mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
138 lines
4.3 KiB
138 lines
4.3 KiB
/* dgesv.f -- translated by f2c (version 20061008). |
|
You must link the resulting object file with libf2c: |
|
on Microsoft Windows system, link with libf2c.lib; |
|
on Linux or Unix systems, link with .../path/to/libf2c.a -lm |
|
or, if you install libf2c.a in a standard place, with -lf2c -lm |
|
-- in that order, at the end of the command line, as in |
|
cc *.o -lf2c -lm |
|
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., |
|
|
|
http://www.netlib.org/f2c/libf2c.zip |
|
*/ |
|
|
|
#include "clapack.h" |
|
|
|
|
|
/* Subroutine */ int dgesv_(integer *n, integer *nrhs, doublereal *a, integer |
|
*lda, integer *ipiv, doublereal *b, integer *ldb, integer *info) |
|
{ |
|
/* System generated locals */ |
|
integer a_dim1, a_offset, b_dim1, b_offset, i__1; |
|
|
|
/* Local variables */ |
|
extern /* Subroutine */ int dgetrf_(integer *, integer *, doublereal *, |
|
integer *, integer *, integer *), xerbla_(char *, integer *), dgetrs_(char *, integer *, integer *, doublereal *, |
|
integer *, integer *, doublereal *, integer *, integer *); |
|
|
|
|
|
/* -- LAPACK driver routine (version 3.2) -- */ |
|
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ |
|
/* November 2006 */ |
|
|
|
/* .. Scalar Arguments .. */ |
|
/* .. */ |
|
/* .. Array Arguments .. */ |
|
/* .. */ |
|
|
|
/* Purpose */ |
|
/* ======= */ |
|
|
|
/* DGESV computes the solution to a real system of linear equations */ |
|
/* A * X = B, */ |
|
/* where A is an N-by-N matrix and X and B are N-by-NRHS matrices. */ |
|
|
|
/* The LU decomposition with partial pivoting and row interchanges is */ |
|
/* used to factor A as */ |
|
/* A = P * L * U, */ |
|
/* where P is a permutation matrix, L is unit lower triangular, and U is */ |
|
/* upper triangular. The factored form of A is then used to solve the */ |
|
/* system of equations A * X = B. */ |
|
|
|
/* Arguments */ |
|
/* ========= */ |
|
|
|
/* N (input) INTEGER */ |
|
/* The number of linear equations, i.e., the order of the */ |
|
/* matrix A. N >= 0. */ |
|
|
|
/* NRHS (input) INTEGER */ |
|
/* The number of right hand sides, i.e., the number of columns */ |
|
/* of the matrix B. NRHS >= 0. */ |
|
|
|
/* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) */ |
|
/* On entry, the N-by-N coefficient matrix A. */ |
|
/* On exit, the factors L and U from the factorization */ |
|
/* A = P*L*U; the unit diagonal elements of L are not stored. */ |
|
|
|
/* LDA (input) INTEGER */ |
|
/* The leading dimension of the array A. LDA >= max(1,N). */ |
|
|
|
/* IPIV (output) INTEGER array, dimension (N) */ |
|
/* The pivot indices that define the permutation matrix P; */ |
|
/* row i of the matrix was interchanged with row IPIV(i). */ |
|
|
|
/* B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) */ |
|
/* On entry, the N-by-NRHS matrix of right hand side matrix B. */ |
|
/* On exit, if INFO = 0, the N-by-NRHS solution matrix X. */ |
|
|
|
/* LDB (input) INTEGER */ |
|
/* The leading dimension of the array B. LDB >= max(1,N). */ |
|
|
|
/* INFO (output) INTEGER */ |
|
/* = 0: successful exit */ |
|
/* < 0: if INFO = -i, the i-th argument had an illegal value */ |
|
/* > 0: if INFO = i, U(i,i) is exactly zero. The factorization */ |
|
/* has been completed, but the factor U is exactly */ |
|
/* singular, so the solution could not be computed. */ |
|
|
|
/* ===================================================================== */ |
|
|
|
/* .. External Subroutines .. */ |
|
/* .. */ |
|
/* .. Intrinsic Functions .. */ |
|
/* .. */ |
|
/* .. Executable Statements .. */ |
|
|
|
/* Test the input parameters. */ |
|
|
|
/* Parameter adjustments */ |
|
a_dim1 = *lda; |
|
a_offset = 1 + a_dim1; |
|
a -= a_offset; |
|
--ipiv; |
|
b_dim1 = *ldb; |
|
b_offset = 1 + b_dim1; |
|
b -= b_offset; |
|
|
|
/* Function Body */ |
|
*info = 0; |
|
if (*n < 0) { |
|
*info = -1; |
|
} else if (*nrhs < 0) { |
|
*info = -2; |
|
} else if (*lda < max(1,*n)) { |
|
*info = -4; |
|
} else if (*ldb < max(1,*n)) { |
|
*info = -7; |
|
} |
|
if (*info != 0) { |
|
i__1 = -(*info); |
|
xerbla_("DGESV ", &i__1); |
|
return 0; |
|
} |
|
|
|
/* Compute the LU factorization of A. */ |
|
|
|
dgetrf_(n, n, &a[a_offset], lda, &ipiv[1], info); |
|
if (*info == 0) { |
|
|
|
/* Solve the system A*X = B, overwriting B with X. */ |
|
|
|
dgetrs_("No transpose", n, nrhs, &a[a_offset], lda, &ipiv[1], &b[ |
|
b_offset], ldb, info); |
|
} |
|
return 0; |
|
|
|
/* End of DGESV */ |
|
|
|
} /* dgesv_ */
|
|
|