mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
522 lines
15 KiB
522 lines
15 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "test_precomp.hpp" |
|
|
|
namespace opencv_test { namespace { |
|
|
|
class CV_ECC_BaseTest : public cvtest::BaseTest |
|
{ |
|
public: |
|
CV_ECC_BaseTest(); |
|
|
|
protected: |
|
|
|
double computeRMS(const Mat& mat1, const Mat& mat2); |
|
bool isMapCorrect(const Mat& mat); |
|
|
|
|
|
double MAX_RMS_ECC;//upper bound for RMS error |
|
int ntests;//number of tests per motion type |
|
int ECC_iterations;//number of iterations for ECC |
|
double ECC_epsilon; //we choose a negative value, so that |
|
// ECC_iterations are always executed |
|
}; |
|
|
|
CV_ECC_BaseTest::CV_ECC_BaseTest() |
|
{ |
|
MAX_RMS_ECC=0.1; |
|
ntests = 3; |
|
ECC_iterations = 50; |
|
ECC_epsilon = -1; //-> negative value means that ECC_Iterations will be executed |
|
} |
|
|
|
|
|
bool CV_ECC_BaseTest::isMapCorrect(const Mat& map) |
|
{ |
|
bool tr = true; |
|
float mapVal; |
|
for(int i =0; i<map.rows; i++) |
|
for(int j=0; j<map.cols; j++){ |
|
mapVal = map.at<float>(i, j); |
|
tr = tr & (!cvIsNaN(mapVal) && (fabs(mapVal) < 1e9)); |
|
} |
|
|
|
return tr; |
|
} |
|
|
|
double CV_ECC_BaseTest::computeRMS(const Mat& mat1, const Mat& mat2){ |
|
|
|
CV_Assert(mat1.rows == mat2.rows); |
|
CV_Assert(mat1.cols == mat2.cols); |
|
|
|
Mat errorMat; |
|
subtract(mat1, mat2, errorMat); |
|
|
|
return sqrt(errorMat.dot(errorMat)/(mat1.rows*mat1.cols)); |
|
} |
|
|
|
class CV_ECC_Test_Translation : public CV_ECC_BaseTest |
|
{ |
|
public: |
|
CV_ECC_Test_Translation(); |
|
protected: |
|
void run(int); |
|
|
|
bool testTranslation(int); |
|
}; |
|
|
|
CV_ECC_Test_Translation::CV_ECC_Test_Translation(){} |
|
|
|
bool CV_ECC_Test_Translation::testTranslation(int from) |
|
{ |
|
Mat img = imread( string(ts->get_data_path()) + "shared/fruits.png", 0); |
|
|
|
|
|
if (img.empty()) |
|
{ |
|
ts->printf( ts->LOG, "test image can not be read"); |
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA); |
|
return false; |
|
} |
|
Mat testImg; |
|
resize(img, testImg, Size(216, 216), 0, 0, INTER_LINEAR_EXACT); |
|
|
|
cv::RNG rng = ts->get_rng(); |
|
|
|
int progress=0; |
|
|
|
for (int k=from; k<ntests; k++){ |
|
|
|
ts->update_context( this, k, true ); |
|
progress = update_progress(progress, k, ntests, 0); |
|
|
|
Mat translationGround = (Mat_<float>(2,3) << 1, 0, (rng.uniform(10.f, 20.f)), |
|
0, 1, (rng.uniform(10.f, 20.f))); |
|
|
|
Mat warpedImage; |
|
|
|
warpAffine(testImg, warpedImage, translationGround, |
|
Size(200,200), INTER_LINEAR + WARP_INVERSE_MAP); |
|
|
|
Mat mapTranslation = (Mat_<float>(2,3) << 1, 0, 0, 0, 1, 0); |
|
|
|
findTransformECC(warpedImage, testImg, mapTranslation, 0, |
|
TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, ECC_iterations, ECC_epsilon)); |
|
|
|
if (!isMapCorrect(mapTranslation)){ |
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); |
|
return false; |
|
} |
|
|
|
if (computeRMS(mapTranslation, translationGround)>MAX_RMS_ECC){ |
|
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY); |
|
ts->printf( ts->LOG, "RMS = %f", |
|
computeRMS(mapTranslation, translationGround)); |
|
return false; |
|
} |
|
|
|
} |
|
return true; |
|
} |
|
|
|
void CV_ECC_Test_Translation::run(int from) |
|
{ |
|
|
|
if (!testTranslation(from)) |
|
return; |
|
|
|
ts->set_failed_test_info(cvtest::TS::OK); |
|
} |
|
|
|
|
|
|
|
class CV_ECC_Test_Euclidean : public CV_ECC_BaseTest |
|
{ |
|
public: |
|
CV_ECC_Test_Euclidean(); |
|
protected: |
|
void run(int); |
|
|
|
bool testEuclidean(int); |
|
}; |
|
|
|
CV_ECC_Test_Euclidean::CV_ECC_Test_Euclidean() { } |
|
|
|
bool CV_ECC_Test_Euclidean::testEuclidean(int from) |
|
{ |
|
Mat img = imread( string(ts->get_data_path()) + "shared/fruits.png", 0); |
|
|
|
|
|
if (img.empty()) |
|
{ |
|
ts->printf( ts->LOG, "test image can not be read"); |
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA); |
|
return false; |
|
} |
|
Mat testImg; |
|
resize(img, testImg, Size(216, 216), 0, 0, INTER_LINEAR_EXACT); |
|
|
|
cv::RNG rng = ts->get_rng(); |
|
|
|
int progress = 0; |
|
for (int k=from; k<ntests; k++){ |
|
ts->update_context( this, k, true ); |
|
progress = update_progress(progress, k, ntests, 0); |
|
|
|
double angle = CV_PI/30 + CV_PI*rng.uniform((double)-2.f, (double)2.f)/180; |
|
|
|
Mat euclideanGround = (Mat_<float>(2,3) << cos(angle), -sin(angle), (rng.uniform(10.f, 20.f)), |
|
sin(angle), cos(angle), (rng.uniform(10.f, 20.f))); |
|
|
|
Mat warpedImage; |
|
|
|
warpAffine(testImg, warpedImage, euclideanGround, |
|
Size(200,200), INTER_LINEAR + WARP_INVERSE_MAP); |
|
|
|
Mat mapEuclidean = (Mat_<float>(2,3) << 1, 0, 0, 0, 1, 0); |
|
|
|
findTransformECC(warpedImage, testImg, mapEuclidean, 1, |
|
TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, ECC_iterations, ECC_epsilon)); |
|
|
|
if (!isMapCorrect(mapEuclidean)){ |
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); |
|
return false; |
|
} |
|
|
|
if (computeRMS(mapEuclidean, euclideanGround)>MAX_RMS_ECC){ |
|
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY); |
|
ts->printf( ts->LOG, "RMS = %f", |
|
computeRMS(mapEuclidean, euclideanGround)); |
|
return false; |
|
} |
|
|
|
} |
|
return true; |
|
} |
|
|
|
|
|
void CV_ECC_Test_Euclidean::run(int from) |
|
{ |
|
|
|
if (!testEuclidean(from)) |
|
return; |
|
|
|
ts->set_failed_test_info(cvtest::TS::OK); |
|
} |
|
|
|
class CV_ECC_Test_Affine : public CV_ECC_BaseTest |
|
{ |
|
public: |
|
CV_ECC_Test_Affine(); |
|
protected: |
|
void run(int); |
|
|
|
bool testAffine(int); |
|
}; |
|
|
|
CV_ECC_Test_Affine::CV_ECC_Test_Affine(){} |
|
|
|
|
|
bool CV_ECC_Test_Affine::testAffine(int from) |
|
{ |
|
Mat img = imread( string(ts->get_data_path()) + "shared/fruits.png", 0); |
|
|
|
if (img.empty()) |
|
{ |
|
ts->printf( ts->LOG, "test image can not be read"); |
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA); |
|
return false; |
|
} |
|
Mat testImg; |
|
resize(img, testImg, Size(216, 216), 0, 0, INTER_LINEAR_EXACT); |
|
|
|
cv::RNG rng = ts->get_rng(); |
|
|
|
int progress = 0; |
|
for (int k=from; k<ntests; k++){ |
|
ts->update_context( this, k, true ); |
|
progress = update_progress(progress, k, ntests, 0); |
|
|
|
|
|
Mat affineGround = (Mat_<float>(2,3) << (1-rng.uniform(-0.05f, 0.05f)), |
|
(rng.uniform(-0.03f, 0.03f)), (rng.uniform(10.f, 20.f)), |
|
(rng.uniform(-0.03f, 0.03f)), (1-rng.uniform(-0.05f, 0.05f)), |
|
(rng.uniform(10.f, 20.f))); |
|
|
|
Mat warpedImage; |
|
|
|
warpAffine(testImg, warpedImage, affineGround, |
|
Size(200,200), INTER_LINEAR + WARP_INVERSE_MAP); |
|
|
|
Mat mapAffine = (Mat_<float>(2,3) << 1, 0, 0, 0, 1, 0); |
|
|
|
findTransformECC(warpedImage, testImg, mapAffine, 2, |
|
TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, ECC_iterations, ECC_epsilon)); |
|
|
|
if (!isMapCorrect(mapAffine)){ |
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); |
|
return false; |
|
} |
|
|
|
if (computeRMS(mapAffine, affineGround)>MAX_RMS_ECC){ |
|
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY); |
|
ts->printf( ts->LOG, "RMS = %f", |
|
computeRMS(mapAffine, affineGround)); |
|
return false; |
|
} |
|
|
|
} |
|
|
|
return true; |
|
} |
|
|
|
|
|
void CV_ECC_Test_Affine::run(int from) |
|
{ |
|
|
|
if (!testAffine(from)) |
|
return; |
|
|
|
ts->set_failed_test_info(cvtest::TS::OK); |
|
} |
|
|
|
class CV_ECC_Test_Homography : public CV_ECC_BaseTest |
|
{ |
|
public: |
|
CV_ECC_Test_Homography(); |
|
protected: |
|
void run(int); |
|
|
|
bool testHomography(int); |
|
}; |
|
|
|
CV_ECC_Test_Homography::CV_ECC_Test_Homography(){} |
|
|
|
bool CV_ECC_Test_Homography::testHomography(int from) |
|
{ |
|
Mat img = imread( string(ts->get_data_path()) + "shared/fruits.png", 0); |
|
|
|
|
|
if (img.empty()) |
|
{ |
|
ts->printf( ts->LOG, "test image can not be read"); |
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA); |
|
return false; |
|
} |
|
Mat testImg; |
|
resize(img, testImg, Size(216, 216), 0, 0, INTER_LINEAR_EXACT); |
|
|
|
cv::RNG rng = ts->get_rng(); |
|
|
|
int progress = 0; |
|
for (int k=from; k<ntests; k++){ |
|
ts->update_context( this, k, true ); |
|
progress = update_progress(progress, k, ntests, 0); |
|
|
|
Mat homoGround = (Mat_<float>(3,3) << (1-rng.uniform(-0.05f, 0.05f)), |
|
(rng.uniform(-0.03f, 0.03f)), (rng.uniform(10.f, 20.f)), |
|
(rng.uniform(-0.03f, 0.03f)), (1-rng.uniform(-0.05f, 0.05f)),(rng.uniform(10.f, 20.f)), |
|
(rng.uniform(0.0001f, 0.0003f)), (rng.uniform(0.0001f, 0.0003f)), 1.f); |
|
|
|
Mat warpedImage; |
|
|
|
warpPerspective(testImg, warpedImage, homoGround, |
|
Size(200,200), INTER_LINEAR + WARP_INVERSE_MAP); |
|
|
|
Mat mapHomography = Mat::eye(3, 3, CV_32F); |
|
|
|
findTransformECC(warpedImage, testImg, mapHomography, 3, |
|
TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, ECC_iterations, ECC_epsilon)); |
|
|
|
if (!isMapCorrect(mapHomography)){ |
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); |
|
return false; |
|
} |
|
|
|
if (computeRMS(mapHomography, homoGround)>MAX_RMS_ECC){ |
|
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY); |
|
ts->printf( ts->LOG, "RMS = %f", |
|
computeRMS(mapHomography, homoGround)); |
|
return false; |
|
} |
|
|
|
} |
|
return true; |
|
} |
|
|
|
void CV_ECC_Test_Homography::run(int from) |
|
{ |
|
if (!testHomography(from)) |
|
return; |
|
|
|
ts->set_failed_test_info(cvtest::TS::OK); |
|
} |
|
|
|
class CV_ECC_Test_Mask : public CV_ECC_BaseTest |
|
{ |
|
public: |
|
CV_ECC_Test_Mask(); |
|
protected: |
|
void run(int); |
|
|
|
bool testMask(int); |
|
}; |
|
|
|
CV_ECC_Test_Mask::CV_ECC_Test_Mask(){} |
|
|
|
bool CV_ECC_Test_Mask::testMask(int from) |
|
{ |
|
Mat img = imread( string(ts->get_data_path()) + "shared/fruits.png", 0); |
|
|
|
|
|
if (img.empty()) |
|
{ |
|
ts->printf( ts->LOG, "test image can not be read"); |
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA); |
|
return false; |
|
} |
|
Mat scaledImage; |
|
resize(img, scaledImage, Size(216, 216), 0, 0, INTER_LINEAR_EXACT ); |
|
|
|
Mat_<float> testImg; |
|
scaledImage.convertTo(testImg, testImg.type()); |
|
|
|
cv::RNG rng = ts->get_rng(); |
|
|
|
int progress=0; |
|
|
|
for (int k=from; k<ntests; k++){ |
|
|
|
ts->update_context( this, k, true ); |
|
progress = update_progress(progress, k, ntests, 0); |
|
|
|
Mat translationGround = (Mat_<float>(2,3) << 1, 0, (rng.uniform(10.f, 20.f)), |
|
0, 1, (rng.uniform(10.f, 20.f))); |
|
|
|
Mat warpedImage; |
|
|
|
warpAffine(testImg, warpedImage, translationGround, |
|
Size(200,200), INTER_LINEAR + WARP_INVERSE_MAP); |
|
|
|
Mat mapTranslation = (Mat_<float>(2,3) << 1, 0, 0, 0, 1, 0); |
|
|
|
Mat_<unsigned char> mask = Mat_<unsigned char>::ones(testImg.rows, testImg.cols); |
|
for (int i=testImg.rows*2/3; i<testImg.rows; i++) { |
|
for (int j=testImg.cols*2/3; j<testImg.cols; j++) { |
|
testImg(i, j) = 0; |
|
mask(i, j) = 0; |
|
} |
|
} |
|
|
|
findTransformECC(warpedImage, testImg, mapTranslation, 0, |
|
TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, ECC_iterations, ECC_epsilon), mask); |
|
|
|
if (!isMapCorrect(mapTranslation)){ |
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); |
|
return false; |
|
} |
|
|
|
if (computeRMS(mapTranslation, translationGround)>MAX_RMS_ECC){ |
|
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY); |
|
ts->printf( ts->LOG, "RMS = %f", |
|
computeRMS(mapTranslation, translationGround)); |
|
return false; |
|
} |
|
|
|
// Test with non-default gaussian blur. |
|
findTransformECC(warpedImage, testImg, mapTranslation, 0, |
|
TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, ECC_iterations, ECC_epsilon), mask, 1); |
|
|
|
if (!isMapCorrect(mapTranslation)){ |
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_OUTPUT); |
|
return false; |
|
} |
|
|
|
if (computeRMS(mapTranslation, translationGround)>MAX_RMS_ECC){ |
|
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY); |
|
ts->printf( ts->LOG, "RMS = %f", |
|
computeRMS(mapTranslation, translationGround)); |
|
return false; |
|
} |
|
|
|
} |
|
return true; |
|
} |
|
|
|
void CV_ECC_Test_Mask::run(int from) |
|
{ |
|
if (!testMask(from)) |
|
return; |
|
|
|
ts->set_failed_test_info(cvtest::TS::OK); |
|
} |
|
|
|
TEST(Video_ECC_Test_Compute, accuracy) |
|
{ |
|
Mat testImg = (Mat_<float>(3, 3) << 1, 0, 0, 1, 0, 0, 1, 0, 0); |
|
Mat warpedImage = (Mat_<float>(3, 3) << 0, 1, 0, 0, 1, 0, 0, 1, 0); |
|
Mat_<unsigned char> mask = Mat_<unsigned char>::ones(testImg.rows, testImg.cols); |
|
double ecc = computeECC(warpedImage, testImg, mask); |
|
|
|
EXPECT_NEAR(ecc, -0.5f, 1e-5f); |
|
} |
|
|
|
TEST(Video_ECC_Test_Compute, bug_14657) |
|
{ |
|
/* |
|
* Simple test case - a 2 x 2 matrix with 10, 10, 10, 6. When the mean (36 / 4 = 9) is subtracted, |
|
* it results in 1, 1, 1, 0 for the unsigned int case - compare to 1, 1, 1, -3 in the signed case. |
|
* For this reason, when the same matrix was provided as the input and the template, we didn't get 1 as expected. |
|
*/ |
|
Mat img = (Mat_<uint8_t>(2, 2) << 10, 10, 10, 6); |
|
EXPECT_NEAR(computeECC(img, img), 1.0f, 1e-5f); |
|
} |
|
|
|
|
|
TEST(Video_ECC_Translation, accuracy) { CV_ECC_Test_Translation test; test.safe_run();} |
|
TEST(Video_ECC_Euclidean, accuracy) { CV_ECC_Test_Euclidean test; test.safe_run(); } |
|
TEST(Video_ECC_Affine, accuracy) { CV_ECC_Test_Affine test; test.safe_run(); } |
|
TEST(Video_ECC_Homography, accuracy) { CV_ECC_Test_Homography test; test.safe_run(); } |
|
TEST(Video_ECC_Mask, accuracy) { CV_ECC_Test_Mask test; test.safe_run(); } |
|
|
|
}} // namespace
|
|
|