ |
|
/* calls to SLASD4, and stores, for each element in D, the distance */ |
|
/* to its two nearest poles (elements in DSIGMA). It also updates */ |
|
/* the arrays VF and VL, the first and last components of all the */ |
|
/* right singular vectors of the original bidiagonal matrix. */ |
|
|
|
/* SLASD8 is called from SLASD6. */ |
|
|
|
/* Arguments */ |
|
/* ========= */ |
|
|
|
/* ICOMPQ (input) INTEGER */ |
|
/* Specifies whether singular vectors are to be computed in */ |
|
/* factored form in the calling routine: */ |
|
/* = 0: Compute singular values only. */ |
|
/* = 1: Compute singular vectors in factored form as well. */ |
|
|
|
/* K (input) INTEGER */ |
|
/* The number of terms in the rational function to be solved */ |
|
/* by SLASD4. K >= 1. */ |
|
|
|
/* D (output) REAL array, dimension ( K ) */ |
|
/* On output, D contains the updated singular values. */ |
|
|
|
/* Z (input/output) REAL array, dimension ( K ) */ |
|
/* On entry, the first K elements of this array contain the */ |
|
/* components of the deflation-adjusted updating row vector. */ |
|
/* On exit, Z is updated. */ |
|
|
|
/* VF (input/output) REAL array, dimension ( K ) */ |
|
/* On entry, VF contains information passed through DBEDE8. */ |
|
/* On exit, VF contains the first K components of the first */ |
|
/* components of all right singular vectors of the bidiagonal */ |
|
/* matrix. */ |
|
|
|
/* VL (input/output) REAL array, dimension ( K ) */ |
|
/* On entry, VL contains information passed through DBEDE8. */ |
|
/* On exit, VL contains the first K components of the last */ |
|
/* components of all right singular vectors of the bidiagonal */ |
|
/* matrix. */ |
|
|
|
/* DIFL (output) REAL array, dimension ( K ) */ |
|
/* On exit, DIFL(I) = D(I) - DSIGMA(I). */ |
|
|
|
/* DIFR (output) REAL array, */ |
|
/* dimension ( LDDIFR, 2 ) if ICOMPQ = 1 and */ |
|
/* dimension ( K ) if ICOMPQ = 0. */ |
|
/* On exit, DIFR(I,1) = D(I) - DSIGMA(I+1), DIFR(K,1) is not */ |
|
/* defined and will not be referenced. */ |
|
|
|
/* If ICOMPQ = 1, DIFR(1:K,2) is an array containing the */ |
|
/* normalizing factors for the right singular vector matrix. */ |
|
|
|
/* LDDIFR (input) INTEGER */ |
|
/* The leading dimension of DIFR, must be at least K. */ |
|
|
|
/* DSIGMA (input/output) REAL array, dimension ( K ) */ |
|
/* On entry, the first K elements of this array contain the old */ |
|
/* roots of the deflated updating problem. These are the poles */ |
|
/* of the secular equation. */ |
|
/* On exit, the elements of DSIGMA may be very slightly altered */ |
|
/* in value. */ |
|
|
|
/* WORK (workspace) REAL array, dimension at least 3 * K */ |
|
|
|
/* INFO (output) INTEGER */ |
|
/* = 0: successful exit. */ |
|
/* < 0: if INFO = -i, the i-th argument had an illegal value. */ |
|
/* > 0: if INFO = 1, an singular value did not converge */ |
|
|
|
/* Further Details */ |
|
/* =============== */ |
|
|
|
/* Based on contributions by */ |
|
/* Ming Gu and Huan Ren, Computer Science Division, University of */ |
|
/* California at Berkeley, USA */ |
|
|
|
/* ===================================================================== */ |
|
|
|
/* .. Parameters .. */ |
|
/* .. */ |
|
/* .. Local Scalars .. */ |
|
/* .. */ |
|
/* .. External Subroutines .. */ |
|
/* .. */ |
|
/* .. External Functions .. */ |
|
/* .. */ |
|
/* .. Intrinsic Functions .. */ |
|
/* .. */ |
|
/* .. Executable Statements .. */ |
|
|
|
/* Test the input parameters. */ |
|
|
|
/* Parameter adjustments */ |
|
--d__; |
|
--z__; |
|
--vf; |
|
--vl; |
|
--difl; |
|
difr_dim1 = *lddifr; |
|
difr_offset = 1 + difr_dim1; |
|
difr -= difr_offset; |
|
--dsigma; |
|
--work; |
|
|
|
/* Function Body */ |
|
*info = 0; |
|
|
|
if (*icompq < 0 || *icompq > 1) { |
|
*info = -1; |
|
} else if (*k < 1) { |
|
*info = -2; |
|
} else if (*lddifr < *k) { |
|
*info = -9; |
|
} |
|
if (*info != 0) { |
|
i__1 = -(*info); |
|
xerbla_("SLASD8", &i__1); |
|
return 0; |
|
} |
|
|
|
/* Quick return if possible */ |
|
|
|
if (*k == 1) { |
|
d__[1] = dabs(z__[1]); |
|
difl[1] = d__[1]; |
|
if (*icompq == 1) { |
|
difl[2] = 1.f; |
|
difr[(difr_dim1 << 1) + 1] = 1.f; |
|
} |
|
return 0; |
|
} |
|
|
|
/* Modify values DSIGMA(i) to make sure all DSIGMA(i)-DSIGMA(j) can */ |
|
/* be computed with high relative accuracy (barring over/underflow). */ |
|
/* This is a problem on machines without a guard digit in */ |
|
/* add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2). */ |
|
/* The following code replaces DSIGMA(I) by 2*DSIGMA(I)-DSIGMA(I), */ |
|
/* which on any of these machines zeros out the bottommost */ |
|
/* bit of DSIGMA(I) if it is 1; this makes the subsequent */ |
|
/* subtractions DSIGMA(I)-DSIGMA(J) unproblematic when cancellation */ |
|
/* occurs. On binary machines with a guard digit (almost all */ |
|
/* machines) it does not change DSIGMA(I) at all. On hexadecimal */ |
|
/* and decimal machines with a guard digit, it slightly */ |
|
/* changes the bottommost bits of DSIGMA(I). It does not account */ |
|
/* for hexadecimal or decimal machines without guard digits */ |
|
/* (we know of none). We use a subroutine call to compute */ |
|
/* 2*DLAMBDA(I) to prevent optimizing compilers from eliminating */ |
|
/* this code. */ |
|
|
|
i__1 = *k; |
|
for (i__ = 1; i__ <= i__1; ++i__) { |
|
dsigma[i__] = slamc3_(&dsigma[i__], &dsigma[i__]) - dsigma[i__]; |
|
/* L10: */ |
|
} |
|
|
|
/* Book keeping. */ |
|
|
|
iwk1 = 1; |
|
iwk2 = iwk1 + *k; |
|
iwk3 = iwk2 + *k; |
|
iwk2i = iwk2 - 1; |
|
iwk3i = iwk3 - 1; |
|
|
|
/* Normalize Z. */ |
|
|
|
rho = snrm2_(k, &z__[1], &c__1); |
|
slascl_("G", &c__0, &c__0, &rho, &c_b8, k, &c__1, &z__[1], k, info); |
|
rho *= rho; |
|
|
|
/* Initialize WORK(IWK3). */ |
|
|
|
slaset_("A", k, &c__1, &c_b8, &c_b8, &work[iwk3], k); |
|
|
|
/* Compute the updated singular values, the arrays DIFL, DIFR, */ |
|
/* and the updated Z. */ |
|
|
|
i__1 = *k; |
|
for (j = 1; j <= i__1; ++j) { |
|
slasd4_(k, &j, &dsigma[1], &z__[1], &work[iwk1], &rho, &d__[j], &work[ |
|
iwk2], info); |
|
|
|
/* If the root finder fails, the computation is terminated. */ |
|
|
|
if (*info != 0) { |
|
return 0; |
|
} |
|
work[iwk3i + j] = work[iwk3i + j] * work[j] * work[iwk2i + j]; |
|
difl[j] = -work[j]; |
|
difr[j + difr_dim1] = -work[j + 1]; |
|
i__2 = j - 1; |
|
for (i__ = 1; i__ <= i__2; ++i__) { |
|
work[iwk3i + i__] = work[iwk3i + i__] * work[i__] * work[iwk2i + |
|
i__] / (dsigma[i__] - dsigma[j]) / (dsigma[i__] + dsigma[ |
|
j]); |
|
/* L20: */ |
|
} |
|
i__2 = *k; |
|
for (i__ = j + 1; i__ <= i__2; ++i__) { |
|
work[iwk3i + i__] = work[iwk3i + i__] * work[i__] * work[iwk2i + |
|
i__] / (dsigma[i__] - dsigma[j]) / (dsigma[i__] + dsigma[ |
|
j]); |
|
/* L30: */ |
|
} |
|
/* L40: */ |
|
} |
|
|
|
/* Compute updated Z. */ |
|
|
|
i__1 = *k; |
|
for (i__ = 1; i__ <= i__1; ++i__) { |
|
r__2 = sqrt((r__1 = work[iwk3i + i__], dabs(r__1))); |
|
z__[i__] = r_sign(&r__2, &z__[i__]); |
|
/* L50: */ |
|
} |
|
|
|
/* Update VF and VL. */ |
|
|
|
i__1 = *k; |
|
for (j = 1; j <= i__1; ++j) { |
|
diflj = difl[j]; |
|
dj = d__[j]; |
|
dsigj = -dsigma[j]; |
|
if (j < *k) { |
|
difrj = -difr[j + difr_dim1]; |
|
dsigjp = -dsigma[j + 1]; |
|
} |
|
work[j] = -z__[j] / diflj / (dsigma[j] + dj); |
|
i__2 = j - 1; |
|
for (i__ = 1; i__ <= i__2; ++i__) { |
|
work[i__] = z__[i__] / (slamc3_(&dsigma[i__], &dsigj) - diflj) / ( |
|
dsigma[i__] + dj); |
|
/* L60: */ |
|
} |
|
i__2 = *k; |
|
for (i__ = j + 1; i__ <= i__2; ++i__) { |
|
work[i__] = z__[i__] / (slamc3_(&dsigma[i__], &dsigjp) + difrj) / |
|
(dsigma[i__] + dj); |
|
/* L70: */ |
|
} |
|
temp = snrm2_(k, &work[1], &c__1); |
|
work[iwk2i + j] = sdot_(k, &work[1], &c__1, &vf[1], &c__1) / temp; |
|
work[iwk3i + j] = sdot_(k, &work[1], &c__1, &vl[1], &c__1) / temp; |
|
if (*icompq == 1) { |
|
difr[j + (difr_dim1 << 1)] = temp; |
|
} |
|
/* L80: */ |
|
} |
|
|
|
scopy_(k, &work[iwk2], &c__1, &vf[1], &c__1); |
|
scopy_(k, &work[iwk3], &c__1, &vl[1], &c__1); |
|
|
|
return 0; |
|
|
|
/* End of SLASD8 */ |
|
|
|
} /* slasd8_ */
|
|
|