Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

318 lines
9.2 KiB

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "test_precomp.hpp"
#include "opencv2/highgui.hpp"
using namespace cv;
using namespace cv::ml;
using cv::ml::SVMSGD;
using cv::ml::TrainData;
class CV_SVMSGDTrainTest : public cvtest::BaseTest
{
public:
enum TrainDataType
{
UNIFORM_SAME_SCALE,
UNIFORM_DIFFERENT_SCALES
};
CV_SVMSGDTrainTest(const Mat &_weights, float shift, TrainDataType type, double precision = 0.01);
private:
virtual void run( int start_from );
static float decisionFunction(const Mat &sample, const Mat &weights, float shift);
void makeData(int samplesCount, const Mat &weights, float shift, RNG &rng, Mat &samples, Mat & responses);
void generateSameBorders(int featureCount);
void generateDifferentBorders(int featureCount);
TrainDataType type;
double precision;
std::vector<std::pair<float,float> > borders;
cv::Ptr<TrainData> data;
cv::Mat testSamples;
cv::Mat testResponses;
static const int TEST_VALUE_LIMIT = 500;
};
void CV_SVMSGDTrainTest::generateSameBorders(int featureCount)
{
float lowerLimit = -TEST_VALUE_LIMIT;
float upperLimit = TEST_VALUE_LIMIT;
for (int featureIndex = 0; featureIndex < featureCount; featureIndex++)
{
borders.push_back(std::pair<float,float>(lowerLimit, upperLimit));
}
}
void CV_SVMSGDTrainTest::generateDifferentBorders(int featureCount)
{
float lowerLimit = -TEST_VALUE_LIMIT;
float upperLimit = TEST_VALUE_LIMIT;
cv::RNG rng(0);
for (int featureIndex = 0; featureIndex < featureCount; featureIndex++)
{
int crit = rng.uniform(0, 2);
if (crit > 0)
{
borders.push_back(std::pair<float,float>(lowerLimit, upperLimit));
}
else
{
borders.push_back(std::pair<float,float>(lowerLimit/1000, upperLimit/1000));
}
}
}
float CV_SVMSGDTrainTest::decisionFunction(const Mat &sample, const Mat &weights, float shift)
{
return static_cast<float>(sample.dot(weights)) + shift;
}
void CV_SVMSGDTrainTest::makeData(int samplesCount, const Mat &weights, float shift, RNG &rng, Mat &samples, Mat & responses)
{
int featureCount = weights.cols;
samples.create(samplesCount, featureCount, CV_32FC1);
for (int featureIndex = 0; featureIndex < featureCount; featureIndex++)
{
rng.fill(samples.col(featureIndex), RNG::UNIFORM, borders[featureIndex].first, borders[featureIndex].second);
}
responses.create(samplesCount, 1, CV_32FC1);
for (int i = 0 ; i < samplesCount; i++)
{
responses.at<float>(i) = decisionFunction(samples.row(i), weights, shift) > 0 ? 1.f : -1.f;
}
}
CV_SVMSGDTrainTest::CV_SVMSGDTrainTest(const Mat &weights, float shift, TrainDataType _type, double _precision)
{
type = _type;
precision = _precision;
int featureCount = weights.cols;
switch(type)
{
case UNIFORM_SAME_SCALE:
generateSameBorders(featureCount);
break;
case UNIFORM_DIFFERENT_SCALES:
generateDifferentBorders(featureCount);
break;
default:
CV_Error(CV_StsBadArg, "Unknown train data type");
}
RNG rng(0);
Mat trainSamples;
Mat trainResponses;
int trainSamplesCount = 10000;
makeData(trainSamplesCount, weights, shift, rng, trainSamples, trainResponses);
data = TrainData::create(trainSamples, cv::ml::ROW_SAMPLE, trainResponses);
int testSamplesCount = 100000;
makeData(testSamplesCount, weights, shift, rng, testSamples, testResponses);
}
void CV_SVMSGDTrainTest::run( int /*start_from*/ )
{
cv::Ptr<SVMSGD> svmsgd = SVMSGD::create();
svmsgd->train(data);
Mat responses;
svmsgd->predict(testSamples, responses);
int errCount = 0;
int testSamplesCount = testSamples.rows;
CV_Assert((responses.type() == CV_32FC1) && (testResponses.type() == CV_32FC1));
for (int i = 0; i < testSamplesCount; i++)
{
if (responses.at<float>(i) * testResponses.at<float>(i) < 0)
errCount++;
}
float err = (float)errCount / testSamplesCount;
if ( err > precision )
{
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
}
}
void makeWeightsAndShift(int featureCount, Mat &weights, float &shift)
{
weights.create(1, featureCount, CV_32FC1);
cv::RNG rng(0);
double lowerLimit = -1;
double upperLimit = 1;
rng.fill(weights, RNG::UNIFORM, lowerLimit, upperLimit);
shift = static_cast<float>(rng.uniform(-featureCount, featureCount));
}
TEST(ML_SVMSGD, trainSameScale2)
{
int featureCount = 2;
Mat weights;
float shift = 0;
makeWeightsAndShift(featureCount, weights, shift);
CV_SVMSGDTrainTest test(weights, shift, CV_SVMSGDTrainTest::UNIFORM_SAME_SCALE);
test.safe_run();
}
TEST(ML_SVMSGD, trainSameScale5)
{
int featureCount = 5;
Mat weights;
float shift = 0;
makeWeightsAndShift(featureCount, weights, shift);
CV_SVMSGDTrainTest test(weights, shift, CV_SVMSGDTrainTest::UNIFORM_SAME_SCALE);
test.safe_run();
}
TEST(ML_SVMSGD, trainSameScale100)
{
int featureCount = 100;
Mat weights;
float shift = 0;
makeWeightsAndShift(featureCount, weights, shift);
CV_SVMSGDTrainTest test(weights, shift, CV_SVMSGDTrainTest::UNIFORM_SAME_SCALE, 0.02);
test.safe_run();
}
TEST(ML_SVMSGD, trainDifferentScales2)
{
int featureCount = 2;
Mat weights;
float shift = 0;
makeWeightsAndShift(featureCount, weights, shift);
CV_SVMSGDTrainTest test(weights, shift, CV_SVMSGDTrainTest::UNIFORM_DIFFERENT_SCALES, 0.01);
test.safe_run();
}
TEST(ML_SVMSGD, trainDifferentScales5)
{
int featureCount = 5;
Mat weights;
float shift = 0;
makeWeightsAndShift(featureCount, weights, shift);
CV_SVMSGDTrainTest test(weights, shift, CV_SVMSGDTrainTest::UNIFORM_DIFFERENT_SCALES, 0.01);
test.safe_run();
}
TEST(ML_SVMSGD, trainDifferentScales100)
{
int featureCount = 100;
Mat weights;
float shift = 0;
makeWeightsAndShift(featureCount, weights, shift);
CV_SVMSGDTrainTest test(weights, shift, CV_SVMSGDTrainTest::UNIFORM_DIFFERENT_SCALES, 0.01);
test.safe_run();
}
TEST(ML_SVMSGD, twoPoints)
{
Mat samples(2, 2, CV_32FC1);
samples.at<float>(0,0) = 0;
samples.at<float>(0,1) = 0;
samples.at<float>(1,0) = 1000;
samples.at<float>(1,1) = 1;
Mat responses(2, 1, CV_32FC1);
responses.at<float>(0) = -1;
responses.at<float>(1) = 1;
cv::Ptr<TrainData> trainData = TrainData::create(samples, cv::ml::ROW_SAMPLE, responses);
Mat realWeights(1, 2, CV_32FC1);
realWeights.at<float>(0) = 1000;
realWeights.at<float>(1) = 1;
float realShift = -500000.5;
float normRealWeights = static_cast<float>(norm(realWeights));
realWeights /= normRealWeights;
realShift /= normRealWeights;
cv::Ptr<SVMSGD> svmsgd = SVMSGD::create();
svmsgd->setOptimalParameters();
svmsgd->train( trainData );
Mat foundWeights = svmsgd->getWeights();
float foundShift = svmsgd->getShift();
float normFoundWeights = static_cast<float>(norm(foundWeights));
foundWeights /= normFoundWeights;
foundShift /= normFoundWeights;
CV_Assert((norm(foundWeights - realWeights) < 0.001) && (abs((foundShift - realShift) / realShift) < 0.05));
}