mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
607 lines
18 KiB
607 lines
18 KiB
/* slasd2.f -- translated by f2c (version 20061008). |
|
You must link the resulting object file with libf2c: |
|
on Microsoft Windows system, link with libf2c.lib; |
|
on Linux or Unix systems, link with .../path/to/libf2c.a -lm |
|
or, if you install libf2c.a in a standard place, with -lf2c -lm |
|
-- in that order, at the end of the command line, as in |
|
cc *.o -lf2c -lm |
|
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., |
|
|
|
http://www.netlib.org/f2c/libf2c.zip |
|
*/ |
|
|
|
#include "clapack.h" |
|
|
|
|
|
/* Table of constant values */ |
|
|
|
static integer c__1 = 1; |
|
static real c_b30 = 0.f; |
|
|
|
/* Subroutine */ int slasd2_(integer *nl, integer *nr, integer *sqre, integer |
|
*k, real *d__, real *z__, real *alpha, real *beta, real *u, integer * |
|
ldu, real *vt, integer *ldvt, real *dsigma, real *u2, integer *ldu2, |
|
real *vt2, integer *ldvt2, integer *idxp, integer *idx, integer *idxc, |
|
integer *idxq, integer *coltyp, integer *info) |
|
{ |
|
/* System generated locals */ |
|
integer u_dim1, u_offset, u2_dim1, u2_offset, vt_dim1, vt_offset, |
|
vt2_dim1, vt2_offset, i__1; |
|
real r__1, r__2; |
|
|
|
/* Local variables */ |
|
real c__; |
|
integer i__, j, m, n; |
|
real s; |
|
integer k2; |
|
real z1; |
|
integer ct, jp; |
|
real eps, tau, tol; |
|
integer psm[4], nlp1, nlp2, idxi, idxj, ctot[4]; |
|
extern /* Subroutine */ int srot_(integer *, real *, integer *, real *, |
|
integer *, real *, real *); |
|
integer idxjp, jprev; |
|
extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, |
|
integer *); |
|
extern doublereal slapy2_(real *, real *), slamch_(char *); |
|
extern /* Subroutine */ int xerbla_(char *, integer *), slamrg_( |
|
integer *, integer *, real *, integer *, integer *, integer *); |
|
real hlftol; |
|
extern /* Subroutine */ int slacpy_(char *, integer *, integer *, real *, |
|
integer *, real *, integer *), slaset_(char *, integer *, |
|
integer *, real *, real *, real *, integer *); |
|
|
|
|
|
/* -- LAPACK auxiliary routine (version 3.2) -- */ |
|
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ |
|
/* November 2006 */ |
|
|
|
/* .. Scalar Arguments .. */ |
|
/* .. */ |
|
/* .. Array Arguments .. */ |
|
/* .. */ |
|
|
|
/* Purpose */ |
|
/* ======= */ |
|
|
|
/* SLASD2 merges the two sets of singular values together into a single */ |
|
/* sorted set. Then it tries to deflate the size of the problem. */ |
|
/* There are two ways in which deflation can occur: when two or more */ |
|
/* singular values are close together or if there is a tiny entry in the */ |
|
/* Z vector. For each such occurrence the order of the related secular */ |
|
/* equation problem is reduced by one. */ |
|
|
|
/* SLASD2 is called from SLASD1. */ |
|
|
|
/* Arguments */ |
|
/* ========= */ |
|
|
|
/* NL (input) INTEGER */ |
|
/* The row dimension of the upper block. NL >= 1. */ |
|
|
|
/* NR (input) INTEGER */ |
|
/* The row dimension of the lower block. NR >= 1. */ |
|
|
|
/* SQRE (input) INTEGER */ |
|
/* = 0: the lower block is an NR-by-NR square matrix. */ |
|
/* = 1: the lower block is an NR-by-(NR+1) rectangular matrix. */ |
|
|
|
/* The bidiagonal matrix has N = NL + NR + 1 rows and */ |
|
/* M = N + SQRE >= N columns. */ |
|
|
|
/* K (output) INTEGER */ |
|
/* Contains the dimension of the non-deflated matrix, */ |
|
/* This is the order of the related secular equation. 1 <= K <=N. */ |
|
|
|
/* D (input/output) REAL array, dimension (N) */ |
|
/* On entry D contains the singular values of the two submatrices */ |
|
/* to be combined. On exit D contains the trailing (N-K) updated */ |
|
/* singular values (those which were deflated) sorted into */ |
|
/* increasing order. */ |
|
|
|
/* Z (output) REAL array, dimension (N) */ |
|
/* On exit Z contains the updating row vector in the secular */ |
|
/* equation. */ |
|
|
|
/* ALPHA (input) REAL */ |
|
/* Contains the diagonal element associated with the added row. */ |
|
|
|
/* BETA (input) REAL */ |
|
/* Contains the off-diagonal element associated with the added */ |
|
/* row. */ |
|
|
|
/* U (input/output) REAL array, dimension (LDU,N) */ |
|
/* On entry U contains the left singular vectors of two */ |
|
/* submatrices in the two square blocks with corners at (1,1), */ |
|
/* (NL, NL), and (NL+2, NL+2), (N,N). */ |
|
/* On exit U contains the trailing (N-K) updated left singular */ |
|
/* vectors (those which were deflated) in its last N-K columns. */ |
|
|
|
/* LDU (input) INTEGER */ |
|
/* The leading dimension of the array U. LDU >= N. */ |
|
|
|
/* VT (input/output) REAL array, dimension (LDVT,M) */ |
|
/* On entry VT' contains the right singular vectors of two */ |
|
/* submatrices in the two square blocks with corners at (1,1), */ |
|
/* (NL+1, NL+1), and (NL+2, NL+2), (M,M). */ |
|
/* On exit VT' contains the trailing (N-K) updated right singular */ |
|
/* vectors (those which were deflated) in its last N-K columns. */ |
|
/* In case SQRE =1, the last row of VT spans the right null */ |
|
/* space. */ |
|
|
|
/* LDVT (input) INTEGER */ |
|
/* The leading dimension of the array VT. LDVT >= M. */ |
|
|
|
/* DSIGMA (output) REAL array, dimension (N) */ |
|
/* Contains a copy of the diagonal elements (K-1 singular values */ |
|
/* and one zero) in the secular equation. */ |
|
|
|
/* U2 (output) REAL array, dimension (LDU2,N) */ |
|
/* Contains a copy of the first K-1 left singular vectors which */ |
|
/* will be used by SLASD3 in a matrix multiply (SGEMM) to solve */ |
|
/* for the new left singular vectors. U2 is arranged into four */ |
|
/* blocks. The first block contains a column with 1 at NL+1 and */ |
|
/* zero everywhere else; the second block contains non-zero */ |
|
/* entries only at and above NL; the third contains non-zero */ |
|
/* entries only below NL+1; and the fourth is dense. */ |
|
|
|
/* LDU2 (input) INTEGER */ |
|
/* The leading dimension of the array U2. LDU2 >= N. */ |
|
|
|
/* VT2 (output) REAL array, dimension (LDVT2,N) */ |
|
/* VT2' contains a copy of the first K right singular vectors */ |
|
/* which will be used by SLASD3 in a matrix multiply (SGEMM) to */ |
|
/* solve for the new right singular vectors. VT2 is arranged into */ |
|
/* three blocks. The first block contains a row that corresponds */ |
|
/* to the special 0 diagonal element in SIGMA; the second block */ |
|
/* contains non-zeros only at and before NL +1; the third block */ |
|
/* contains non-zeros only at and after NL +2. */ |
|
|
|
/* LDVT2 (input) INTEGER */ |
|
/* The leading dimension of the array VT2. LDVT2 >= M. */ |
|
|
|
/* IDXP (workspace) INTEGER array, dimension (N) */ |
|
/* This will contain the permutation used to place deflated */ |
|
/* values of D at the end of the array. On output IDXP(2:K) */ |
|
/* points to the nondeflated D-values and IDXP(K+1:N) */ |
|
/* points to the deflated singular values. */ |
|
|
|
/* IDX (workspace) INTEGER array, dimension (N) */ |
|
/* This will contain the permutation used to sort the contents of */ |
|
/* D into ascending order. */ |
|
|
|
/* IDXC (output) INTEGER array, dimension (N) */ |
|
/* This will contain the permutation used to arrange the columns */ |
|
/* of the deflated U matrix into three groups: the first group */ |
|
/* contains non-zero entries only at and above NL, the second */ |
|
/* contains non-zero entries only below NL+2, and the third is */ |
|
/* dense. */ |
|
|
|
/* IDXQ (input/output) INTEGER array, dimension (N) */ |
|
/* This contains the permutation which separately sorts the two */ |
|
/* sub-problems in D into ascending order. Note that entries in */ |
|
/* the first hlaf of this permutation must first be moved one */ |
|
/* position backward; and entries in the second half */ |
|
/* must first have NL+1 added to their values. */ |
|
|
|
/* COLTYP (workspace/output) INTEGER array, dimension (N) */ |
|
/* As workspace, this will contain a label which will indicate */ |
|
/* which of the following types a column in the U2 matrix or a */ |
|
/* row in the VT2 matrix is: */ |
|
/* 1 : non-zero in the upper half only */ |
|
/* 2 : non-zero in the lower half only */ |
|
/* 3 : dense */ |
|
/* 4 : deflated */ |
|
|
|
/* On exit, it is an array of dimension 4, with COLTYP(I) being */ |
|
/* the dimension of the I-th type columns. */ |
|
|
|
/* INFO (output) INTEGER */ |
|
/* = 0: successful exit. */ |
|
/* < 0: if INFO = -i, the i-th argument had an illegal value. */ |
|
|
|
/* Further Details */ |
|
/* =============== */ |
|
|
|
/* Based on contributions by */ |
|
/* Ming Gu and Huan Ren, Computer Science Division, University of */ |
|
/* California at Berkeley, USA */ |
|
|
|
/* ===================================================================== */ |
|
|
|
/* .. Parameters .. */ |
|
/* .. */ |
|
/* .. Local Arrays .. */ |
|
/* .. */ |
|
/* .. Local Scalars .. */ |
|
/* .. */ |
|
/* .. External Functions .. */ |
|
/* .. */ |
|
/* .. External Subroutines .. */ |
|
/* .. */ |
|
/* .. Intrinsic Functions .. */ |
|
/* .. */ |
|
/* .. Executable Statements .. */ |
|
|
|
/* Test the input parameters. */ |
|
|
|
/* Parameter adjustments */ |
|
--d__; |
|
--z__; |
|
u_dim1 = *ldu; |
|
u_offset = 1 + u_dim1; |
|
u -= u_offset; |
|
vt_dim1 = *ldvt; |
|
vt_offset = 1 + vt_dim1; |
|
vt -= vt_offset; |
|
--dsigma; |
|
u2_dim1 = *ldu2; |
|
u2_offset = 1 + u2_dim1; |
|
u2 -= u2_offset; |
|
vt2_dim1 = *ldvt2; |
|
vt2_offset = 1 + vt2_dim1; |
|
vt2 -= vt2_offset; |
|
--idxp; |
|
--idx; |
|
--idxc; |
|
--idxq; |
|
--coltyp; |
|
|
|
/* Function Body */ |
|
*info = 0; |
|
|
|
if (*nl < 1) { |
|
*info = -1; |
|
} else if (*nr < 1) { |
|
*info = -2; |
|
} else if (*sqre != 1 && *sqre != 0) { |
|
*info = -3; |
|
} |
|
|
|
n = *nl + *nr + 1; |
|
m = n + *sqre; |
|
|
|
if (*ldu < n) { |
|
*info = -10; |
|
} else if (*ldvt < m) { |
|
*info = -12; |
|
} else if (*ldu2 < n) { |
|
*info = -15; |
|
} else if (*ldvt2 < m) { |
|
*info = -17; |
|
} |
|
if (*info != 0) { |
|
i__1 = -(*info); |
|
xerbla_("SLASD2", &i__1); |
|
return 0; |
|
} |
|
|
|
nlp1 = *nl + 1; |
|
nlp2 = *nl + 2; |
|
|
|
/* Generate the first part of the vector Z; and move the singular */ |
|
/* values in the first part of D one position backward. */ |
|
|
|
z1 = *alpha * vt[nlp1 + nlp1 * vt_dim1]; |
|
z__[1] = z1; |
|
for (i__ = *nl; i__ >= 1; --i__) { |
|
z__[i__ + 1] = *alpha * vt[i__ + nlp1 * vt_dim1]; |
|
d__[i__ + 1] = d__[i__]; |
|
idxq[i__ + 1] = idxq[i__] + 1; |
|
/* L10: */ |
|
} |
|
|
|
/* Generate the second part of the vector Z. */ |
|
|
|
i__1 = m; |
|
for (i__ = nlp2; i__ <= i__1; ++i__) { |
|
z__[i__] = *beta * vt[i__ + nlp2 * vt_dim1]; |
|
/* L20: */ |
|
} |
|
|
|
/* Initialize some reference arrays. */ |
|
|
|
i__1 = nlp1; |
|
for (i__ = 2; i__ <= i__1; ++i__) { |
|
coltyp[i__] = 1; |
|
/* L30: */ |
|
} |
|
i__1 = n; |
|
for (i__ = nlp2; i__ <= i__1; ++i__) { |
|
coltyp[i__] = 2; |
|
/* L40: */ |
|
} |
|
|
|
/* Sort the singular values into increasing order */ |
|
|
|
i__1 = n; |
|
for (i__ = nlp2; i__ <= i__1; ++i__) { |
|
idxq[i__] += nlp1; |
|
/* L50: */ |
|
} |
|
|
|
/* DSIGMA, IDXC, IDXC, and the first column of U2 */ |
|
/* are used as storage space. */ |
|
|
|
i__1 = n; |
|
for (i__ = 2; i__ <= i__1; ++i__) { |
|
dsigma[i__] = d__[idxq[i__]]; |
|
u2[i__ + u2_dim1] = z__[idxq[i__]]; |
|
idxc[i__] = coltyp[idxq[i__]]; |
|
/* L60: */ |
|
} |
|
|
|
slamrg_(nl, nr, &dsigma[2], &c__1, &c__1, &idx[2]); |
|
|
|
i__1 = n; |
|
for (i__ = 2; i__ <= i__1; ++i__) { |
|
idxi = idx[i__] + 1; |
|
d__[i__] = dsigma[idxi]; |
|
z__[i__] = u2[idxi + u2_dim1]; |
|
coltyp[i__] = idxc[idxi]; |
|
/* L70: */ |
|
} |
|
|
|
/* Calculate the allowable deflation tolerance */ |
|
|
|
eps = slamch_("Epsilon"); |
|
/* Computing MAX */ |
|
r__1 = dabs(*alpha), r__2 = dabs(*beta); |
|
tol = dmax(r__1,r__2); |
|
/* Computing MAX */ |
|
r__2 = (r__1 = d__[n], dabs(r__1)); |
|
tol = eps * 8.f * dmax(r__2,tol); |
|
|
|
/* There are 2 kinds of deflation -- first a value in the z-vector */ |
|
/* is small, second two (or more) singular values are very close */ |
|
/* together (their difference is small). */ |
|
|
|
/* If the value in the z-vector is small, we simply permute the */ |
|
/* array so that the corresponding singular value is moved to the */ |
|
/* end. */ |
|
|
|
/* If two values in the D-vector are close, we perform a two-sided */ |
|
/* rotation designed to make one of the corresponding z-vector */ |
|
/* entries zero, and then permute the array so that the deflated */ |
|
/* singular value is moved to the end. */ |
|
|
|
/* If there are multiple singular values then the problem deflates. */ |
|
/* Here the number of equal singular values are found. As each equal */ |
|
/* singular value is found, an elementary reflector is computed to */ |
|
/* rotate the corresponding singular subspace so that the */ |
|
/* corresponding components of Z are zero in this new basis. */ |
|
|
|
*k = 1; |
|
k2 = n + 1; |
|
i__1 = n; |
|
for (j = 2; j <= i__1; ++j) { |
|
if ((r__1 = z__[j], dabs(r__1)) <= tol) { |
|
|
|
/* Deflate due to small z component. */ |
|
|
|
--k2; |
|
idxp[k2] = j; |
|
coltyp[j] = 4; |
|
if (j == n) { |
|
goto L120; |
|
} |
|
} else { |
|
jprev = j; |
|
goto L90; |
|
} |
|
/* L80: */ |
|
} |
|
L90: |
|
j = jprev; |
|
L100: |
|
++j; |
|
if (j > n) { |
|
goto L110; |
|
} |
|
if ((r__1 = z__[j], dabs(r__1)) <= tol) { |
|
|
|
/* Deflate due to small z component. */ |
|
|
|
--k2; |
|
idxp[k2] = j; |
|
coltyp[j] = 4; |
|
} else { |
|
|
|
/* Check if singular values are close enough to allow deflation. */ |
|
|
|
if ((r__1 = d__[j] - d__[jprev], dabs(r__1)) <= tol) { |
|
|
|
/* Deflation is possible. */ |
|
|
|
s = z__[jprev]; |
|
c__ = z__[j]; |
|
|
|
/* Find sqrt(a**2+b**2) without overflow or */ |
|
/* destructive underflow. */ |
|
|
|
tau = slapy2_(&c__, &s); |
|
c__ /= tau; |
|
s = -s / tau; |
|
z__[j] = tau; |
|
z__[jprev] = 0.f; |
|
|
|
/* Apply back the Givens rotation to the left and right */ |
|
/* singular vector matrices. */ |
|
|
|
idxjp = idxq[idx[jprev] + 1]; |
|
idxj = idxq[idx[j] + 1]; |
|
if (idxjp <= nlp1) { |
|
--idxjp; |
|
} |
|
if (idxj <= nlp1) { |
|
--idxj; |
|
} |
|
srot_(&n, &u[idxjp * u_dim1 + 1], &c__1, &u[idxj * u_dim1 + 1], & |
|
c__1, &c__, &s); |
|
srot_(&m, &vt[idxjp + vt_dim1], ldvt, &vt[idxj + vt_dim1], ldvt, & |
|
c__, &s); |
|
if (coltyp[j] != coltyp[jprev]) { |
|
coltyp[j] = 3; |
|
} |
|
coltyp[jprev] = 4; |
|
--k2; |
|
idxp[k2] = jprev; |
|
jprev = j; |
|
} else { |
|
++(*k); |
|
u2[*k + u2_dim1] = z__[jprev]; |
|
dsigma[*k] = d__[jprev]; |
|
idxp[*k] = jprev; |
|
jprev = j; |
|
} |
|
} |
|
goto L100; |
|
L110: |
|
|
|
/* Record the last singular value. */ |
|
|
|
++(*k); |
|
u2[*k + u2_dim1] = z__[jprev]; |
|
dsigma[*k] = d__[jprev]; |
|
idxp[*k] = jprev; |
|
|
|
L120: |
|
|
|
/* Count up the total number of the various types of columns, then */ |
|
/* form a permutation which positions the four column types into */ |
|
/* four groups of uniform structure (although one or more of these */ |
|
/* groups may be empty). */ |
|
|
|
for (j = 1; j <= 4; ++j) { |
|
ctot[j - 1] = 0; |
|
/* L130: */ |
|
} |
|
i__1 = n; |
|
for (j = 2; j <= i__1; ++j) { |
|
ct = coltyp[j]; |
|
++ctot[ct - 1]; |
|
/* L140: */ |
|
} |
|
|
|
/* PSM(*) = Position in SubMatrix (of types 1 through 4) */ |
|
|
|
psm[0] = 2; |
|
psm[1] = ctot[0] + 2; |
|
psm[2] = psm[1] + ctot[1]; |
|
psm[3] = psm[2] + ctot[2]; |
|
|
|
/* Fill out the IDXC array so that the permutation which it induces */ |
|
/* will place all type-1 columns first, all type-2 columns next, */ |
|
/* then all type-3's, and finally all type-4's, starting from the */ |
|
/* second column. This applies similarly to the rows of VT. */ |
|
|
|
i__1 = n; |
|
for (j = 2; j <= i__1; ++j) { |
|
jp = idxp[j]; |
|
ct = coltyp[jp]; |
|
idxc[psm[ct - 1]] = j; |
|
++psm[ct - 1]; |
|
/* L150: */ |
|
} |
|
|
|
/* Sort the singular values and corresponding singular vectors into */ |
|
/* DSIGMA, U2, and VT2 respectively. The singular values/vectors */ |
|
/* which were not deflated go into the first K slots of DSIGMA, U2, */ |
|
/* and VT2 respectively, while those which were deflated go into the */ |
|
/* last N - K slots, except that the first column/row will be treated */ |
|
/* separately. */ |
|
|
|
i__1 = n; |
|
for (j = 2; j <= i__1; ++j) { |
|
jp = idxp[j]; |
|
dsigma[j] = d__[jp]; |
|
idxj = idxq[idx[idxp[idxc[j]]] + 1]; |
|
if (idxj <= nlp1) { |
|
--idxj; |
|
} |
|
scopy_(&n, &u[idxj * u_dim1 + 1], &c__1, &u2[j * u2_dim1 + 1], &c__1); |
|
scopy_(&m, &vt[idxj + vt_dim1], ldvt, &vt2[j + vt2_dim1], ldvt2); |
|
/* L160: */ |
|
} |
|
|
|
/* Determine DSIGMA(1), DSIGMA(2) and Z(1) */ |
|
|
|
dsigma[1] = 0.f; |
|
hlftol = tol / 2.f; |
|
if (dabs(dsigma[2]) <= hlftol) { |
|
dsigma[2] = hlftol; |
|
} |
|
if (m > n) { |
|
z__[1] = slapy2_(&z1, &z__[m]); |
|
if (z__[1] <= tol) { |
|
c__ = 1.f; |
|
s = 0.f; |
|
z__[1] = tol; |
|
} else { |
|
c__ = z1 / z__[1]; |
|
s = z__[m] / z__[1]; |
|
} |
|
} else { |
|
if (dabs(z1) <= tol) { |
|
z__[1] = tol; |
|
} else { |
|
z__[1] = z1; |
|
} |
|
} |
|
|
|
/* Move the rest of the updating row to Z. */ |
|
|
|
i__1 = *k - 1; |
|
scopy_(&i__1, &u2[u2_dim1 + 2], &c__1, &z__[2], &c__1); |
|
|
|
/* Determine the first column of U2, the first row of VT2 and the */ |
|
/* last row of VT. */ |
|
|
|
slaset_("A", &n, &c__1, &c_b30, &c_b30, &u2[u2_offset], ldu2); |
|
u2[nlp1 + u2_dim1] = 1.f; |
|
if (m > n) { |
|
i__1 = nlp1; |
|
for (i__ = 1; i__ <= i__1; ++i__) { |
|
vt[m + i__ * vt_dim1] = -s * vt[nlp1 + i__ * vt_dim1]; |
|
vt2[i__ * vt2_dim1 + 1] = c__ * vt[nlp1 + i__ * vt_dim1]; |
|
/* L170: */ |
|
} |
|
i__1 = m; |
|
for (i__ = nlp2; i__ <= i__1; ++i__) { |
|
vt2[i__ * vt2_dim1 + 1] = s * vt[m + i__ * vt_dim1]; |
|
vt[m + i__ * vt_dim1] = c__ * vt[m + i__ * vt_dim1]; |
|
/* L180: */ |
|
} |
|
} else { |
|
scopy_(&m, &vt[nlp1 + vt_dim1], ldvt, &vt2[vt2_dim1 + 1], ldvt2); |
|
} |
|
if (m > n) { |
|
scopy_(&m, &vt[m + vt_dim1], ldvt, &vt2[m + vt2_dim1], ldvt2); |
|
} |
|
|
|
/* The deflated singular values and their corresponding vectors go */ |
|
/* into the back of D, U, and V respectively. */ |
|
|
|
if (n > *k) { |
|
i__1 = n - *k; |
|
scopy_(&i__1, &dsigma[*k + 1], &c__1, &d__[*k + 1], &c__1); |
|
i__1 = n - *k; |
|
slacpy_("A", &n, &i__1, &u2[(*k + 1) * u2_dim1 + 1], ldu2, &u[(*k + 1) |
|
* u_dim1 + 1], ldu); |
|
i__1 = n - *k; |
|
slacpy_("A", &i__1, &m, &vt2[*k + 1 + vt2_dim1], ldvt2, &vt[*k + 1 + |
|
vt_dim1], ldvt); |
|
} |
|
|
|
/* Copy CTOT into COLTYP for referencing in SLASD3. */ |
|
|
|
for (j = 1; j <= 4; ++j) { |
|
coltyp[j] = ctot[j - 1]; |
|
/* L190: */ |
|
} |
|
|
|
return 0; |
|
|
|
/* End of SLASD2 */ |
|
|
|
} /* slasd2_ */
|
|
|