Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
170 lines
5.8 KiB
170 lines
5.8 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// Intel License Agreement |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of Intel Corporation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
|
|
typedef struct CvDI |
|
{ |
|
double d; |
|
int i; |
|
} CvDI; |
|
|
|
int CV_CDECL |
|
icvCmpDI( const void* a, const void* b, void* ) |
|
{ |
|
const CvDI* e1 = (const CvDI*) a; |
|
const CvDI* e2 = (const CvDI*) b; |
|
|
|
return (e1->d < e2->d) ? -1 : (e1->d > e2->d); |
|
} |
|
|
|
CV_IMPL void |
|
cvCreateTestSet( int type, CvMat** samples, |
|
int num_samples, |
|
int num_features, |
|
CvMat** responses, |
|
int num_classes, ... ) |
|
{ |
|
CvMat* mean = NULL; |
|
CvMat* cov = NULL; |
|
CvMemStorage* storage = NULL; |
|
|
|
CV_FUNCNAME( "cvCreateTestSet" ); |
|
|
|
__BEGIN__; |
|
|
|
if( samples ) |
|
*samples = NULL; |
|
if( responses ) |
|
*responses = NULL; |
|
|
|
if( type != CV_TS_CONCENTRIC_SPHERES ) |
|
CV_ERROR( CV_StsBadArg, "Invalid type parameter" ); |
|
|
|
if( !samples ) |
|
CV_ERROR( CV_StsNullPtr, "samples parameter must be not NULL" ); |
|
|
|
if( !responses ) |
|
CV_ERROR( CV_StsNullPtr, "responses parameter must be not NULL" ); |
|
|
|
if( num_samples < 1 ) |
|
CV_ERROR( CV_StsBadArg, "num_samples parameter must be positive" ); |
|
|
|
if( num_features < 1 ) |
|
CV_ERROR( CV_StsBadArg, "num_features parameter must be positive" ); |
|
|
|
if( num_classes < 1 ) |
|
CV_ERROR( CV_StsBadArg, "num_classes parameter must be positive" ); |
|
|
|
if( type == CV_TS_CONCENTRIC_SPHERES ) |
|
{ |
|
CvSeqWriter writer; |
|
CvSeqReader reader; |
|
CvMat sample; |
|
CvDI elem; |
|
CvSeq* seq = NULL; |
|
int i, cur_class; |
|
|
|
CV_CALL( *samples = cvCreateMat( num_samples, num_features, CV_32FC1 ) ); |
|
CV_CALL( *responses = cvCreateMat( 1, num_samples, CV_32SC1 ) ); |
|
CV_CALL( mean = cvCreateMat( 1, num_features, CV_32FC1 ) ); |
|
CV_CALL( cvSetZero( mean ) ); |
|
CV_CALL( cov = cvCreateMat( num_features, num_features, CV_32FC1 ) ); |
|
CV_CALL( cvSetIdentity( cov ) ); |
|
|
|
/* fill the feature values matrix with random numbers drawn from standard |
|
normal distribution */ |
|
CV_CALL( cvRandMVNormal( mean, cov, *samples ) ); |
|
|
|
/* calculate distances from the origin to the samples and put them |
|
into the sequence along with indices */ |
|
CV_CALL( storage = cvCreateMemStorage() ); |
|
CV_CALL( cvStartWriteSeq( 0, sizeof( CvSeq ), sizeof( CvDI ), storage, &writer )); |
|
for( i = 0; i < (*samples)->rows; ++i ) |
|
{ |
|
CV_CALL( cvGetRow( *samples, &sample, i )); |
|
elem.i = i; |
|
CV_CALL( elem.d = cvNorm( &sample, NULL, CV_L2 )); |
|
CV_WRITE_SEQ_ELEM( elem, writer ); |
|
} |
|
CV_CALL( seq = cvEndWriteSeq( &writer ) ); |
|
|
|
/* sort the sequence in a distance ascending order */ |
|
CV_CALL( cvSeqSort( seq, icvCmpDI, NULL ) ); |
|
|
|
/* assign class labels */ |
|
num_classes = MIN( num_samples, num_classes ); |
|
CV_CALL( cvStartReadSeq( seq, &reader ) ); |
|
CV_READ_SEQ_ELEM( elem, reader ); |
|
for( i = 0, cur_class = 0; i < num_samples; ++cur_class ) |
|
{ |
|
int last_idx; |
|
double max_dst; |
|
|
|
last_idx = num_samples * (cur_class + 1) / num_classes - 1; |
|
CV_CALL( max_dst = (*((CvDI*) cvGetSeqElem( seq, last_idx ))).d ); |
|
max_dst = MAX( max_dst, elem.d ); |
|
|
|
for( ; elem.d <= max_dst && i < num_samples; ++i ) |
|
{ |
|
CV_MAT_ELEM( **responses, int, 0, elem.i ) = cur_class; |
|
if( i < num_samples - 1 ) |
|
{ |
|
CV_READ_SEQ_ELEM( elem, reader ); |
|
} |
|
} |
|
} |
|
} |
|
|
|
__END__; |
|
|
|
if( cvGetErrStatus() < 0 ) |
|
{ |
|
if( samples ) |
|
cvReleaseMat( samples ); |
|
if( responses ) |
|
cvReleaseMat( responses ); |
|
} |
|
cvReleaseMat( &mean ); |
|
cvReleaseMat( &cov ); |
|
cvReleaseMemStorage( &storage ); |
|
} |
|
|
|
/* End of file. */
|
|
|