mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
419 lines
17 KiB
419 lines
17 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#ifndef _OPENCV_FLANN_HPP_ |
|
#define _OPENCV_FLANN_HPP_ |
|
|
|
#ifdef __cplusplus |
|
|
|
#include "opencv2/core/types_c.h" |
|
#include "opencv2/core/core.hpp" |
|
#include "opencv2/flann/flann_base.hpp" |
|
#include "opencv2/flann/miniflann.hpp" |
|
|
|
namespace cvflann |
|
{ |
|
CV_EXPORTS flann_distance_t flann_distance_type(); |
|
FLANN_DEPRECATED CV_EXPORTS void set_distance_type(flann_distance_t distance_type, int order); |
|
} |
|
|
|
|
|
namespace cv |
|
{ |
|
namespace flann |
|
{ |
|
|
|
template <typename T> struct CvType {}; |
|
template <> struct CvType<unsigned char> { static int type() { return CV_8U; } }; |
|
template <> struct CvType<char> { static int type() { return CV_8S; } }; |
|
template <> struct CvType<unsigned short> { static int type() { return CV_16U; } }; |
|
template <> struct CvType<short> { static int type() { return CV_16S; } }; |
|
template <> struct CvType<int> { static int type() { return CV_32S; } }; |
|
template <> struct CvType<float> { static int type() { return CV_32F; } }; |
|
template <> struct CvType<double> { static int type() { return CV_64F; } }; |
|
|
|
|
|
// bring the flann parameters into this namespace |
|
using ::cvflann::get_param; |
|
using ::cvflann::print_params; |
|
|
|
// bring the flann distances into this namespace |
|
using ::cvflann::L2_Simple; |
|
using ::cvflann::L2; |
|
using ::cvflann::L1; |
|
using ::cvflann::MinkowskiDistance; |
|
using ::cvflann::MaxDistance; |
|
using ::cvflann::HammingLUT; |
|
using ::cvflann::Hamming; |
|
using ::cvflann::Hamming2; |
|
using ::cvflann::HistIntersectionDistance; |
|
using ::cvflann::HellingerDistance; |
|
using ::cvflann::ChiSquareDistance; |
|
using ::cvflann::KL_Divergence; |
|
|
|
|
|
|
|
template <typename Distance> |
|
class GenericIndex |
|
{ |
|
public: |
|
typedef typename Distance::ElementType ElementType; |
|
typedef typename Distance::ResultType DistanceType; |
|
|
|
GenericIndex(const Mat& features, const ::cvflann::IndexParams& params, Distance distance = Distance()); |
|
|
|
~GenericIndex(); |
|
|
|
void knnSearch(const vector<ElementType>& query, vector<int>& indices, |
|
vector<DistanceType>& dists, int knn, const ::cvflann::SearchParams& params); |
|
void knnSearch(const Mat& queries, Mat& indices, Mat& dists, int knn, const ::cvflann::SearchParams& params); |
|
|
|
int radiusSearch(const vector<ElementType>& query, vector<int>& indices, |
|
vector<DistanceType>& dists, DistanceType radius, const ::cvflann::SearchParams& params); |
|
int radiusSearch(const Mat& query, Mat& indices, Mat& dists, |
|
DistanceType radius, const ::cvflann::SearchParams& params); |
|
|
|
void save(std::string filename) { nnIndex->save(filename); } |
|
|
|
int veclen() const { return nnIndex->veclen(); } |
|
|
|
int size() const { return nnIndex->size(); } |
|
|
|
::cvflann::IndexParams getParameters() { return nnIndex->getParameters(); } |
|
|
|
FLANN_DEPRECATED const ::cvflann::IndexParams* getIndexParameters() { return nnIndex->getIndexParameters(); } |
|
|
|
private: |
|
::cvflann::Index<Distance>* nnIndex; |
|
}; |
|
|
|
|
|
#define FLANN_DISTANCE_CHECK \ |
|
if ( ::cvflann::flann_distance_type() != cvflann::FLANN_DIST_L2) { \ |
|
printf("[WARNING] You are using cv::flann::Index (or cv::flann::GenericIndex) and have also changed "\ |
|
"the distance using cvflann::set_distance_type. This is no longer working as expected "\ |
|
"(cv::flann::Index always uses L2). You should create the index templated on the distance, "\ |
|
"for example for L1 distance use: GenericIndex< L1<float> > \n"); \ |
|
} |
|
|
|
|
|
template <typename Distance> |
|
GenericIndex<Distance>::GenericIndex(const Mat& dataset, const ::cvflann::IndexParams& params, Distance distance) |
|
{ |
|
CV_Assert(dataset.type() == CvType<ElementType>::type()); |
|
CV_Assert(dataset.isContinuous()); |
|
::cvflann::Matrix<ElementType> m_dataset((ElementType*)dataset.ptr<ElementType>(0), dataset.rows, dataset.cols); |
|
|
|
nnIndex = new ::cvflann::Index<Distance>(m_dataset, params, distance); |
|
|
|
FLANN_DISTANCE_CHECK |
|
|
|
nnIndex->buildIndex(); |
|
} |
|
|
|
template <typename Distance> |
|
GenericIndex<Distance>::~GenericIndex() |
|
{ |
|
delete nnIndex; |
|
} |
|
|
|
template <typename Distance> |
|
void GenericIndex<Distance>::knnSearch(const vector<ElementType>& query, vector<int>& indices, vector<DistanceType>& dists, int knn, const ::cvflann::SearchParams& searchParams) |
|
{ |
|
::cvflann::Matrix<ElementType> m_query((ElementType*)&query[0], 1, query.size()); |
|
::cvflann::Matrix<int> m_indices(&indices[0], 1, indices.size()); |
|
::cvflann::Matrix<DistanceType> m_dists(&dists[0], 1, dists.size()); |
|
|
|
FLANN_DISTANCE_CHECK |
|
|
|
nnIndex->knnSearch(m_query,m_indices,m_dists,knn,searchParams); |
|
} |
|
|
|
|
|
template <typename Distance> |
|
void GenericIndex<Distance>::knnSearch(const Mat& queries, Mat& indices, Mat& dists, int knn, const ::cvflann::SearchParams& searchParams) |
|
{ |
|
CV_Assert(queries.type() == CvType<ElementType>::type()); |
|
CV_Assert(queries.isContinuous()); |
|
::cvflann::Matrix<ElementType> m_queries((ElementType*)queries.ptr<ElementType>(0), queries.rows, queries.cols); |
|
|
|
CV_Assert(indices.type() == CV_32S); |
|
CV_Assert(indices.isContinuous()); |
|
::cvflann::Matrix<int> m_indices((int*)indices.ptr<int>(0), indices.rows, indices.cols); |
|
|
|
CV_Assert(dists.type() == CvType<DistanceType>::type()); |
|
CV_Assert(dists.isContinuous()); |
|
::cvflann::Matrix<DistanceType> m_dists((DistanceType*)dists.ptr<DistanceType>(0), dists.rows, dists.cols); |
|
|
|
FLANN_DISTANCE_CHECK |
|
|
|
nnIndex->knnSearch(m_queries,m_indices,m_dists,knn, searchParams); |
|
} |
|
|
|
template <typename Distance> |
|
int GenericIndex<Distance>::radiusSearch(const vector<ElementType>& query, vector<int>& indices, vector<DistanceType>& dists, DistanceType radius, const ::cvflann::SearchParams& searchParams) |
|
{ |
|
::cvflann::Matrix<ElementType> m_query((ElementType*)&query[0], 1, query.size()); |
|
::cvflann::Matrix<int> m_indices(&indices[0], 1, indices.size()); |
|
::cvflann::Matrix<DistanceType> m_dists(&dists[0], 1, dists.size()); |
|
|
|
FLANN_DISTANCE_CHECK |
|
|
|
return nnIndex->radiusSearch(m_query,m_indices,m_dists,radius,searchParams); |
|
} |
|
|
|
template <typename Distance> |
|
int GenericIndex<Distance>::radiusSearch(const Mat& query, Mat& indices, Mat& dists, DistanceType radius, const ::cvflann::SearchParams& searchParams) |
|
{ |
|
CV_Assert(query.type() == CvType<ElementType>::type()); |
|
CV_Assert(query.isContinuous()); |
|
::cvflann::Matrix<ElementType> m_query((ElementType*)query.ptr<ElementType>(0), query.rows, query.cols); |
|
|
|
CV_Assert(indices.type() == CV_32S); |
|
CV_Assert(indices.isContinuous()); |
|
::cvflann::Matrix<int> m_indices((int*)indices.ptr<int>(0), indices.rows, indices.cols); |
|
|
|
CV_Assert(dists.type() == CvType<DistanceType>::type()); |
|
CV_Assert(dists.isContinuous()); |
|
::cvflann::Matrix<DistanceType> m_dists((DistanceType*)dists.ptr<DistanceType>(0), dists.rows, dists.cols); |
|
|
|
FLANN_DISTANCE_CHECK |
|
|
|
return nnIndex->radiusSearch(m_query,m_indices,m_dists,radius,searchParams); |
|
} |
|
|
|
/** |
|
* @deprecated Use GenericIndex class instead |
|
*/ |
|
template <typename T> |
|
class FLANN_DEPRECATED Index_ { |
|
public: |
|
typedef typename L2<T>::ElementType ElementType; |
|
typedef typename L2<T>::ResultType DistanceType; |
|
|
|
Index_(const Mat& features, const ::cvflann::IndexParams& params); |
|
|
|
~Index_(); |
|
|
|
void knnSearch(const vector<ElementType>& query, vector<int>& indices, vector<DistanceType>& dists, int knn, const ::cvflann::SearchParams& params); |
|
void knnSearch(const Mat& queries, Mat& indices, Mat& dists, int knn, const ::cvflann::SearchParams& params); |
|
|
|
int radiusSearch(const vector<ElementType>& query, vector<int>& indices, vector<DistanceType>& dists, DistanceType radius, const ::cvflann::SearchParams& params); |
|
int radiusSearch(const Mat& query, Mat& indices, Mat& dists, DistanceType radius, const ::cvflann::SearchParams& params); |
|
|
|
void save(std::string filename) |
|
{ |
|
if (nnIndex_L1) nnIndex_L1->save(filename); |
|
if (nnIndex_L2) nnIndex_L2->save(filename); |
|
} |
|
|
|
int veclen() const |
|
{ |
|
if (nnIndex_L1) return nnIndex_L1->veclen(); |
|
if (nnIndex_L2) return nnIndex_L2->veclen(); |
|
} |
|
|
|
int size() const |
|
{ |
|
if (nnIndex_L1) return nnIndex_L1->size(); |
|
if (nnIndex_L2) return nnIndex_L2->size(); |
|
} |
|
|
|
::cvflann::IndexParams getParameters() |
|
{ |
|
if (nnIndex_L1) return nnIndex_L1->getParameters(); |
|
if (nnIndex_L2) return nnIndex_L2->getParameters(); |
|
|
|
} |
|
|
|
FLANN_DEPRECATED const ::cvflann::IndexParams* getIndexParameters() |
|
{ |
|
if (nnIndex_L1) return nnIndex_L1->getIndexParameters(); |
|
if (nnIndex_L2) return nnIndex_L2->getIndexParameters(); |
|
} |
|
|
|
private: |
|
// providing backwards compatibility for L2 and L1 distances (most common) |
|
::cvflann::Index< L2<ElementType> >* nnIndex_L2; |
|
::cvflann::Index< L1<ElementType> >* nnIndex_L1; |
|
}; |
|
|
|
|
|
template <typename T> |
|
Index_<T>::Index_(const Mat& dataset, const ::cvflann::IndexParams& params) |
|
{ |
|
printf("[WARNING] The cv::flann::Index_<T> class is deperecated, use cv::flann::GenericIndex<Distance> instead\n"); |
|
|
|
CV_Assert(dataset.type() == CvType<ElementType>::type()); |
|
CV_Assert(dataset.isContinuous()); |
|
::cvflann::Matrix<ElementType> m_dataset((ElementType*)dataset.ptr<ElementType>(0), dataset.rows, dataset.cols); |
|
|
|
if ( ::cvflann::flann_distance_type() == cvflann::FLANN_DIST_L2 ) { |
|
nnIndex_L1 = NULL; |
|
nnIndex_L2 = new ::cvflann::Index< L2<ElementType> >(m_dataset, params); |
|
} |
|
else if ( ::cvflann::flann_distance_type() == cvflann::FLANN_DIST_L1 ) { |
|
nnIndex_L1 = new ::cvflann::Index< L1<ElementType> >(m_dataset, params); |
|
nnIndex_L2 = NULL; |
|
} |
|
else { |
|
printf("[ERROR] cv::flann::Index_<T> only provides backwards compatibility for the L1 and L2 distances. " |
|
"For other distance types you must use cv::flann::GenericIndex<Distance>\n"); |
|
CV_Assert(0); |
|
} |
|
if (nnIndex_L1) nnIndex_L1->buildIndex(); |
|
if (nnIndex_L2) nnIndex_L2->buildIndex(); |
|
} |
|
|
|
template <typename T> |
|
Index_<T>::~Index_() |
|
{ |
|
if (nnIndex_L1) delete nnIndex_L1; |
|
if (nnIndex_L2) delete nnIndex_L2; |
|
} |
|
|
|
template <typename T> |
|
void Index_<T>::knnSearch(const vector<ElementType>& query, vector<int>& indices, vector<DistanceType>& dists, int knn, const ::cvflann::SearchParams& searchParams) |
|
{ |
|
::cvflann::Matrix<ElementType> m_query((ElementType*)&query[0], 1, query.size()); |
|
::cvflann::Matrix<int> m_indices(&indices[0], 1, indices.size()); |
|
::cvflann::Matrix<DistanceType> m_dists(&dists[0], 1, dists.size()); |
|
|
|
if (nnIndex_L1) nnIndex_L1->knnSearch(m_query,m_indices,m_dists,knn,searchParams); |
|
if (nnIndex_L2) nnIndex_L2->knnSearch(m_query,m_indices,m_dists,knn,searchParams); |
|
} |
|
|
|
|
|
template <typename T> |
|
void Index_<T>::knnSearch(const Mat& queries, Mat& indices, Mat& dists, int knn, const ::cvflann::SearchParams& searchParams) |
|
{ |
|
CV_Assert(queries.type() == CvType<ElementType>::type()); |
|
CV_Assert(queries.isContinuous()); |
|
::cvflann::Matrix<ElementType> m_queries((ElementType*)queries.ptr<ElementType>(0), queries.rows, queries.cols); |
|
|
|
CV_Assert(indices.type() == CV_32S); |
|
CV_Assert(indices.isContinuous()); |
|
::cvflann::Matrix<int> m_indices((int*)indices.ptr<int>(0), indices.rows, indices.cols); |
|
|
|
CV_Assert(dists.type() == CvType<DistanceType>::type()); |
|
CV_Assert(dists.isContinuous()); |
|
::cvflann::Matrix<DistanceType> m_dists((DistanceType*)dists.ptr<DistanceType>(0), dists.rows, dists.cols); |
|
|
|
if (nnIndex_L1) nnIndex_L1->knnSearch(m_queries,m_indices,m_dists,knn, searchParams); |
|
if (nnIndex_L2) nnIndex_L2->knnSearch(m_queries,m_indices,m_dists,knn, searchParams); |
|
} |
|
|
|
template <typename T> |
|
int Index_<T>::radiusSearch(const vector<ElementType>& query, vector<int>& indices, vector<DistanceType>& dists, DistanceType radius, const ::cvflann::SearchParams& searchParams) |
|
{ |
|
::cvflann::Matrix<ElementType> m_query((ElementType*)&query[0], 1, query.size()); |
|
::cvflann::Matrix<int> m_indices(&indices[0], 1, indices.size()); |
|
::cvflann::Matrix<DistanceType> m_dists(&dists[0], 1, dists.size()); |
|
|
|
if (nnIndex_L1) return nnIndex_L1->radiusSearch(m_query,m_indices,m_dists,radius,searchParams); |
|
if (nnIndex_L2) return nnIndex_L2->radiusSearch(m_query,m_indices,m_dists,radius,searchParams); |
|
} |
|
|
|
template <typename T> |
|
int Index_<T>::radiusSearch(const Mat& query, Mat& indices, Mat& dists, DistanceType radius, const ::cvflann::SearchParams& searchParams) |
|
{ |
|
CV_Assert(query.type() == CvType<ElementType>::type()); |
|
CV_Assert(query.isContinuous()); |
|
::cvflann::Matrix<ElementType> m_query((ElementType*)query.ptr<ElementType>(0), query.rows, query.cols); |
|
|
|
CV_Assert(indices.type() == CV_32S); |
|
CV_Assert(indices.isContinuous()); |
|
::cvflann::Matrix<int> m_indices((int*)indices.ptr<int>(0), indices.rows, indices.cols); |
|
|
|
CV_Assert(dists.type() == CvType<DistanceType>::type()); |
|
CV_Assert(dists.isContinuous()); |
|
::cvflann::Matrix<DistanceType> m_dists((DistanceType*)dists.ptr<DistanceType>(0), dists.rows, dists.cols); |
|
|
|
if (nnIndex_L1) return nnIndex_L1->radiusSearch(m_query,m_indices,m_dists,radius,searchParams); |
|
if (nnIndex_L2) return nnIndex_L2->radiusSearch(m_query,m_indices,m_dists,radius,searchParams); |
|
} |
|
|
|
|
|
template <typename Distance> |
|
int hierarchicalClustering(const Mat& features, Mat& centers, const ::cvflann::KMeansIndexParams& params, |
|
Distance d = Distance()) |
|
{ |
|
typedef typename Distance::ElementType ElementType; |
|
typedef typename Distance::ResultType DistanceType; |
|
|
|
CV_Assert(features.type() == CvType<ElementType>::type()); |
|
CV_Assert(features.isContinuous()); |
|
::cvflann::Matrix<ElementType> m_features((ElementType*)features.ptr<ElementType>(0), features.rows, features.cols); |
|
|
|
CV_Assert(centers.type() == CvType<DistanceType>::type()); |
|
CV_Assert(centers.isContinuous()); |
|
::cvflann::Matrix<DistanceType> m_centers((DistanceType*)centers.ptr<DistanceType>(0), centers.rows, centers.cols); |
|
|
|
return ::cvflann::hierarchicalClustering<Distance>(m_features, m_centers, params, d); |
|
} |
|
|
|
|
|
template <typename ELEM_TYPE, typename DIST_TYPE> |
|
FLANN_DEPRECATED int hierarchicalClustering(const Mat& features, Mat& centers, const ::cvflann::KMeansIndexParams& params) |
|
{ |
|
printf("[WARNING] cv::flann::hierarchicalClustering<ELEM_TYPE,DIST_TYPE> is deprecated, use " |
|
"cv::flann::hierarchicalClustering<Distance> instead\n"); |
|
|
|
if ( ::cvflann::flann_distance_type() == cvflann::FLANN_DIST_L2 ) { |
|
return hierarchicalClustering< L2<ELEM_TYPE> >(features, centers, params); |
|
} |
|
else if ( ::cvflann::flann_distance_type() == cvflann::FLANN_DIST_L1 ) { |
|
return hierarchicalClustering< L1<ELEM_TYPE> >(features, centers, params); |
|
} |
|
else { |
|
printf("[ERROR] cv::flann::hierarchicalClustering<ELEM_TYPE,DIST_TYPE> only provides backwards " |
|
"compatibility for the L1 and L2 distances. " |
|
"For other distance types you must use cv::flann::hierarchicalClustering<Distance>\n"); |
|
CV_Assert(0); |
|
} |
|
} |
|
|
|
} } // namespace cv::flann |
|
|
|
#endif // __cplusplus |
|
|
|
#endif
|
|
|