mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
857 lines
31 KiB
857 lines
31 KiB
/* |
|
* jquant1.c |
|
* |
|
* Copyright (C) 1991-1996, Thomas G. Lane. |
|
* Modified 2011 by Guido Vollbeding. |
|
* This file is part of the Independent JPEG Group's software. |
|
* For conditions of distribution and use, see the accompanying README file. |
|
* |
|
* This file contains 1-pass color quantization (color mapping) routines. |
|
* These routines provide mapping to a fixed color map using equally spaced |
|
* color values. Optional Floyd-Steinberg or ordered dithering is available. |
|
*/ |
|
|
|
#define JPEG_INTERNALS |
|
#include "jinclude.h" |
|
#include "jpeglib.h" |
|
|
|
#ifdef QUANT_1PASS_SUPPORTED |
|
|
|
|
|
/* |
|
* The main purpose of 1-pass quantization is to provide a fast, if not very |
|
* high quality, colormapped output capability. A 2-pass quantizer usually |
|
* gives better visual quality; however, for quantized grayscale output this |
|
* quantizer is perfectly adequate. Dithering is highly recommended with this |
|
* quantizer, though you can turn it off if you really want to. |
|
* |
|
* In 1-pass quantization the colormap must be chosen in advance of seeing the |
|
* image. We use a map consisting of all combinations of Ncolors[i] color |
|
* values for the i'th component. The Ncolors[] values are chosen so that |
|
* their product, the total number of colors, is no more than that requested. |
|
* (In most cases, the product will be somewhat less.) |
|
* |
|
* Since the colormap is orthogonal, the representative value for each color |
|
* component can be determined without considering the other components; |
|
* then these indexes can be combined into a colormap index by a standard |
|
* N-dimensional-array-subscript calculation. Most of the arithmetic involved |
|
* can be precalculated and stored in the lookup table colorindex[]. |
|
* colorindex[i][j] maps pixel value j in component i to the nearest |
|
* representative value (grid plane) for that component; this index is |
|
* multiplied by the array stride for component i, so that the |
|
* index of the colormap entry closest to a given pixel value is just |
|
* sum( colorindex[component-number][pixel-component-value] ) |
|
* Aside from being fast, this scheme allows for variable spacing between |
|
* representative values with no additional lookup cost. |
|
* |
|
* If gamma correction has been applied in color conversion, it might be wise |
|
* to adjust the color grid spacing so that the representative colors are |
|
* equidistant in linear space. At this writing, gamma correction is not |
|
* implemented by jdcolor, so nothing is done here. |
|
*/ |
|
|
|
|
|
/* Declarations for ordered dithering. |
|
* |
|
* We use a standard 16x16 ordered dither array. The basic concept of ordered |
|
* dithering is described in many references, for instance Dale Schumacher's |
|
* chapter II.2 of Graphics Gems II (James Arvo, ed. Academic Press, 1991). |
|
* In place of Schumacher's comparisons against a "threshold" value, we add a |
|
* "dither" value to the input pixel and then round the result to the nearest |
|
* output value. The dither value is equivalent to (0.5 - threshold) times |
|
* the distance between output values. For ordered dithering, we assume that |
|
* the output colors are equally spaced; if not, results will probably be |
|
* worse, since the dither may be too much or too little at a given point. |
|
* |
|
* The normal calculation would be to form pixel value + dither, range-limit |
|
* this to 0..MAXJSAMPLE, and then index into the colorindex table as usual. |
|
* We can skip the separate range-limiting step by extending the colorindex |
|
* table in both directions. |
|
*/ |
|
|
|
#define ODITHER_SIZE 16 /* dimension of dither matrix */ |
|
/* NB: if ODITHER_SIZE is not a power of 2, ODITHER_MASK uses will break */ |
|
#define ODITHER_CELLS (ODITHER_SIZE*ODITHER_SIZE) /* # cells in matrix */ |
|
#define ODITHER_MASK (ODITHER_SIZE-1) /* mask for wrapping around counters */ |
|
|
|
typedef int ODITHER_MATRIX[ODITHER_SIZE][ODITHER_SIZE]; |
|
typedef int (*ODITHER_MATRIX_PTR)[ODITHER_SIZE]; |
|
|
|
static const UINT8 base_dither_matrix[ODITHER_SIZE][ODITHER_SIZE] = { |
|
/* Bayer's order-4 dither array. Generated by the code given in |
|
* Stephen Hawley's article "Ordered Dithering" in Graphics Gems I. |
|
* The values in this array must range from 0 to ODITHER_CELLS-1. |
|
*/ |
|
{ 0,192, 48,240, 12,204, 60,252, 3,195, 51,243, 15,207, 63,255 }, |
|
{ 128, 64,176,112,140, 76,188,124,131, 67,179,115,143, 79,191,127 }, |
|
{ 32,224, 16,208, 44,236, 28,220, 35,227, 19,211, 47,239, 31,223 }, |
|
{ 160, 96,144, 80,172,108,156, 92,163, 99,147, 83,175,111,159, 95 }, |
|
{ 8,200, 56,248, 4,196, 52,244, 11,203, 59,251, 7,199, 55,247 }, |
|
{ 136, 72,184,120,132, 68,180,116,139, 75,187,123,135, 71,183,119 }, |
|
{ 40,232, 24,216, 36,228, 20,212, 43,235, 27,219, 39,231, 23,215 }, |
|
{ 168,104,152, 88,164,100,148, 84,171,107,155, 91,167,103,151, 87 }, |
|
{ 2,194, 50,242, 14,206, 62,254, 1,193, 49,241, 13,205, 61,253 }, |
|
{ 130, 66,178,114,142, 78,190,126,129, 65,177,113,141, 77,189,125 }, |
|
{ 34,226, 18,210, 46,238, 30,222, 33,225, 17,209, 45,237, 29,221 }, |
|
{ 162, 98,146, 82,174,110,158, 94,161, 97,145, 81,173,109,157, 93 }, |
|
{ 10,202, 58,250, 6,198, 54,246, 9,201, 57,249, 5,197, 53,245 }, |
|
{ 138, 74,186,122,134, 70,182,118,137, 73,185,121,133, 69,181,117 }, |
|
{ 42,234, 26,218, 38,230, 22,214, 41,233, 25,217, 37,229, 21,213 }, |
|
{ 170,106,154, 90,166,102,150, 86,169,105,153, 89,165,101,149, 85 } |
|
}; |
|
|
|
|
|
/* Declarations for Floyd-Steinberg dithering. |
|
* |
|
* Errors are accumulated into the array fserrors[], at a resolution of |
|
* 1/16th of a pixel count. The error at a given pixel is propagated |
|
* to its not-yet-processed neighbors using the standard F-S fractions, |
|
* ... (here) 7/16 |
|
* 3/16 5/16 1/16 |
|
* We work left-to-right on even rows, right-to-left on odd rows. |
|
* |
|
* We can get away with a single array (holding one row's worth of errors) |
|
* by using it to store the current row's errors at pixel columns not yet |
|
* processed, but the next row's errors at columns already processed. We |
|
* need only a few extra variables to hold the errors immediately around the |
|
* current column. (If we are lucky, those variables are in registers, but |
|
* even if not, they're probably cheaper to access than array elements are.) |
|
* |
|
* The fserrors[] array is indexed [component#][position]. |
|
* We provide (#columns + 2) entries per component; the extra entry at each |
|
* end saves us from special-casing the first and last pixels. |
|
* |
|
* Note: on a wide image, we might not have enough room in a PC's near data |
|
* segment to hold the error array; so it is allocated with alloc_large. |
|
*/ |
|
|
|
#if BITS_IN_JSAMPLE == 8 |
|
typedef INT16 FSERROR; /* 16 bits should be enough */ |
|
typedef int LOCFSERROR; /* use 'int' for calculation temps */ |
|
#else |
|
typedef INT32 FSERROR; /* may need more than 16 bits */ |
|
typedef INT32 LOCFSERROR; /* be sure calculation temps are big enough */ |
|
#endif |
|
|
|
typedef FSERROR FAR *FSERRPTR; /* pointer to error array (in FAR storage!) */ |
|
|
|
|
|
/* Private subobject */ |
|
|
|
#define MAX_Q_COMPS 4 /* max components I can handle */ |
|
|
|
typedef struct { |
|
struct jpeg_color_quantizer pub; /* public fields */ |
|
|
|
/* Initially allocated colormap is saved here */ |
|
JSAMPARRAY sv_colormap; /* The color map as a 2-D pixel array */ |
|
int sv_actual; /* number of entries in use */ |
|
|
|
JSAMPARRAY colorindex; /* Precomputed mapping for speed */ |
|
/* colorindex[i][j] = index of color closest to pixel value j in component i, |
|
* premultiplied as described above. Since colormap indexes must fit into |
|
* JSAMPLEs, the entries of this array will too. |
|
*/ |
|
boolean is_padded; /* is the colorindex padded for odither? */ |
|
|
|
int Ncolors[MAX_Q_COMPS]; /* # of values alloced to each component */ |
|
|
|
/* Variables for ordered dithering */ |
|
int row_index; /* cur row's vertical index in dither matrix */ |
|
ODITHER_MATRIX_PTR odither[MAX_Q_COMPS]; /* one dither array per component */ |
|
|
|
/* Variables for Floyd-Steinberg dithering */ |
|
FSERRPTR fserrors[MAX_Q_COMPS]; /* accumulated errors */ |
|
boolean on_odd_row; /* flag to remember which row we are on */ |
|
} my_cquantizer; |
|
|
|
typedef my_cquantizer * my_cquantize_ptr; |
|
|
|
|
|
/* |
|
* Policy-making subroutines for create_colormap and create_colorindex. |
|
* These routines determine the colormap to be used. The rest of the module |
|
* only assumes that the colormap is orthogonal. |
|
* |
|
* * select_ncolors decides how to divvy up the available colors |
|
* among the components. |
|
* * output_value defines the set of representative values for a component. |
|
* * largest_input_value defines the mapping from input values to |
|
* representative values for a component. |
|
* Note that the latter two routines may impose different policies for |
|
* different components, though this is not currently done. |
|
*/ |
|
|
|
|
|
LOCAL(int) |
|
select_ncolors (j_decompress_ptr cinfo, int Ncolors[]) |
|
/* Determine allocation of desired colors to components, */ |
|
/* and fill in Ncolors[] array to indicate choice. */ |
|
/* Return value is total number of colors (product of Ncolors[] values). */ |
|
{ |
|
int nc = cinfo->out_color_components; /* number of color components */ |
|
int max_colors = cinfo->desired_number_of_colors; |
|
int total_colors, iroot, i, j; |
|
boolean changed; |
|
long temp; |
|
static const int RGB_order[3] = { RGB_GREEN, RGB_RED, RGB_BLUE }; |
|
|
|
/* We can allocate at least the nc'th root of max_colors per component. */ |
|
/* Compute floor(nc'th root of max_colors). */ |
|
iroot = 1; |
|
do { |
|
iroot++; |
|
temp = iroot; /* set temp = iroot ** nc */ |
|
for (i = 1; i < nc; i++) |
|
temp *= iroot; |
|
} while (temp <= (long) max_colors); /* repeat till iroot exceeds root */ |
|
iroot--; /* now iroot = floor(root) */ |
|
|
|
/* Must have at least 2 color values per component */ |
|
if (iroot < 2) |
|
ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, (int) temp); |
|
|
|
/* Initialize to iroot color values for each component */ |
|
total_colors = 1; |
|
for (i = 0; i < nc; i++) { |
|
Ncolors[i] = iroot; |
|
total_colors *= iroot; |
|
} |
|
/* We may be able to increment the count for one or more components without |
|
* exceeding max_colors, though we know not all can be incremented. |
|
* Sometimes, the first component can be incremented more than once! |
|
* (Example: for 16 colors, we start at 2*2*2, go to 3*2*2, then 4*2*2.) |
|
* In RGB colorspace, try to increment G first, then R, then B. |
|
*/ |
|
do { |
|
changed = FALSE; |
|
for (i = 0; i < nc; i++) { |
|
j = (cinfo->out_color_space == JCS_RGB ? RGB_order[i] : i); |
|
/* calculate new total_colors if Ncolors[j] is incremented */ |
|
temp = total_colors / Ncolors[j]; |
|
temp *= Ncolors[j]+1; /* done in long arith to avoid oflo */ |
|
if (temp > (long) max_colors) |
|
break; /* won't fit, done with this pass */ |
|
Ncolors[j]++; /* OK, apply the increment */ |
|
total_colors = (int) temp; |
|
changed = TRUE; |
|
} |
|
} while (changed); |
|
|
|
return total_colors; |
|
} |
|
|
|
|
|
LOCAL(int) |
|
output_value (j_decompress_ptr cinfo, int ci, int j, int maxj) |
|
/* Return j'th output value, where j will range from 0 to maxj */ |
|
/* The output values must fall in 0..MAXJSAMPLE in increasing order */ |
|
{ |
|
/* We always provide values 0 and MAXJSAMPLE for each component; |
|
* any additional values are equally spaced between these limits. |
|
* (Forcing the upper and lower values to the limits ensures that |
|
* dithering can't produce a color outside the selected gamut.) |
|
*/ |
|
return (int) (((INT32) j * MAXJSAMPLE + maxj/2) / maxj); |
|
} |
|
|
|
|
|
LOCAL(int) |
|
largest_input_value (j_decompress_ptr cinfo, int ci, int j, int maxj) |
|
/* Return largest input value that should map to j'th output value */ |
|
/* Must have largest(j=0) >= 0, and largest(j=maxj) >= MAXJSAMPLE */ |
|
{ |
|
/* Breakpoints are halfway between values returned by output_value */ |
|
return (int) (((INT32) (2*j + 1) * MAXJSAMPLE + maxj) / (2*maxj)); |
|
} |
|
|
|
|
|
/* |
|
* Create the colormap. |
|
*/ |
|
|
|
LOCAL(void) |
|
create_colormap (j_decompress_ptr cinfo) |
|
{ |
|
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
|
JSAMPARRAY colormap; /* Created colormap */ |
|
int total_colors; /* Number of distinct output colors */ |
|
int i,j,k, nci, blksize, blkdist, ptr, val; |
|
|
|
/* Select number of colors for each component */ |
|
total_colors = select_ncolors(cinfo, cquantize->Ncolors); |
|
|
|
/* Report selected color counts */ |
|
if (cinfo->out_color_components == 3) |
|
TRACEMS4(cinfo, 1, JTRC_QUANT_3_NCOLORS, |
|
total_colors, cquantize->Ncolors[0], |
|
cquantize->Ncolors[1], cquantize->Ncolors[2]); |
|
else |
|
TRACEMS1(cinfo, 1, JTRC_QUANT_NCOLORS, total_colors); |
|
|
|
/* Allocate and fill in the colormap. */ |
|
/* The colors are ordered in the map in standard row-major order, */ |
|
/* i.e. rightmost (highest-indexed) color changes most rapidly. */ |
|
|
|
colormap = (*cinfo->mem->alloc_sarray) |
|
((j_common_ptr) cinfo, JPOOL_IMAGE, |
|
(JDIMENSION) total_colors, (JDIMENSION) cinfo->out_color_components); |
|
|
|
/* blksize is number of adjacent repeated entries for a component */ |
|
/* blkdist is distance between groups of identical entries for a component */ |
|
blkdist = total_colors; |
|
|
|
for (i = 0; i < cinfo->out_color_components; i++) { |
|
/* fill in colormap entries for i'th color component */ |
|
nci = cquantize->Ncolors[i]; /* # of distinct values for this color */ |
|
blksize = blkdist / nci; |
|
for (j = 0; j < nci; j++) { |
|
/* Compute j'th output value (out of nci) for component */ |
|
val = output_value(cinfo, i, j, nci-1); |
|
/* Fill in all colormap entries that have this value of this component */ |
|
for (ptr = j * blksize; ptr < total_colors; ptr += blkdist) { |
|
/* fill in blksize entries beginning at ptr */ |
|
for (k = 0; k < blksize; k++) |
|
colormap[i][ptr+k] = (JSAMPLE) val; |
|
} |
|
} |
|
blkdist = blksize; /* blksize of this color is blkdist of next */ |
|
} |
|
|
|
/* Save the colormap in private storage, |
|
* where it will survive color quantization mode changes. |
|
*/ |
|
cquantize->sv_colormap = colormap; |
|
cquantize->sv_actual = total_colors; |
|
} |
|
|
|
|
|
/* |
|
* Create the color index table. |
|
*/ |
|
|
|
LOCAL(void) |
|
create_colorindex (j_decompress_ptr cinfo) |
|
{ |
|
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
|
JSAMPROW indexptr; |
|
int i,j,k, nci, blksize, val, pad; |
|
|
|
/* For ordered dither, we pad the color index tables by MAXJSAMPLE in |
|
* each direction (input index values can be -MAXJSAMPLE .. 2*MAXJSAMPLE). |
|
* This is not necessary in the other dithering modes. However, we |
|
* flag whether it was done in case user changes dithering mode. |
|
*/ |
|
if (cinfo->dither_mode == JDITHER_ORDERED) { |
|
pad = MAXJSAMPLE*2; |
|
cquantize->is_padded = TRUE; |
|
} else { |
|
pad = 0; |
|
cquantize->is_padded = FALSE; |
|
} |
|
|
|
cquantize->colorindex = (*cinfo->mem->alloc_sarray) |
|
((j_common_ptr) cinfo, JPOOL_IMAGE, |
|
(JDIMENSION) (MAXJSAMPLE+1 + pad), |
|
(JDIMENSION) cinfo->out_color_components); |
|
|
|
/* blksize is number of adjacent repeated entries for a component */ |
|
blksize = cquantize->sv_actual; |
|
|
|
for (i = 0; i < cinfo->out_color_components; i++) { |
|
/* fill in colorindex entries for i'th color component */ |
|
nci = cquantize->Ncolors[i]; /* # of distinct values for this color */ |
|
blksize = blksize / nci; |
|
|
|
/* adjust colorindex pointers to provide padding at negative indexes. */ |
|
if (pad) |
|
cquantize->colorindex[i] += MAXJSAMPLE; |
|
|
|
/* in loop, val = index of current output value, */ |
|
/* and k = largest j that maps to current val */ |
|
indexptr = cquantize->colorindex[i]; |
|
val = 0; |
|
k = largest_input_value(cinfo, i, 0, nci-1); |
|
for (j = 0; j <= MAXJSAMPLE; j++) { |
|
while (j > k) /* advance val if past boundary */ |
|
k = largest_input_value(cinfo, i, ++val, nci-1); |
|
/* premultiply so that no multiplication needed in main processing */ |
|
indexptr[j] = (JSAMPLE) (val * blksize); |
|
} |
|
/* Pad at both ends if necessary */ |
|
if (pad) |
|
for (j = 1; j <= MAXJSAMPLE; j++) { |
|
indexptr[-j] = indexptr[0]; |
|
indexptr[MAXJSAMPLE+j] = indexptr[MAXJSAMPLE]; |
|
} |
|
} |
|
} |
|
|
|
|
|
/* |
|
* Create an ordered-dither array for a component having ncolors |
|
* distinct output values. |
|
*/ |
|
|
|
LOCAL(ODITHER_MATRIX_PTR) |
|
make_odither_array (j_decompress_ptr cinfo, int ncolors) |
|
{ |
|
ODITHER_MATRIX_PTR odither; |
|
int j,k; |
|
INT32 num,den; |
|
|
|
odither = (ODITHER_MATRIX_PTR) |
|
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
|
SIZEOF(ODITHER_MATRIX)); |
|
/* The inter-value distance for this color is MAXJSAMPLE/(ncolors-1). |
|
* Hence the dither value for the matrix cell with fill order f |
|
* (f=0..N-1) should be (N-1-2*f)/(2*N) * MAXJSAMPLE/(ncolors-1). |
|
* On 16-bit-int machine, be careful to avoid overflow. |
|
*/ |
|
den = 2 * ODITHER_CELLS * ((INT32) (ncolors - 1)); |
|
for (j = 0; j < ODITHER_SIZE; j++) { |
|
for (k = 0; k < ODITHER_SIZE; k++) { |
|
num = ((INT32) (ODITHER_CELLS-1 - 2*((int)base_dither_matrix[j][k]))) |
|
* MAXJSAMPLE; |
|
/* Ensure round towards zero despite C's lack of consistency |
|
* about rounding negative values in integer division... |
|
*/ |
|
odither[j][k] = (int) (num<0 ? -((-num)/den) : num/den); |
|
} |
|
} |
|
return odither; |
|
} |
|
|
|
|
|
/* |
|
* Create the ordered-dither tables. |
|
* Components having the same number of representative colors may |
|
* share a dither table. |
|
*/ |
|
|
|
LOCAL(void) |
|
create_odither_tables (j_decompress_ptr cinfo) |
|
{ |
|
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
|
ODITHER_MATRIX_PTR odither; |
|
int i, j, nci; |
|
|
|
for (i = 0; i < cinfo->out_color_components; i++) { |
|
nci = cquantize->Ncolors[i]; /* # of distinct values for this color */ |
|
odither = NULL; /* search for matching prior component */ |
|
for (j = 0; j < i; j++) { |
|
if (nci == cquantize->Ncolors[j]) { |
|
odither = cquantize->odither[j]; |
|
break; |
|
} |
|
} |
|
if (odither == NULL) /* need a new table? */ |
|
odither = make_odither_array(cinfo, nci); |
|
cquantize->odither[i] = odither; |
|
} |
|
} |
|
|
|
|
|
/* |
|
* Map some rows of pixels to the output colormapped representation. |
|
*/ |
|
|
|
METHODDEF(void) |
|
color_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf, |
|
JSAMPARRAY output_buf, int num_rows) |
|
/* General case, no dithering */ |
|
{ |
|
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
|
JSAMPARRAY colorindex = cquantize->colorindex; |
|
register int pixcode, ci; |
|
register JSAMPROW ptrin, ptrout; |
|
int row; |
|
JDIMENSION col; |
|
JDIMENSION width = cinfo->output_width; |
|
register int nc = cinfo->out_color_components; |
|
|
|
for (row = 0; row < num_rows; row++) { |
|
ptrin = input_buf[row]; |
|
ptrout = output_buf[row]; |
|
for (col = width; col > 0; col--) { |
|
pixcode = 0; |
|
for (ci = 0; ci < nc; ci++) { |
|
pixcode += GETJSAMPLE(colorindex[ci][GETJSAMPLE(*ptrin++)]); |
|
} |
|
*ptrout++ = (JSAMPLE) pixcode; |
|
} |
|
} |
|
} |
|
|
|
|
|
METHODDEF(void) |
|
color_quantize3 (j_decompress_ptr cinfo, JSAMPARRAY input_buf, |
|
JSAMPARRAY output_buf, int num_rows) |
|
/* Fast path for out_color_components==3, no dithering */ |
|
{ |
|
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
|
register int pixcode; |
|
register JSAMPROW ptrin, ptrout; |
|
JSAMPROW colorindex0 = cquantize->colorindex[0]; |
|
JSAMPROW colorindex1 = cquantize->colorindex[1]; |
|
JSAMPROW colorindex2 = cquantize->colorindex[2]; |
|
int row; |
|
JDIMENSION col; |
|
JDIMENSION width = cinfo->output_width; |
|
|
|
for (row = 0; row < num_rows; row++) { |
|
ptrin = input_buf[row]; |
|
ptrout = output_buf[row]; |
|
for (col = width; col > 0; col--) { |
|
pixcode = GETJSAMPLE(colorindex0[GETJSAMPLE(*ptrin++)]); |
|
pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*ptrin++)]); |
|
pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*ptrin++)]); |
|
*ptrout++ = (JSAMPLE) pixcode; |
|
} |
|
} |
|
} |
|
|
|
|
|
METHODDEF(void) |
|
quantize_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf, |
|
JSAMPARRAY output_buf, int num_rows) |
|
/* General case, with ordered dithering */ |
|
{ |
|
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
|
register JSAMPROW input_ptr; |
|
register JSAMPROW output_ptr; |
|
JSAMPROW colorindex_ci; |
|
int * dither; /* points to active row of dither matrix */ |
|
int row_index, col_index; /* current indexes into dither matrix */ |
|
int nc = cinfo->out_color_components; |
|
int ci; |
|
int row; |
|
JDIMENSION col; |
|
JDIMENSION width = cinfo->output_width; |
|
|
|
for (row = 0; row < num_rows; row++) { |
|
/* Initialize output values to 0 so can process components separately */ |
|
FMEMZERO((void FAR *) output_buf[row], |
|
(size_t) (width * SIZEOF(JSAMPLE))); |
|
row_index = cquantize->row_index; |
|
for (ci = 0; ci < nc; ci++) { |
|
input_ptr = input_buf[row] + ci; |
|
output_ptr = output_buf[row]; |
|
colorindex_ci = cquantize->colorindex[ci]; |
|
dither = cquantize->odither[ci][row_index]; |
|
col_index = 0; |
|
|
|
for (col = width; col > 0; col--) { |
|
/* Form pixel value + dither, range-limit to 0..MAXJSAMPLE, |
|
* select output value, accumulate into output code for this pixel. |
|
* Range-limiting need not be done explicitly, as we have extended |
|
* the colorindex table to produce the right answers for out-of-range |
|
* inputs. The maximum dither is +- MAXJSAMPLE; this sets the |
|
* required amount of padding. |
|
*/ |
|
*output_ptr += colorindex_ci[GETJSAMPLE(*input_ptr)+dither[col_index]]; |
|
input_ptr += nc; |
|
output_ptr++; |
|
col_index = (col_index + 1) & ODITHER_MASK; |
|
} |
|
} |
|
/* Advance row index for next row */ |
|
row_index = (row_index + 1) & ODITHER_MASK; |
|
cquantize->row_index = row_index; |
|
} |
|
} |
|
|
|
|
|
METHODDEF(void) |
|
quantize3_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf, |
|
JSAMPARRAY output_buf, int num_rows) |
|
/* Fast path for out_color_components==3, with ordered dithering */ |
|
{ |
|
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
|
register int pixcode; |
|
register JSAMPROW input_ptr; |
|
register JSAMPROW output_ptr; |
|
JSAMPROW colorindex0 = cquantize->colorindex[0]; |
|
JSAMPROW colorindex1 = cquantize->colorindex[1]; |
|
JSAMPROW colorindex2 = cquantize->colorindex[2]; |
|
int * dither0; /* points to active row of dither matrix */ |
|
int * dither1; |
|
int * dither2; |
|
int row_index, col_index; /* current indexes into dither matrix */ |
|
int row; |
|
JDIMENSION col; |
|
JDIMENSION width = cinfo->output_width; |
|
|
|
for (row = 0; row < num_rows; row++) { |
|
row_index = cquantize->row_index; |
|
input_ptr = input_buf[row]; |
|
output_ptr = output_buf[row]; |
|
dither0 = cquantize->odither[0][row_index]; |
|
dither1 = cquantize->odither[1][row_index]; |
|
dither2 = cquantize->odither[2][row_index]; |
|
col_index = 0; |
|
|
|
for (col = width; col > 0; col--) { |
|
pixcode = GETJSAMPLE(colorindex0[GETJSAMPLE(*input_ptr++) + |
|
dither0[col_index]]); |
|
pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*input_ptr++) + |
|
dither1[col_index]]); |
|
pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*input_ptr++) + |
|
dither2[col_index]]); |
|
*output_ptr++ = (JSAMPLE) pixcode; |
|
col_index = (col_index + 1) & ODITHER_MASK; |
|
} |
|
row_index = (row_index + 1) & ODITHER_MASK; |
|
cquantize->row_index = row_index; |
|
} |
|
} |
|
|
|
|
|
METHODDEF(void) |
|
quantize_fs_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf, |
|
JSAMPARRAY output_buf, int num_rows) |
|
/* General case, with Floyd-Steinberg dithering */ |
|
{ |
|
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
|
register LOCFSERROR cur; /* current error or pixel value */ |
|
LOCFSERROR belowerr; /* error for pixel below cur */ |
|
LOCFSERROR bpreverr; /* error for below/prev col */ |
|
LOCFSERROR bnexterr; /* error for below/next col */ |
|
LOCFSERROR delta; |
|
register FSERRPTR errorptr; /* => fserrors[] at column before current */ |
|
register JSAMPROW input_ptr; |
|
register JSAMPROW output_ptr; |
|
JSAMPROW colorindex_ci; |
|
JSAMPROW colormap_ci; |
|
int pixcode; |
|
int nc = cinfo->out_color_components; |
|
int dir; /* 1 for left-to-right, -1 for right-to-left */ |
|
int dirnc; /* dir * nc */ |
|
int ci; |
|
int row; |
|
JDIMENSION col; |
|
JDIMENSION width = cinfo->output_width; |
|
JSAMPLE *range_limit = cinfo->sample_range_limit; |
|
SHIFT_TEMPS |
|
|
|
for (row = 0; row < num_rows; row++) { |
|
/* Initialize output values to 0 so can process components separately */ |
|
FMEMZERO((void FAR *) output_buf[row], |
|
(size_t) (width * SIZEOF(JSAMPLE))); |
|
for (ci = 0; ci < nc; ci++) { |
|
input_ptr = input_buf[row] + ci; |
|
output_ptr = output_buf[row]; |
|
if (cquantize->on_odd_row) { |
|
/* work right to left in this row */ |
|
input_ptr += (width-1) * nc; /* so point to rightmost pixel */ |
|
output_ptr += width-1; |
|
dir = -1; |
|
dirnc = -nc; |
|
errorptr = cquantize->fserrors[ci] + (width+1); /* => entry after last column */ |
|
} else { |
|
/* work left to right in this row */ |
|
dir = 1; |
|
dirnc = nc; |
|
errorptr = cquantize->fserrors[ci]; /* => entry before first column */ |
|
} |
|
colorindex_ci = cquantize->colorindex[ci]; |
|
colormap_ci = cquantize->sv_colormap[ci]; |
|
/* Preset error values: no error propagated to first pixel from left */ |
|
cur = 0; |
|
/* and no error propagated to row below yet */ |
|
belowerr = bpreverr = 0; |
|
|
|
for (col = width; col > 0; col--) { |
|
/* cur holds the error propagated from the previous pixel on the |
|
* current line. Add the error propagated from the previous line |
|
* to form the complete error correction term for this pixel, and |
|
* round the error term (which is expressed * 16) to an integer. |
|
* RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct |
|
* for either sign of the error value. |
|
* Note: errorptr points to *previous* column's array entry. |
|
*/ |
|
cur = RIGHT_SHIFT(cur + errorptr[dir] + 8, 4); |
|
/* Form pixel value + error, and range-limit to 0..MAXJSAMPLE. |
|
* The maximum error is +- MAXJSAMPLE; this sets the required size |
|
* of the range_limit array. |
|
*/ |
|
cur += GETJSAMPLE(*input_ptr); |
|
cur = GETJSAMPLE(range_limit[cur]); |
|
/* Select output value, accumulate into output code for this pixel */ |
|
pixcode = GETJSAMPLE(colorindex_ci[cur]); |
|
*output_ptr += (JSAMPLE) pixcode; |
|
/* Compute actual representation error at this pixel */ |
|
/* Note: we can do this even though we don't have the final */ |
|
/* pixel code, because the colormap is orthogonal. */ |
|
cur -= GETJSAMPLE(colormap_ci[pixcode]); |
|
/* Compute error fractions to be propagated to adjacent pixels. |
|
* Add these into the running sums, and simultaneously shift the |
|
* next-line error sums left by 1 column. |
|
*/ |
|
bnexterr = cur; |
|
delta = cur * 2; |
|
cur += delta; /* form error * 3 */ |
|
errorptr[0] = (FSERROR) (bpreverr + cur); |
|
cur += delta; /* form error * 5 */ |
|
bpreverr = belowerr + cur; |
|
belowerr = bnexterr; |
|
cur += delta; /* form error * 7 */ |
|
/* At this point cur contains the 7/16 error value to be propagated |
|
* to the next pixel on the current line, and all the errors for the |
|
* next line have been shifted over. We are therefore ready to move on. |
|
*/ |
|
input_ptr += dirnc; /* advance input ptr to next column */ |
|
output_ptr += dir; /* advance output ptr to next column */ |
|
errorptr += dir; /* advance errorptr to current column */ |
|
} |
|
/* Post-loop cleanup: we must unload the final error value into the |
|
* final fserrors[] entry. Note we need not unload belowerr because |
|
* it is for the dummy column before or after the actual array. |
|
*/ |
|
errorptr[0] = (FSERROR) bpreverr; /* unload prev err into array */ |
|
} |
|
cquantize->on_odd_row = (cquantize->on_odd_row ? FALSE : TRUE); |
|
} |
|
} |
|
|
|
|
|
/* |
|
* Allocate workspace for Floyd-Steinberg errors. |
|
*/ |
|
|
|
LOCAL(void) |
|
alloc_fs_workspace (j_decompress_ptr cinfo) |
|
{ |
|
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
|
size_t arraysize; |
|
int i; |
|
|
|
arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR)); |
|
for (i = 0; i < cinfo->out_color_components; i++) { |
|
cquantize->fserrors[i] = (FSERRPTR) |
|
(*cinfo->mem->alloc_large)((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize); |
|
} |
|
} |
|
|
|
|
|
/* |
|
* Initialize for one-pass color quantization. |
|
*/ |
|
|
|
METHODDEF(void) |
|
start_pass_1_quant (j_decompress_ptr cinfo, boolean is_pre_scan) |
|
{ |
|
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; |
|
size_t arraysize; |
|
int i; |
|
|
|
/* Install my colormap. */ |
|
cinfo->colormap = cquantize->sv_colormap; |
|
cinfo->actual_number_of_colors = cquantize->sv_actual; |
|
|
|
/* Initialize for desired dithering mode. */ |
|
switch (cinfo->dither_mode) { |
|
case JDITHER_NONE: |
|
if (cinfo->out_color_components == 3) |
|
cquantize->pub.color_quantize = color_quantize3; |
|
else |
|
cquantize->pub.color_quantize = color_quantize; |
|
break; |
|
case JDITHER_ORDERED: |
|
if (cinfo->out_color_components == 3) |
|
cquantize->pub.color_quantize = quantize3_ord_dither; |
|
else |
|
cquantize->pub.color_quantize = quantize_ord_dither; |
|
cquantize->row_index = 0; /* initialize state for ordered dither */ |
|
/* If user changed to ordered dither from another mode, |
|
* we must recreate the color index table with padding. |
|
* This will cost extra space, but probably isn't very likely. |
|
*/ |
|
if (! cquantize->is_padded) |
|
create_colorindex(cinfo); |
|
/* Create ordered-dither tables if we didn't already. */ |
|
if (cquantize->odither[0] == NULL) |
|
create_odither_tables(cinfo); |
|
break; |
|
case JDITHER_FS: |
|
cquantize->pub.color_quantize = quantize_fs_dither; |
|
cquantize->on_odd_row = FALSE; /* initialize state for F-S dither */ |
|
/* Allocate Floyd-Steinberg workspace if didn't already. */ |
|
if (cquantize->fserrors[0] == NULL) |
|
alloc_fs_workspace(cinfo); |
|
/* Initialize the propagated errors to zero. */ |
|
arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR)); |
|
for (i = 0; i < cinfo->out_color_components; i++) |
|
FMEMZERO((void FAR *) cquantize->fserrors[i], arraysize); |
|
break; |
|
default: |
|
ERREXIT(cinfo, JERR_NOT_COMPILED); |
|
break; |
|
} |
|
} |
|
|
|
|
|
/* |
|
* Finish up at the end of the pass. |
|
*/ |
|
|
|
METHODDEF(void) |
|
finish_pass_1_quant (j_decompress_ptr cinfo) |
|
{ |
|
/* no work in 1-pass case */ |
|
} |
|
|
|
|
|
/* |
|
* Switch to a new external colormap between output passes. |
|
* Shouldn't get to this module! |
|
*/ |
|
|
|
METHODDEF(void) |
|
new_color_map_1_quant (j_decompress_ptr cinfo) |
|
{ |
|
ERREXIT(cinfo, JERR_MODE_CHANGE); |
|
} |
|
|
|
|
|
/* |
|
* Module initialization routine for 1-pass color quantization. |
|
*/ |
|
|
|
GLOBAL(void) |
|
jinit_1pass_quantizer (j_decompress_ptr cinfo) |
|
{ |
|
my_cquantize_ptr cquantize; |
|
|
|
cquantize = (my_cquantize_ptr) |
|
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, |
|
SIZEOF(my_cquantizer)); |
|
cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize; |
|
cquantize->pub.start_pass = start_pass_1_quant; |
|
cquantize->pub.finish_pass = finish_pass_1_quant; |
|
cquantize->pub.new_color_map = new_color_map_1_quant; |
|
cquantize->fserrors[0] = NULL; /* Flag FS workspace not allocated */ |
|
cquantize->odither[0] = NULL; /* Also flag odither arrays not allocated */ |
|
|
|
/* Make sure my internal arrays won't overflow */ |
|
if (cinfo->out_color_components > MAX_Q_COMPS) |
|
ERREXIT1(cinfo, JERR_QUANT_COMPONENTS, MAX_Q_COMPS); |
|
/* Make sure colormap indexes can be represented by JSAMPLEs */ |
|
if (cinfo->desired_number_of_colors > (MAXJSAMPLE+1)) |
|
ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXJSAMPLE+1); |
|
|
|
/* Create the colormap and color index table. */ |
|
create_colormap(cinfo); |
|
create_colorindex(cinfo); |
|
|
|
/* Allocate Floyd-Steinberg workspace now if requested. |
|
* We do this now since it is FAR storage and may affect the memory |
|
* manager's space calculations. If the user changes to FS dither |
|
* mode in a later pass, we will allocate the space then, and will |
|
* possibly overrun the max_memory_to_use setting. |
|
*/ |
|
if (cinfo->dither_mode == JDITHER_FS) |
|
alloc_fs_workspace(cinfo); |
|
} |
|
|
|
#endif /* QUANT_1PASS_SUPPORTED */
|
|
|