mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
736 lines
23 KiB
736 lines
23 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// Intel License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of Intel Corporation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "test_precomp.hpp" |
|
|
|
#ifdef HAVE_CUDA |
|
|
|
using namespace cvtest; |
|
using namespace testing; |
|
|
|
int getValidMatchesCount(const std::vector<cv::KeyPoint>& keypoints1, const std::vector<cv::KeyPoint>& keypoints2, const std::vector<cv::DMatch>& matches) |
|
{ |
|
int validCount = 0; |
|
|
|
for (size_t i = 0; i < matches.size(); ++i) |
|
{ |
|
const cv::DMatch& m = matches[i]; |
|
|
|
const cv::KeyPoint& p1 = keypoints1[m.queryIdx]; |
|
const cv::KeyPoint& p2 = keypoints2[m.trainIdx]; |
|
|
|
const float maxPtDif = 1.f; |
|
const float maxSizeDif = 1.f; |
|
const float maxAngleDif = 2.f; |
|
const float maxResponseDif = 0.1f; |
|
|
|
float dist = (float) cv::norm(p1.pt - p2.pt); |
|
|
|
if (dist < maxPtDif && |
|
fabs(p1.size - p2.size) < maxSizeDif && |
|
abs(p1.angle - p2.angle) < maxAngleDif && |
|
abs(p1.response - p2.response) < maxResponseDif && |
|
p1.octave == p2.octave && |
|
p1.class_id == p2.class_id) |
|
{ |
|
++validCount; |
|
} |
|
} |
|
|
|
return validCount; |
|
} |
|
|
|
///////////////////////////////////////////////////////////////////////////////////////////////// |
|
// SURF |
|
|
|
struct SURF : TestWithParam<cv::gpu::DeviceInfo> |
|
{ |
|
cv::gpu::DeviceInfo devInfo; |
|
|
|
cv::Mat image; |
|
cv::Mat mask; |
|
|
|
std::vector<cv::KeyPoint> keypoints_gold; |
|
std::vector<float> descriptors_gold; |
|
|
|
virtual void SetUp() |
|
{ |
|
devInfo = GetParam(); |
|
|
|
cv::gpu::setDevice(devInfo.deviceID()); |
|
|
|
image = readImage("features2d/aloe.png", CV_LOAD_IMAGE_GRAYSCALE); |
|
ASSERT_FALSE(image.empty()); |
|
|
|
mask = cv::Mat(image.size(), CV_8UC1, cv::Scalar::all(1)); |
|
mask(cv::Range(0, image.rows / 2), cv::Range(0, image.cols / 2)).setTo(cv::Scalar::all(0)); |
|
|
|
cv::SURF fdetector_gold; |
|
fdetector_gold.extended = false; |
|
fdetector_gold(image, mask, keypoints_gold, descriptors_gold); |
|
} |
|
}; |
|
|
|
TEST_P(SURF, EmptyDataTest) |
|
{ |
|
cv::gpu::SURF_GPU fdetector; |
|
|
|
cv::gpu::GpuMat image; |
|
std::vector<cv::KeyPoint> keypoints; |
|
std::vector<float> descriptors; |
|
|
|
ASSERT_NO_THROW( |
|
fdetector(image, cv::gpu::GpuMat(), keypoints, descriptors); |
|
); |
|
|
|
EXPECT_TRUE(keypoints.empty()); |
|
EXPECT_TRUE(descriptors.empty()); |
|
} |
|
|
|
TEST_P(SURF, Accuracy) |
|
{ |
|
std::vector<cv::KeyPoint> keypoints; |
|
cv::Mat descriptors; |
|
|
|
ASSERT_NO_THROW( |
|
cv::gpu::GpuMat dev_descriptors; |
|
cv::gpu::SURF_GPU fdetector; fdetector.extended = false; |
|
|
|
fdetector(loadMat(image), loadMat(mask), keypoints, dev_descriptors); |
|
|
|
dev_descriptors.download(descriptors); |
|
); |
|
|
|
cv::BruteForceMatcher< cv::L2<float> > matcher; |
|
std::vector<cv::DMatch> matches; |
|
|
|
matcher.match(cv::Mat(static_cast<int>(keypoints_gold.size()), 64, CV_32FC1, &descriptors_gold[0]), descriptors, matches); |
|
|
|
int validCount = getValidMatchesCount(keypoints_gold, keypoints, matches); |
|
|
|
double validRatio = (double) validCount / matches.size(); |
|
|
|
EXPECT_GT(validRatio, 0.5); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(Features2D, SURF, DEVICES(cv::gpu::GLOBAL_ATOMICS)); |
|
|
|
///////////////////////////////////////////////////////////////////////////////////////////////// |
|
// BruteForceMatcher |
|
|
|
PARAM_TEST_CASE(BruteForceMatcher, cv::gpu::DeviceInfo, DistType, int) |
|
{ |
|
cv::gpu::DeviceInfo devInfo; |
|
cv::gpu::BruteForceMatcher_GPU_base::DistType distType; |
|
int dim; |
|
|
|
int queryDescCount; |
|
int countFactor; |
|
|
|
cv::Mat query, train; |
|
|
|
virtual void SetUp() |
|
{ |
|
devInfo = GET_PARAM(0); |
|
distType = (cv::gpu::BruteForceMatcher_GPU_base::DistType)(int)GET_PARAM(1); |
|
dim = GET_PARAM(2); |
|
|
|
cv::gpu::setDevice(devInfo.deviceID()); |
|
|
|
queryDescCount = 300; // must be even number because we split train data in some cases in two |
|
countFactor = 4; // do not change it |
|
|
|
cv::RNG& rng = cvtest::TS::ptr()->get_rng(); |
|
|
|
cv::Mat queryBuf, trainBuf; |
|
|
|
// Generate query descriptors randomly. |
|
// Descriptor vector elements are integer values. |
|
queryBuf.create(queryDescCount, dim, CV_32SC1); |
|
rng.fill(queryBuf, cv::RNG::UNIFORM, cv::Scalar::all(0), cv::Scalar::all(3)); |
|
queryBuf.convertTo(queryBuf, CV_32FC1); |
|
|
|
// Generate train decriptors as follows: |
|
// copy each query descriptor to train set countFactor times |
|
// and perturb some one element of the copied descriptors in |
|
// in ascending order. General boundaries of the perturbation |
|
// are (0.f, 1.f). |
|
trainBuf.create(queryDescCount * countFactor, dim, CV_32FC1); |
|
float step = 1.f / countFactor; |
|
for (int qIdx = 0; qIdx < queryDescCount; qIdx++) |
|
{ |
|
cv::Mat queryDescriptor = queryBuf.row(qIdx); |
|
for (int c = 0; c < countFactor; c++) |
|
{ |
|
int tIdx = qIdx * countFactor + c; |
|
cv::Mat trainDescriptor = trainBuf.row(tIdx); |
|
queryDescriptor.copyTo(trainDescriptor); |
|
int elem = rng(dim); |
|
float diff = rng.uniform(step * c, step * (c + 1)); |
|
trainDescriptor.at<float>(0, elem) += diff; |
|
} |
|
} |
|
|
|
queryBuf.convertTo(query, CV_32F); |
|
trainBuf.convertTo(train, CV_32F); |
|
} |
|
}; |
|
|
|
TEST_P(BruteForceMatcher, Match) |
|
{ |
|
std::vector<cv::DMatch> matches; |
|
|
|
ASSERT_NO_THROW( |
|
cv::gpu::BruteForceMatcher_GPU_base matcher(distType); |
|
|
|
matcher.match(loadMat(query), loadMat(train), matches); |
|
); |
|
|
|
ASSERT_EQ(queryDescCount, matches.size()); |
|
|
|
int badCount = 0; |
|
for (size_t i = 0; i < matches.size(); i++) |
|
{ |
|
cv::DMatch match = matches[i]; |
|
if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i * countFactor) || (match.imgIdx != 0)) |
|
badCount++; |
|
} |
|
|
|
ASSERT_EQ(0, badCount); |
|
} |
|
|
|
|
|
TEST_P(BruteForceMatcher, MatchAdd) |
|
{ |
|
std::vector<cv::DMatch> matches; |
|
|
|
bool isMaskSupported; |
|
|
|
ASSERT_NO_THROW( |
|
cv::gpu::BruteForceMatcher_GPU_base matcher(distType); |
|
|
|
cv::gpu::GpuMat d_train(train); |
|
|
|
// make add() twice to test such case |
|
matcher.add(std::vector<cv::gpu::GpuMat>(1, d_train.rowRange(0, train.rows/2))); |
|
matcher.add(std::vector<cv::gpu::GpuMat>(1, d_train.rowRange(train.rows/2, train.rows))); |
|
|
|
// prepare masks (make first nearest match illegal) |
|
std::vector<cv::gpu::GpuMat> masks(2); |
|
for (int mi = 0; mi < 2; mi++) |
|
{ |
|
masks[mi] = cv::gpu::GpuMat(query.rows, train.rows/2, CV_8UC1, cv::Scalar::all(1)); |
|
for (int di = 0; di < queryDescCount/2; di++) |
|
masks[mi].col(di * countFactor).setTo(cv::Scalar::all(0)); |
|
} |
|
|
|
matcher.match(cv::gpu::GpuMat(query), matches, masks); |
|
|
|
isMaskSupported = matcher.isMaskSupported(); |
|
); |
|
|
|
ASSERT_EQ(queryDescCount, matches.size()); |
|
|
|
int badCount = 0; |
|
for (size_t i = 0; i < matches.size(); i++) |
|
{ |
|
cv::DMatch match = matches[i]; |
|
int shift = isMaskSupported ? 1 : 0; |
|
{ |
|
if (i < queryDescCount / 2) |
|
{ |
|
if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i * countFactor + shift) || (match.imgIdx != 0)) |
|
badCount++; |
|
} |
|
else |
|
{ |
|
if ((match.queryIdx != (int)i) || (match.trainIdx != ((int)i - queryDescCount / 2) * countFactor + shift) || (match.imgIdx != 1)) |
|
badCount++; |
|
} |
|
} |
|
} |
|
|
|
ASSERT_EQ(0, badCount); |
|
} |
|
|
|
TEST_P(BruteForceMatcher, KnnMatch2) |
|
{ |
|
const int knn = 2; |
|
|
|
std::vector< std::vector<cv::DMatch> > matches; |
|
|
|
ASSERT_NO_THROW( |
|
cv::gpu::BruteForceMatcher_GPU_base matcher(distType); |
|
matcher.knnMatch(loadMat(query), loadMat(train), matches, knn); |
|
); |
|
|
|
ASSERT_EQ(queryDescCount, matches.size()); |
|
|
|
int badCount = 0; |
|
for (size_t i = 0; i < matches.size(); i++) |
|
{ |
|
if ((int)matches[i].size() != knn) |
|
badCount++; |
|
else |
|
{ |
|
int localBadCount = 0; |
|
for (int k = 0; k < knn; k++) |
|
{ |
|
cv::DMatch match = matches[i][k]; |
|
if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i * countFactor + k) || (match.imgIdx != 0)) |
|
localBadCount++; |
|
} |
|
badCount += localBadCount > 0 ? 1 : 0; |
|
} |
|
} |
|
|
|
ASSERT_EQ(0, badCount); |
|
} |
|
|
|
TEST_P(BruteForceMatcher, KnnMatch3) |
|
{ |
|
const int knn = 3; |
|
|
|
std::vector< std::vector<cv::DMatch> > matches; |
|
|
|
ASSERT_NO_THROW( |
|
cv::gpu::BruteForceMatcher_GPU_base matcher(distType); |
|
matcher.knnMatch(loadMat(query), loadMat(train), matches, knn); |
|
); |
|
|
|
ASSERT_EQ(queryDescCount, matches.size()); |
|
|
|
int badCount = 0; |
|
for (size_t i = 0; i < matches.size(); i++) |
|
{ |
|
if ((int)matches[i].size() != knn) |
|
badCount++; |
|
else |
|
{ |
|
int localBadCount = 0; |
|
for (int k = 0; k < knn; k++) |
|
{ |
|
cv::DMatch match = matches[i][k]; |
|
if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i * countFactor + k) || (match.imgIdx != 0)) |
|
localBadCount++; |
|
} |
|
badCount += localBadCount > 0 ? 1 : 0; |
|
} |
|
} |
|
|
|
ASSERT_EQ(0, badCount); |
|
} |
|
|
|
TEST_P(BruteForceMatcher, KnnMatchAdd2) |
|
{ |
|
const int knn = 2; |
|
std::vector< std::vector<cv::DMatch> > matches; |
|
|
|
bool isMaskSupported; |
|
|
|
ASSERT_NO_THROW( |
|
cv::gpu::BruteForceMatcher_GPU_base matcher(distType); |
|
|
|
cv::gpu::GpuMat d_train(train); |
|
|
|
// make add() twice to test such case |
|
matcher.add(std::vector<cv::gpu::GpuMat>(1, d_train.rowRange(0, train.rows / 2))); |
|
matcher.add(std::vector<cv::gpu::GpuMat>(1, d_train.rowRange(train.rows / 2, train.rows))); |
|
|
|
// prepare masks (make first nearest match illegal) |
|
std::vector<cv::gpu::GpuMat> masks(2); |
|
for (int mi = 0; mi < 2; mi++ ) |
|
{ |
|
masks[mi] = cv::gpu::GpuMat(query.rows, train.rows / 2, CV_8UC1, cv::Scalar::all(1)); |
|
for (int di = 0; di < queryDescCount / 2; di++) |
|
masks[mi].col(di * countFactor).setTo(cv::Scalar::all(0)); |
|
} |
|
|
|
matcher.knnMatch(cv::gpu::GpuMat(query), matches, knn, masks); |
|
|
|
isMaskSupported = matcher.isMaskSupported(); |
|
); |
|
|
|
ASSERT_EQ(queryDescCount, matches.size()); |
|
|
|
int badCount = 0; |
|
int shift = isMaskSupported ? 1 : 0; |
|
for (size_t i = 0; i < matches.size(); i++) |
|
{ |
|
if ((int)matches[i].size() != knn) |
|
badCount++; |
|
else |
|
{ |
|
int localBadCount = 0; |
|
for (int k = 0; k < knn; k++) |
|
{ |
|
cv::DMatch match = matches[i][k]; |
|
{ |
|
if (i < queryDescCount / 2) |
|
{ |
|
if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i * countFactor + k + shift) || (match.imgIdx != 0) ) |
|
localBadCount++; |
|
} |
|
else |
|
{ |
|
if ((match.queryIdx != (int)i) || (match.trainIdx != ((int)i - queryDescCount / 2) * countFactor + k + shift) || (match.imgIdx != 1) ) |
|
localBadCount++; |
|
} |
|
} |
|
} |
|
badCount += localBadCount > 0 ? 1 : 0; |
|
} |
|
} |
|
|
|
ASSERT_EQ(0, badCount); |
|
} |
|
|
|
TEST_P(BruteForceMatcher, KnnMatchAdd3) |
|
{ |
|
const int knn = 3; |
|
std::vector< std::vector<cv::DMatch> > matches; |
|
|
|
bool isMaskSupported; |
|
|
|
ASSERT_NO_THROW( |
|
cv::gpu::BruteForceMatcher_GPU_base matcher(distType); |
|
|
|
cv::gpu::GpuMat d_train(train); |
|
|
|
// make add() twice to test such case |
|
matcher.add(std::vector<cv::gpu::GpuMat>(1, d_train.rowRange(0, train.rows / 2))); |
|
matcher.add(std::vector<cv::gpu::GpuMat>(1, d_train.rowRange(train.rows / 2, train.rows))); |
|
|
|
// prepare masks (make first nearest match illegal) |
|
std::vector<cv::gpu::GpuMat> masks(2); |
|
for (int mi = 0; mi < 2; mi++ ) |
|
{ |
|
masks[mi] = cv::gpu::GpuMat(query.rows, train.rows / 2, CV_8UC1, cv::Scalar::all(1)); |
|
for (int di = 0; di < queryDescCount / 2; di++) |
|
masks[mi].col(di * countFactor).setTo(cv::Scalar::all(0)); |
|
} |
|
|
|
matcher.knnMatch(cv::gpu::GpuMat(query), matches, knn, masks); |
|
|
|
isMaskSupported = matcher.isMaskSupported(); |
|
); |
|
|
|
ASSERT_EQ(queryDescCount, matches.size()); |
|
|
|
int badCount = 0; |
|
int shift = isMaskSupported ? 1 : 0; |
|
for (size_t i = 0; i < matches.size(); i++) |
|
{ |
|
if ((int)matches[i].size() != knn) |
|
badCount++; |
|
else |
|
{ |
|
int localBadCount = 0; |
|
for (int k = 0; k < knn; k++) |
|
{ |
|
cv::DMatch match = matches[i][k]; |
|
{ |
|
if (i < queryDescCount / 2) |
|
{ |
|
if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i * countFactor + k + shift) || (match.imgIdx != 0) ) |
|
localBadCount++; |
|
} |
|
else |
|
{ |
|
if ((match.queryIdx != (int)i) || (match.trainIdx != ((int)i - queryDescCount / 2) * countFactor + k + shift) || (match.imgIdx != 1) ) |
|
localBadCount++; |
|
} |
|
} |
|
} |
|
badCount += localBadCount > 0 ? 1 : 0; |
|
} |
|
} |
|
|
|
ASSERT_EQ(0, badCount); |
|
} |
|
|
|
TEST_P(BruteForceMatcher, RadiusMatch) |
|
{ |
|
if (!supportFeature(devInfo, cv::gpu::SHARED_ATOMICS)) |
|
return; |
|
|
|
const float radius = 1.f / countFactor; |
|
|
|
|
|
std::vector< std::vector<cv::DMatch> > matches; |
|
|
|
ASSERT_NO_THROW( |
|
cv::gpu::BruteForceMatcher_GPU_base matcher(distType); |
|
|
|
matcher.radiusMatch(loadMat(query), loadMat(train), matches, radius); |
|
); |
|
|
|
ASSERT_EQ(queryDescCount, matches.size()); |
|
|
|
int badCount = 0; |
|
for (size_t i = 0; i < matches.size(); i++) |
|
{ |
|
if ((int)matches[i].size() != 1) |
|
badCount++; |
|
else |
|
{ |
|
cv::DMatch match = matches[i][0]; |
|
if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i*countFactor) || (match.imgIdx != 0)) |
|
badCount++; |
|
} |
|
} |
|
|
|
ASSERT_EQ(0, badCount); |
|
} |
|
|
|
TEST_P(BruteForceMatcher, RadiusMatchAdd) |
|
{ |
|
if (!supportFeature(devInfo, cv::gpu::SHARED_ATOMICS)) |
|
return; |
|
|
|
int n = 3; |
|
const float radius = 1.f / countFactor * n; |
|
|
|
std::vector< std::vector<cv::DMatch> > matches; |
|
|
|
bool isMaskSupported; |
|
|
|
ASSERT_NO_THROW( |
|
cv::gpu::BruteForceMatcher_GPU_base matcher(distType); |
|
|
|
cv::gpu::GpuMat d_train(train); |
|
|
|
// make add() twice to test such case |
|
matcher.add(std::vector<cv::gpu::GpuMat>(1, d_train.rowRange(0, train.rows / 2))); |
|
matcher.add(std::vector<cv::gpu::GpuMat>(1, d_train.rowRange(train.rows / 2, train.rows))); |
|
|
|
// prepare masks (make first nearest match illegal) |
|
std::vector<cv::gpu::GpuMat> masks(2); |
|
for (int mi = 0; mi < 2; mi++) |
|
{ |
|
masks[mi] = cv::gpu::GpuMat(query.rows, train.rows / 2, CV_8UC1, cv::Scalar::all(1)); |
|
for (int di = 0; di < queryDescCount / 2; di++) |
|
masks[mi].col(di * countFactor).setTo(cv::Scalar::all(0)); |
|
} |
|
|
|
matcher.radiusMatch(cv::gpu::GpuMat(query), matches, radius, masks); |
|
|
|
isMaskSupported = matcher.isMaskSupported(); |
|
); |
|
|
|
ASSERT_EQ(queryDescCount, matches.size()); |
|
|
|
int badCount = 0; |
|
int shift = isMaskSupported ? 1 : 0; |
|
int needMatchCount = isMaskSupported ? n-1 : n; |
|
for (size_t i = 0; i < matches.size(); i++) |
|
{ |
|
if ((int)matches[i].size() != needMatchCount) |
|
badCount++; |
|
else |
|
{ |
|
int localBadCount = 0; |
|
for (int k = 0; k < needMatchCount; k++) |
|
{ |
|
cv::DMatch match = matches[i][k]; |
|
{ |
|
if (i < queryDescCount / 2) |
|
{ |
|
if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i * countFactor + k + shift) || (match.imgIdx != 0) ) |
|
localBadCount++; |
|
} |
|
else |
|
{ |
|
if ((match.queryIdx != (int)i) || (match.trainIdx != ((int)i - queryDescCount / 2) * countFactor + k + shift) || (match.imgIdx != 1) ) |
|
localBadCount++; |
|
} |
|
} |
|
} |
|
badCount += localBadCount > 0 ? 1 : 0; |
|
} |
|
} |
|
|
|
ASSERT_EQ(0, badCount); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(Features2D, BruteForceMatcher, Combine( |
|
ALL_DEVICES, |
|
Values(cv::gpu::BruteForceMatcher_GPU_base::L1Dist, cv::gpu::BruteForceMatcher_GPU_base::L2Dist), |
|
Values(57, 64, 83, 128, 179, 256, 304))); |
|
|
|
///////////////////////////////////////////////////////////////////////////////////////////////// |
|
// FAST |
|
|
|
struct FAST : TestWithParam<cv::gpu::DeviceInfo> |
|
{ |
|
cv::gpu::DeviceInfo devInfo; |
|
|
|
cv::Mat image; |
|
|
|
int threshold; |
|
|
|
std::vector<cv::KeyPoint> keypoints_gold; |
|
|
|
virtual void SetUp() |
|
{ |
|
devInfo = GetParam(); |
|
|
|
cv::gpu::setDevice(devInfo.deviceID()); |
|
|
|
image = readImage("features2d/aloe.png", CV_LOAD_IMAGE_GRAYSCALE); |
|
ASSERT_FALSE(image.empty()); |
|
|
|
cv::RNG& rng = cvtest::TS::ptr()->get_rng(); |
|
threshold = 30; |
|
|
|
cv::FAST(image, keypoints_gold, threshold); |
|
} |
|
}; |
|
|
|
struct HashEq |
|
{ |
|
size_t hash; |
|
inline HashEq(size_t hash_) : hash(hash_) {} |
|
inline bool operator ()(const cv::KeyPoint& kp) const |
|
{ |
|
return kp.hash() == hash; |
|
} |
|
}; |
|
|
|
struct KeyPointCompare |
|
{ |
|
inline bool operator ()(const cv::KeyPoint& kp1, const cv::KeyPoint& kp2) const |
|
{ |
|
return kp1.pt.y < kp2.pt.y || (kp1.pt.y == kp2.pt.y && kp1.pt.x < kp2.pt.x); |
|
} |
|
}; |
|
|
|
TEST_P(FAST, Accuracy) |
|
{ |
|
std::vector<cv::KeyPoint> keypoints; |
|
|
|
ASSERT_NO_THROW( |
|
cv::gpu::FAST_GPU fastGPU(threshold); |
|
|
|
fastGPU(cv::gpu::GpuMat(image), cv::gpu::GpuMat(), keypoints); |
|
); |
|
|
|
ASSERT_EQ(keypoints.size(), keypoints_gold.size()); |
|
|
|
std::sort(keypoints.begin(), keypoints.end(), KeyPointCompare()); |
|
|
|
for (size_t i = 0; i < keypoints_gold.size(); ++i) |
|
{ |
|
const cv::KeyPoint& kp1 = keypoints[i]; |
|
const cv::KeyPoint& kp2 = keypoints_gold[i]; |
|
|
|
size_t h1 = kp1.hash(); |
|
size_t h2 = kp2.hash(); |
|
|
|
ASSERT_EQ(h1, h2); |
|
} |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(Features2D, FAST, DEVICES(cv::gpu::GLOBAL_ATOMICS)); |
|
|
|
///////////////////////////////////////////////////////////////////////////////////////////////// |
|
// ORB |
|
|
|
struct ORB : TestWithParam<cv::gpu::DeviceInfo> |
|
{ |
|
cv::gpu::DeviceInfo devInfo; |
|
|
|
cv::Mat image; |
|
cv::Mat mask; |
|
|
|
int npoints; |
|
|
|
std::vector<cv::KeyPoint> keypoints_gold; |
|
cv::Mat descriptors_gold; |
|
|
|
virtual void SetUp() |
|
{ |
|
devInfo = GetParam(); |
|
|
|
cv::gpu::setDevice(devInfo.deviceID()); |
|
|
|
image = readImage("features2d/aloe.png", CV_LOAD_IMAGE_GRAYSCALE); |
|
ASSERT_FALSE(image.empty()); |
|
|
|
mask = cv::Mat(image.size(), CV_8UC1, cv::Scalar::all(1)); |
|
mask(cv::Range(0, image.rows / 2), cv::Range(0, image.cols / 2)).setTo(cv::Scalar::all(0)); |
|
|
|
npoints = 1000; |
|
|
|
cv::ORB orbCPU(npoints); |
|
|
|
orbCPU(image, mask, keypoints_gold, descriptors_gold); |
|
} |
|
}; |
|
|
|
TEST_P(ORB, Accuracy) |
|
{ |
|
std::vector<cv::KeyPoint> keypoints; |
|
cv::Mat descriptors; |
|
|
|
ASSERT_NO_THROW( |
|
cv::gpu::ORB_GPU orbGPU(npoints); |
|
cv::gpu::GpuMat d_descriptors; |
|
|
|
orbGPU(cv::gpu::GpuMat(image), cv::gpu::GpuMat(mask), keypoints, d_descriptors); |
|
|
|
d_descriptors.download(descriptors); |
|
); |
|
|
|
cv::BruteForceMatcher<cv::Hamming> matcher; |
|
std::vector<cv::DMatch> matches; |
|
|
|
matcher.match(descriptors_gold, descriptors, matches); |
|
|
|
int count = getValidMatchesCount(keypoints_gold, keypoints, matches); |
|
double ratio = (double) count / matches.size(); |
|
|
|
ASSERT_GE(ratio, 0.65); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(Features2D, ORB, DEVICES(cv::gpu::GLOBAL_ATOMICS)); |
|
|
|
#endif // HAVE_CUDA
|
|
|