Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

918 lines
24 KiB

/* sbdsqr.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "clapack.h"
/* Table of constant values */
static doublereal c_b15 = -.125;
static integer c__1 = 1;
static real c_b49 = 1.f;
static real c_b72 = -1.f;
/* Subroutine */ int sbdsqr_(char *uplo, integer *n, integer *ncvt, integer *
nru, integer *ncc, real *d__, real *e, real *vt, integer *ldvt, real *
u, integer *ldu, real *c__, integer *ldc, real *work, integer *info)
{
/* System generated locals */
integer c_dim1, c_offset, u_dim1, u_offset, vt_dim1, vt_offset, i__1,
i__2;
real r__1, r__2, r__3, r__4;
doublereal d__1;
/* Builtin functions */
double pow_dd(doublereal *, doublereal *), sqrt(doublereal), r_sign(real *
, real *);
/* Local variables */
real f, g, h__;
integer i__, j, m;
real r__, cs;
integer ll;
real sn, mu;
integer nm1, nm12, nm13, lll;
real eps, sll, tol, abse;
integer idir;
real abss;
integer oldm;
real cosl;
integer isub, iter;
real unfl, sinl, cosr, smin, smax, sinr;
extern /* Subroutine */ int srot_(integer *, real *, integer *, real *,
integer *, real *, real *), slas2_(real *, real *, real *, real *,
real *);
extern logical lsame_(char *, char *);
real oldcs;
extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *);
integer oldll;
real shift, sigmn, oldsn;
integer maxit;
real sminl;
extern /* Subroutine */ int slasr_(char *, char *, char *, integer *,
integer *, real *, real *, real *, integer *);
real sigmx;
logical lower;
extern /* Subroutine */ int sswap_(integer *, real *, integer *, real *,
integer *), slasq1_(integer *, real *, real *, real *, integer *),
slasv2_(real *, real *, real *, real *, real *, real *, real *,
real *, real *);
extern doublereal slamch_(char *);
extern /* Subroutine */ int xerbla_(char *, integer *);
real sminoa;
extern /* Subroutine */ int slartg_(real *, real *, real *, real *, real *
);
real thresh;
logical rotate;
real tolmul;
/* -- LAPACK routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* January 2007 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* SBDSQR computes the singular values and, optionally, the right and/or */
/* left singular vectors from the singular value decomposition (SVD) of */
/* a real N-by-N (upper or lower) bidiagonal matrix B using the implicit */
/* zero-shift QR algorithm. The SVD of B has the form */
/* B = Q * S * P**T */
/* where S is the diagonal matrix of singular values, Q is an orthogonal */
/* matrix of left singular vectors, and P is an orthogonal matrix of */
/* right singular vectors. If left singular vectors are requested, this */
/* subroutine actually returns U*Q instead of Q, and, if right singular */
/* vectors are requested, this subroutine returns P**T*VT instead of */
/* P**T, for given real input matrices U and VT. When U and VT are the */
/* orthogonal matrices that reduce a general matrix A to bidiagonal */
/* form: A = U*B*VT, as computed by SGEBRD, then */
/* A = (U*Q) * S * (P**T*VT) */
/* is the SVD of A. Optionally, the subroutine may also compute Q**T*C */
/* for a given real input matrix C. */
/* See "Computing Small Singular Values of Bidiagonal Matrices With */
/* Guaranteed High Relative Accuracy," by J. Demmel and W. Kahan, */
/* LAPACK Working Note #3 (or SIAM J. Sci. Statist. Comput. vol. 11, */
/* no. 5, pp. 873-912, Sept 1990) and */
/* "Accurate singular values and differential qd algorithms," by */
/* B. Parlett and V. Fernando, Technical Report CPAM-554, Mathematics */
/* Department, University of California at Berkeley, July 1992 */
/* for a detailed description of the algorithm. */
/* Arguments */
/* ========= */
/* UPLO (input) CHARACTER*1 */
/* = 'U': B is upper bidiagonal; */
/* = 'L': B is lower bidiagonal. */
/* N (input) INTEGER */
/* The order of the matrix B. N >= 0. */
/* NCVT (input) INTEGER */
/* The number of columns of the matrix VT. NCVT >= 0. */
/* NRU (input) INTEGER */
/* The number of rows of the matrix U. NRU >= 0. */
/* NCC (input) INTEGER */
/* The number of columns of the matrix C. NCC >= 0. */
/* D (input/output) REAL array, dimension (N) */
/* On entry, the n diagonal elements of the bidiagonal matrix B. */
/* On exit, if INFO=0, the singular values of B in decreasing */
/* order. */
/* E (input/output) REAL array, dimension (N-1) */
/* On entry, the N-1 offdiagonal elements of the bidiagonal */
/* matrix B. */
/* On exit, if INFO = 0, E is destroyed; if INFO > 0, D and E */
/* will contain the diagonal and superdiagonal elements of a */
/* bidiagonal matrix orthogonally equivalent to the one given */
/* as input. */
/* VT (input/output) REAL array, dimension (LDVT, NCVT) */
/* On entry, an N-by-NCVT matrix VT. */
/* On exit, VT is overwritten by P**T * VT. */
/* Not referenced if NCVT = 0. */
/* LDVT (input) INTEGER */
/* The leading dimension of the array VT. */
/* LDVT >= max(1,N) if NCVT > 0; LDVT >= 1 if NCVT = 0. */
/* U (input/output) REAL array, dimension (LDU, N) */
/* On entry, an NRU-by-N matrix U. */
/* On exit, U is overwritten by U * Q. */
/* Not referenced if NRU = 0. */
/* LDU (input) INTEGER */
/* The leading dimension of the array U. LDU >= max(1,NRU). */
/* C (input/output) REAL array, dimension (LDC, NCC) */
/* On entry, an N-by-NCC matrix C. */
/* On exit, C is overwritten by Q**T * C. */
/* Not referenced if NCC = 0. */
/* LDC (input) INTEGER */
/* The leading dimension of the array C. */
/* LDC >= max(1,N) if NCC > 0; LDC >=1 if NCC = 0. */
/* WORK (workspace) REAL array, dimension (4*N) */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: If INFO = -i, the i-th argument had an illegal value */
/* > 0: */
/* if NCVT = NRU = NCC = 0, */
/* = 1, a split was marked by a positive value in E */
/* = 2, current block of Z not diagonalized after 30*N */
/* iterations (in inner while loop) */
/* = 3, termination criterion of outer while loop not met */
/* (program created more than N unreduced blocks) */
/* else NCVT = NRU = NCC = 0, */
/* the algorithm did not converge; D and E contain the */
/* elements of a bidiagonal matrix which is orthogonally */
/* similar to the input matrix B; if INFO = i, i */
/* elements of E have not converged to zero. */
/* Internal Parameters */
/* =================== */
/* TOLMUL REAL, default = max(10,min(100,EPS**(-1/8))) */
/* TOLMUL controls the convergence criterion of the QR loop. */
/* If it is positive, TOLMUL*EPS is the desired relative */
/* precision in the computed singular values. */
/* If it is negative, abs(TOLMUL*EPS*sigma_max) is the */
/* desired absolute accuracy in the computed singular */
/* values (corresponds to relative accuracy */
/* abs(TOLMUL*EPS) in the largest singular value. */
/* abs(TOLMUL) should be between 1 and 1/EPS, and preferably */
/* between 10 (for fast convergence) and .1/EPS */
/* (for there to be some accuracy in the results). */
/* Default is to lose at either one eighth or 2 of the */
/* available decimal digits in each computed singular value */
/* (whichever is smaller). */
/* MAXITR INTEGER, default = 6 */
/* MAXITR controls the maximum number of passes of the */
/* algorithm through its inner loop. The algorithms stops */
/* (and so fails to converge) if the number of passes */
/* through the inner loop exceeds MAXITR*N**2. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input parameters. */
/* Parameter adjustments */
--d__;
--e;
vt_dim1 = *ldvt;
vt_offset = 1 + vt_dim1;
vt -= vt_offset;
u_dim1 = *ldu;
u_offset = 1 + u_dim1;
u -= u_offset;
c_dim1 = *ldc;
c_offset = 1 + c_dim1;
c__ -= c_offset;
--work;
/* Function Body */
*info = 0;
lower = lsame_(uplo, "L");
if (! lsame_(uplo, "U") && ! lower) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (*ncvt < 0) {
*info = -3;
} else if (*nru < 0) {
*info = -4;
} else if (*ncc < 0) {
*info = -5;
} else if (*ncvt == 0 && *ldvt < 1 || *ncvt > 0 && *ldvt < max(1,*n)) {
*info = -9;
} else if (*ldu < max(1,*nru)) {
*info = -11;
} else if (*ncc == 0 && *ldc < 1 || *ncc > 0 && *ldc < max(1,*n)) {
*info = -13;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("SBDSQR", &i__1);
return 0;
}
if (*n == 0) {
return 0;
}
if (*n == 1) {
goto L160;
}
/* ROTATE is true if any singular vectors desired, false otherwise */
rotate = *ncvt > 0 || *nru > 0 || *ncc > 0;
/* If no singular vectors desired, use qd algorithm */
if (! rotate) {
slasq1_(n, &d__[1], &e[1], &work[1], info);
return 0;
}
nm1 = *n - 1;
nm12 = nm1 + nm1;
nm13 = nm12 + nm1;
idir = 0;
/* Get machine constants */
eps = slamch_("Epsilon");
unfl = slamch_("Safe minimum");
/* If matrix lower bidiagonal, rotate to be upper bidiagonal */
/* by applying Givens rotations on the left */
if (lower) {
i__1 = *n - 1;
for (i__ = 1; i__ <= i__1; ++i__) {
slartg_(&d__[i__], &e[i__], &cs, &sn, &r__);
d__[i__] = r__;
e[i__] = sn * d__[i__ + 1];
d__[i__ + 1] = cs * d__[i__ + 1];
work[i__] = cs;
work[nm1 + i__] = sn;
/* L10: */
}
/* Update singular vectors if desired */
if (*nru > 0) {
slasr_("R", "V", "F", nru, n, &work[1], &work[*n], &u[u_offset],
ldu);
}
if (*ncc > 0) {
slasr_("L", "V", "F", n, ncc, &work[1], &work[*n], &c__[c_offset],
ldc);
}
}
/* Compute singular values to relative accuracy TOL */
/* (By setting TOL to be negative, algorithm will compute */
/* singular values to absolute accuracy ABS(TOL)*norm(input matrix)) */
/* Computing MAX */
/* Computing MIN */
d__1 = (doublereal) eps;
r__3 = 100.f, r__4 = pow_dd(&d__1, &c_b15);
r__1 = 10.f, r__2 = dmin(r__3,r__4);
tolmul = dmax(r__1,r__2);
tol = tolmul * eps;
/* Compute approximate maximum, minimum singular values */
smax = 0.f;
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
/* Computing MAX */
r__2 = smax, r__3 = (r__1 = d__[i__], dabs(r__1));
smax = dmax(r__2,r__3);
/* L20: */
}
i__1 = *n - 1;
for (i__ = 1; i__ <= i__1; ++i__) {
/* Computing MAX */
r__2 = smax, r__3 = (r__1 = e[i__], dabs(r__1));
smax = dmax(r__2,r__3);
/* L30: */
}
sminl = 0.f;
if (tol >= 0.f) {
/* Relative accuracy desired */
sminoa = dabs(d__[1]);
if (sminoa == 0.f) {
goto L50;
}
mu = sminoa;
i__1 = *n;
for (i__ = 2; i__ <= i__1; ++i__) {
mu = (r__2 = d__[i__], dabs(r__2)) * (mu / (mu + (r__1 = e[i__ -
1], dabs(r__1))));
sminoa = dmin(sminoa,mu);
if (sminoa == 0.f) {
goto L50;
}
/* L40: */
}
L50:
sminoa /= sqrt((real) (*n));
/* Computing MAX */
r__1 = tol * sminoa, r__2 = *n * 6 * *n * unfl;
thresh = dmax(r__1,r__2);
} else {
/* Absolute accuracy desired */
/* Computing MAX */
r__1 = dabs(tol) * smax, r__2 = *n * 6 * *n * unfl;
thresh = dmax(r__1,r__2);
}
/* Prepare for main iteration loop for the singular values */
/* (MAXIT is the maximum number of passes through the inner */
/* loop permitted before nonconvergence signalled.) */
maxit = *n * 6 * *n;
iter = 0;
oldll = -1;
oldm = -1;
/* M points to last element of unconverged part of matrix */
m = *n;
/* Begin main iteration loop */
L60:
/* Check for convergence or exceeding iteration count */
if (m <= 1) {
goto L160;
}
if (iter > maxit) {
goto L200;
}
/* Find diagonal block of matrix to work on */
if (tol < 0.f && (r__1 = d__[m], dabs(r__1)) <= thresh) {
d__[m] = 0.f;
}
smax = (r__1 = d__[m], dabs(r__1));
smin = smax;
i__1 = m - 1;
for (lll = 1; lll <= i__1; ++lll) {
ll = m - lll;
abss = (r__1 = d__[ll], dabs(r__1));
abse = (r__1 = e[ll], dabs(r__1));
if (tol < 0.f && abss <= thresh) {
d__[ll] = 0.f;
}
if (abse <= thresh) {
goto L80;
}
smin = dmin(smin,abss);
/* Computing MAX */
r__1 = max(smax,abss);
smax = dmax(r__1,abse);
/* L70: */
}
ll = 0;
goto L90;
L80:
e[ll] = 0.f;
/* Matrix splits since E(LL) = 0 */
if (ll == m - 1) {
/* Convergence of bottom singular value, return to top of loop */
--m;
goto L60;
}
L90:
++ll;
/* E(LL) through E(M-1) are nonzero, E(LL-1) is zero */
if (ll == m - 1) {
/* 2 by 2 block, handle separately */
slasv2_(&d__[m - 1], &e[m - 1], &d__[m], &sigmn, &sigmx, &sinr, &cosr,
&sinl, &cosl);
d__[m - 1] = sigmx;
e[m - 1] = 0.f;
d__[m] = sigmn;
/* Compute singular vectors, if desired */
if (*ncvt > 0) {
srot_(ncvt, &vt[m - 1 + vt_dim1], ldvt, &vt[m + vt_dim1], ldvt, &
cosr, &sinr);
}
if (*nru > 0) {
srot_(nru, &u[(m - 1) * u_dim1 + 1], &c__1, &u[m * u_dim1 + 1], &
c__1, &cosl, &sinl);
}
if (*ncc > 0) {
srot_(ncc, &c__[m - 1 + c_dim1], ldc, &c__[m + c_dim1], ldc, &
cosl, &sinl);
}
m += -2;
goto L60;
}
/* If working on new submatrix, choose shift direction */
/* (from larger end diagonal element towards smaller) */
if (ll > oldm || m < oldll) {
if ((r__1 = d__[ll], dabs(r__1)) >= (r__2 = d__[m], dabs(r__2))) {
/* Chase bulge from top (big end) to bottom (small end) */
idir = 1;
} else {
/* Chase bulge from bottom (big end) to top (small end) */
idir = 2;
}
}
/* Apply convergence tests */
if (idir == 1) {
/* Run convergence test in forward direction */
/* First apply standard test to bottom of matrix */
if ((r__2 = e[m - 1], dabs(r__2)) <= dabs(tol) * (r__1 = d__[m], dabs(
r__1)) || tol < 0.f && (r__3 = e[m - 1], dabs(r__3)) <=
thresh) {
e[m - 1] = 0.f;
goto L60;
}
if (tol >= 0.f) {
/* If relative accuracy desired, */
/* apply convergence criterion forward */
mu = (r__1 = d__[ll], dabs(r__1));
sminl = mu;
i__1 = m - 1;
for (lll = ll; lll <= i__1; ++lll) {
if ((r__1 = e[lll], dabs(r__1)) <= tol * mu) {
e[lll] = 0.f;
goto L60;
}
mu = (r__2 = d__[lll + 1], dabs(r__2)) * (mu / (mu + (r__1 =
e[lll], dabs(r__1))));
sminl = dmin(sminl,mu);
/* L100: */
}
}
} else {
/* Run convergence test in backward direction */
/* First apply standard test to top of matrix */
if ((r__2 = e[ll], dabs(r__2)) <= dabs(tol) * (r__1 = d__[ll], dabs(
r__1)) || tol < 0.f && (r__3 = e[ll], dabs(r__3)) <= thresh) {
e[ll] = 0.f;
goto L60;
}
if (tol >= 0.f) {
/* If relative accuracy desired, */
/* apply convergence criterion backward */
mu = (r__1 = d__[m], dabs(r__1));
sminl = mu;
i__1 = ll;
for (lll = m - 1; lll >= i__1; --lll) {
if ((r__1 = e[lll], dabs(r__1)) <= tol * mu) {
e[lll] = 0.f;
goto L60;
}
mu = (r__2 = d__[lll], dabs(r__2)) * (mu / (mu + (r__1 = e[
lll], dabs(r__1))));
sminl = dmin(sminl,mu);
/* L110: */
}
}
}
oldll = ll;
oldm = m;
/* Compute shift. First, test if shifting would ruin relative */
/* accuracy, and if so set the shift to zero. */
/* Computing MAX */
r__1 = eps, r__2 = tol * .01f;
if (tol >= 0.f && *n * tol * (sminl / smax) <= dmax(r__1,r__2)) {
/* Use a zero shift to avoid loss of relative accuracy */
shift = 0.f;
} else {
/* Compute the shift from 2-by-2 block at end of matrix */
if (idir == 1) {
sll = (r__1 = d__[ll], dabs(r__1));
slas2_(&d__[m - 1], &e[m - 1], &d__[m], &shift, &r__);
} else {
sll = (r__1 = d__[m], dabs(r__1));
slas2_(&d__[ll], &e[ll], &d__[ll + 1], &shift, &r__);
}
/* Test if shift negligible, and if so set to zero */
if (sll > 0.f) {
/* Computing 2nd power */
r__1 = shift / sll;
if (r__1 * r__1 < eps) {
shift = 0.f;
}
}
}
/* Increment iteration count */
iter = iter + m - ll;
/* If SHIFT = 0, do simplified QR iteration */
if (shift == 0.f) {
if (idir == 1) {
/* Chase bulge from top to bottom */
/* Save cosines and sines for later singular vector updates */
cs = 1.f;
oldcs = 1.f;
i__1 = m - 1;
for (i__ = ll; i__ <= i__1; ++i__) {
r__1 = d__[i__] * cs;
slartg_(&r__1, &e[i__], &cs, &sn, &r__);
if (i__ > ll) {
e[i__ - 1] = oldsn * r__;
}
r__1 = oldcs * r__;
r__2 = d__[i__ + 1] * sn;
slartg_(&r__1, &r__2, &oldcs, &oldsn, &d__[i__]);
work[i__ - ll + 1] = cs;
work[i__ - ll + 1 + nm1] = sn;
work[i__ - ll + 1 + nm12] = oldcs;
work[i__ - ll + 1 + nm13] = oldsn;
/* L120: */
}
h__ = d__[m] * cs;
d__[m] = h__ * oldcs;
e[m - 1] = h__ * oldsn;
/* Update singular vectors */
if (*ncvt > 0) {
i__1 = m - ll + 1;
slasr_("L", "V", "F", &i__1, ncvt, &work[1], &work[*n], &vt[
ll + vt_dim1], ldvt);
}
if (*nru > 0) {
i__1 = m - ll + 1;
slasr_("R", "V", "F", nru, &i__1, &work[nm12 + 1], &work[nm13
+ 1], &u[ll * u_dim1 + 1], ldu);
}
if (*ncc > 0) {
i__1 = m - ll + 1;
slasr_("L", "V", "F", &i__1, ncc, &work[nm12 + 1], &work[nm13
+ 1], &c__[ll + c_dim1], ldc);
}
/* Test convergence */
if ((r__1 = e[m - 1], dabs(r__1)) <= thresh) {
e[m - 1] = 0.f;
}
} else {
/* Chase bulge from bottom to top */
/* Save cosines and sines for later singular vector updates */
cs = 1.f;
oldcs = 1.f;
i__1 = ll + 1;
for (i__ = m; i__ >= i__1; --i__) {
r__1 = d__[i__] * cs;
slartg_(&r__1, &e[i__ - 1], &cs, &sn, &r__);
if (i__ < m) {
e[i__] = oldsn * r__;
}
r__1 = oldcs * r__;
r__2 = d__[i__ - 1] * sn;
slartg_(&r__1, &r__2, &oldcs, &oldsn, &d__[i__]);
work[i__ - ll] = cs;
work[i__ - ll + nm1] = -sn;
work[i__ - ll + nm12] = oldcs;
work[i__ - ll + nm13] = -oldsn;
/* L130: */
}
h__ = d__[ll] * cs;
d__[ll] = h__ * oldcs;
e[ll] = h__ * oldsn;
/* Update singular vectors */
if (*ncvt > 0) {
i__1 = m - ll + 1;
slasr_("L", "V", "B", &i__1, ncvt, &work[nm12 + 1], &work[
nm13 + 1], &vt[ll + vt_dim1], ldvt);
}
if (*nru > 0) {
i__1 = m - ll + 1;
slasr_("R", "V", "B", nru, &i__1, &work[1], &work[*n], &u[ll *
u_dim1 + 1], ldu);
}
if (*ncc > 0) {
i__1 = m - ll + 1;
slasr_("L", "V", "B", &i__1, ncc, &work[1], &work[*n], &c__[
ll + c_dim1], ldc);
}
/* Test convergence */
if ((r__1 = e[ll], dabs(r__1)) <= thresh) {
e[ll] = 0.f;
}
}
} else {
/* Use nonzero shift */
if (idir == 1) {
/* Chase bulge from top to bottom */
/* Save cosines and sines for later singular vector updates */
f = ((r__1 = d__[ll], dabs(r__1)) - shift) * (r_sign(&c_b49, &d__[
ll]) + shift / d__[ll]);
g = e[ll];
i__1 = m - 1;
for (i__ = ll; i__ <= i__1; ++i__) {
slartg_(&f, &g, &cosr, &sinr, &r__);
if (i__ > ll) {
e[i__ - 1] = r__;
}
f = cosr * d__[i__] + sinr * e[i__];
e[i__] = cosr * e[i__] - sinr * d__[i__];
g = sinr * d__[i__ + 1];
d__[i__ + 1] = cosr * d__[i__ + 1];
slartg_(&f, &g, &cosl, &sinl, &r__);
d__[i__] = r__;
f = cosl * e[i__] + sinl * d__[i__ + 1];
d__[i__ + 1] = cosl * d__[i__ + 1] - sinl * e[i__];
if (i__ < m - 1) {
g = sinl * e[i__ + 1];
e[i__ + 1] = cosl * e[i__ + 1];
}
work[i__ - ll + 1] = cosr;
work[i__ - ll + 1 + nm1] = sinr;
work[i__ - ll + 1 + nm12] = cosl;
work[i__ - ll + 1 + nm13] = sinl;
/* L140: */
}
e[m - 1] = f;
/* Update singular vectors */
if (*ncvt > 0) {
i__1 = m - ll + 1;
slasr_("L", "V", "F", &i__1, ncvt, &work[1], &work[*n], &vt[
ll + vt_dim1], ldvt);
}
if (*nru > 0) {
i__1 = m - ll + 1;
slasr_("R", "V", "F", nru, &i__1, &work[nm12 + 1], &work[nm13
+ 1], &u[ll * u_dim1 + 1], ldu);
}
if (*ncc > 0) {
i__1 = m - ll + 1;
slasr_("L", "V", "F", &i__1, ncc, &work[nm12 + 1], &work[nm13
+ 1], &c__[ll + c_dim1], ldc);
}
/* Test convergence */
if ((r__1 = e[m - 1], dabs(r__1)) <= thresh) {
e[m - 1] = 0.f;
}
} else {
/* Chase bulge from bottom to top */
/* Save cosines and sines for later singular vector updates */
f = ((r__1 = d__[m], dabs(r__1)) - shift) * (r_sign(&c_b49, &d__[
m]) + shift / d__[m]);
g = e[m - 1];
i__1 = ll + 1;
for (i__ = m; i__ >= i__1; --i__) {
slartg_(&f, &g, &cosr, &sinr, &r__);
if (i__ < m) {
e[i__] = r__;
}
f = cosr * d__[i__] + sinr * e[i__ - 1];
e[i__ - 1] = cosr * e[i__ - 1] - sinr * d__[i__];
g = sinr * d__[i__ - 1];
d__[i__ - 1] = cosr * d__[i__ - 1];
slartg_(&f, &g, &cosl, &sinl, &r__);
d__[i__] = r__;
f = cosl * e[i__ - 1] + sinl * d__[i__ - 1];
d__[i__ - 1] = cosl * d__[i__ - 1] - sinl * e[i__ - 1];
if (i__ > ll + 1) {
g = sinl * e[i__ - 2];
e[i__ - 2] = cosl * e[i__ - 2];
}
work[i__ - ll] = cosr;
work[i__ - ll + nm1] = -sinr;
work[i__ - ll + nm12] = cosl;
work[i__ - ll + nm13] = -sinl;
/* L150: */
}
e[ll] = f;
/* Test convergence */
if ((r__1 = e[ll], dabs(r__1)) <= thresh) {
e[ll] = 0.f;
}
/* Update singular vectors if desired */
if (*ncvt > 0) {
i__1 = m - ll + 1;
slasr_("L", "V", "B", &i__1, ncvt, &work[nm12 + 1], &work[
nm13 + 1], &vt[ll + vt_dim1], ldvt);
}
if (*nru > 0) {
i__1 = m - ll + 1;
slasr_("R", "V", "B", nru, &i__1, &work[1], &work[*n], &u[ll *
u_dim1 + 1], ldu);
}
if (*ncc > 0) {
i__1 = m - ll + 1;
slasr_("L", "V", "B", &i__1, ncc, &work[1], &work[*n], &c__[
ll + c_dim1], ldc);
}
}
}
/* QR iteration finished, go back and check convergence */
goto L60;
/* All singular values converged, so make them positive */
L160:
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
if (d__[i__] < 0.f) {
d__[i__] = -d__[i__];
/* Change sign of singular vectors, if desired */
if (*ncvt > 0) {
sscal_(ncvt, &c_b72, &vt[i__ + vt_dim1], ldvt);
}
}
/* L170: */
}
/* Sort the singular values into decreasing order (insertion sort on */
/* singular values, but only one transposition per singular vector) */
i__1 = *n - 1;
for (i__ = 1; i__ <= i__1; ++i__) {
/* Scan for smallest D(I) */
isub = 1;
smin = d__[1];
i__2 = *n + 1 - i__;
for (j = 2; j <= i__2; ++j) {
if (d__[j] <= smin) {
isub = j;
smin = d__[j];
}
/* L180: */
}
if (isub != *n + 1 - i__) {
/* Swap singular values and vectors */
d__[isub] = d__[*n + 1 - i__];
d__[*n + 1 - i__] = smin;
if (*ncvt > 0) {
sswap_(ncvt, &vt[isub + vt_dim1], ldvt, &vt[*n + 1 - i__ +
vt_dim1], ldvt);
}
if (*nru > 0) {
sswap_(nru, &u[isub * u_dim1 + 1], &c__1, &u[(*n + 1 - i__) *
u_dim1 + 1], &c__1);
}
if (*ncc > 0) {
sswap_(ncc, &c__[isub + c_dim1], ldc, &c__[*n + 1 - i__ +
c_dim1], ldc);
}
}
/* L190: */
}
goto L220;
/* Maximum number of iterations exceeded, failure to converge */
L200:
*info = 0;
i__1 = *n - 1;
for (i__ = 1; i__ <= i__1; ++i__) {
if (e[i__] != 0.f) {
++(*info);
}
/* L210: */
}
L220:
return 0;
/* End of SBDSQR */
} /* sbdsqr_ */