mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
918 lines
24 KiB
918 lines
24 KiB
/* sbdsqr.f -- translated by f2c (version 20061008). |
|
You must link the resulting object file with libf2c: |
|
on Microsoft Windows system, link with libf2c.lib; |
|
on Linux or Unix systems, link with .../path/to/libf2c.a -lm |
|
or, if you install libf2c.a in a standard place, with -lf2c -lm |
|
-- in that order, at the end of the command line, as in |
|
cc *.o -lf2c -lm |
|
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., |
|
|
|
http://www.netlib.org/f2c/libf2c.zip |
|
*/ |
|
|
|
#include "clapack.h" |
|
|
|
|
|
/* Table of constant values */ |
|
|
|
static doublereal c_b15 = -.125; |
|
static integer c__1 = 1; |
|
static real c_b49 = 1.f; |
|
static real c_b72 = -1.f; |
|
|
|
/* Subroutine */ int sbdsqr_(char *uplo, integer *n, integer *ncvt, integer * |
|
nru, integer *ncc, real *d__, real *e, real *vt, integer *ldvt, real * |
|
u, integer *ldu, real *c__, integer *ldc, real *work, integer *info) |
|
{ |
|
/* System generated locals */ |
|
integer c_dim1, c_offset, u_dim1, u_offset, vt_dim1, vt_offset, i__1, |
|
i__2; |
|
real r__1, r__2, r__3, r__4; |
|
doublereal d__1; |
|
|
|
/* Builtin functions */ |
|
double pow_dd(doublereal *, doublereal *), sqrt(doublereal), r_sign(real * |
|
, real *); |
|
|
|
/* Local variables */ |
|
real f, g, h__; |
|
integer i__, j, m; |
|
real r__, cs; |
|
integer ll; |
|
real sn, mu; |
|
integer nm1, nm12, nm13, lll; |
|
real eps, sll, tol, abse; |
|
integer idir; |
|
real abss; |
|
integer oldm; |
|
real cosl; |
|
integer isub, iter; |
|
real unfl, sinl, cosr, smin, smax, sinr; |
|
extern /* Subroutine */ int srot_(integer *, real *, integer *, real *, |
|
integer *, real *, real *), slas2_(real *, real *, real *, real *, |
|
real *); |
|
extern logical lsame_(char *, char *); |
|
real oldcs; |
|
extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *); |
|
integer oldll; |
|
real shift, sigmn, oldsn; |
|
integer maxit; |
|
real sminl; |
|
extern /* Subroutine */ int slasr_(char *, char *, char *, integer *, |
|
integer *, real *, real *, real *, integer *); |
|
real sigmx; |
|
logical lower; |
|
extern /* Subroutine */ int sswap_(integer *, real *, integer *, real *, |
|
integer *), slasq1_(integer *, real *, real *, real *, integer *), |
|
slasv2_(real *, real *, real *, real *, real *, real *, real *, |
|
real *, real *); |
|
extern doublereal slamch_(char *); |
|
extern /* Subroutine */ int xerbla_(char *, integer *); |
|
real sminoa; |
|
extern /* Subroutine */ int slartg_(real *, real *, real *, real *, real * |
|
); |
|
real thresh; |
|
logical rotate; |
|
real tolmul; |
|
|
|
|
|
/* -- LAPACK routine (version 3.2) -- */ |
|
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ |
|
/* January 2007 */ |
|
|
|
/* .. Scalar Arguments .. */ |
|
/* .. */ |
|
/* .. Array Arguments .. */ |
|
/* .. */ |
|
|
|
/* Purpose */ |
|
/* ======= */ |
|
|
|
/* SBDSQR computes the singular values and, optionally, the right and/or */ |
|
/* left singular vectors from the singular value decomposition (SVD) of */ |
|
/* a real N-by-N (upper or lower) bidiagonal matrix B using the implicit */ |
|
/* zero-shift QR algorithm. The SVD of B has the form */ |
|
|
|
/* B = Q * S * P**T */ |
|
|
|
/* where S is the diagonal matrix of singular values, Q is an orthogonal */ |
|
/* matrix of left singular vectors, and P is an orthogonal matrix of */ |
|
/* right singular vectors. If left singular vectors are requested, this */ |
|
/* subroutine actually returns U*Q instead of Q, and, if right singular */ |
|
/* vectors are requested, this subroutine returns P**T*VT instead of */ |
|
/* P**T, for given real input matrices U and VT. When U and VT are the */ |
|
/* orthogonal matrices that reduce a general matrix A to bidiagonal */ |
|
/* form: A = U*B*VT, as computed by SGEBRD, then */ |
|
|
|
/* A = (U*Q) * S * (P**T*VT) */ |
|
|
|
/* is the SVD of A. Optionally, the subroutine may also compute Q**T*C */ |
|
/* for a given real input matrix C. */ |
|
|
|
/* See "Computing Small Singular Values of Bidiagonal Matrices With */ |
|
/* Guaranteed High Relative Accuracy," by J. Demmel and W. Kahan, */ |
|
/* LAPACK Working Note #3 (or SIAM J. Sci. Statist. Comput. vol. 11, */ |
|
/* no. 5, pp. 873-912, Sept 1990) and */ |
|
/* "Accurate singular values and differential qd algorithms," by */ |
|
/* B. Parlett and V. Fernando, Technical Report CPAM-554, Mathematics */ |
|
/* Department, University of California at Berkeley, July 1992 */ |
|
/* for a detailed description of the algorithm. */ |
|
|
|
/* Arguments */ |
|
/* ========= */ |
|
|
|
/* UPLO (input) CHARACTER*1 */ |
|
/* = 'U': B is upper bidiagonal; */ |
|
/* = 'L': B is lower bidiagonal. */ |
|
|
|
/* N (input) INTEGER */ |
|
/* The order of the matrix B. N >= 0. */ |
|
|
|
/* NCVT (input) INTEGER */ |
|
/* The number of columns of the matrix VT. NCVT >= 0. */ |
|
|
|
/* NRU (input) INTEGER */ |
|
/* The number of rows of the matrix U. NRU >= 0. */ |
|
|
|
/* NCC (input) INTEGER */ |
|
/* The number of columns of the matrix C. NCC >= 0. */ |
|
|
|
/* D (input/output) REAL array, dimension (N) */ |
|
/* On entry, the n diagonal elements of the bidiagonal matrix B. */ |
|
/* On exit, if INFO=0, the singular values of B in decreasing */ |
|
/* order. */ |
|
|
|
/* E (input/output) REAL array, dimension (N-1) */ |
|
/* On entry, the N-1 offdiagonal elements of the bidiagonal */ |
|
/* matrix B. */ |
|
/* On exit, if INFO = 0, E is destroyed; if INFO > 0, D and E */ |
|
/* will contain the diagonal and superdiagonal elements of a */ |
|
/* bidiagonal matrix orthogonally equivalent to the one given */ |
|
/* as input. */ |
|
|
|
/* VT (input/output) REAL array, dimension (LDVT, NCVT) */ |
|
/* On entry, an N-by-NCVT matrix VT. */ |
|
/* On exit, VT is overwritten by P**T * VT. */ |
|
/* Not referenced if NCVT = 0. */ |
|
|
|
/* LDVT (input) INTEGER */ |
|
/* The leading dimension of the array VT. */ |
|
/* LDVT >= max(1,N) if NCVT > 0; LDVT >= 1 if NCVT = 0. */ |
|
|
|
/* U (input/output) REAL array, dimension (LDU, N) */ |
|
/* On entry, an NRU-by-N matrix U. */ |
|
/* On exit, U is overwritten by U * Q. */ |
|
/* Not referenced if NRU = 0. */ |
|
|
|
/* LDU (input) INTEGER */ |
|
/* The leading dimension of the array U. LDU >= max(1,NRU). */ |
|
|
|
/* C (input/output) REAL array, dimension (LDC, NCC) */ |
|
/* On entry, an N-by-NCC matrix C. */ |
|
/* On exit, C is overwritten by Q**T * C. */ |
|
/* Not referenced if NCC = 0. */ |
|
|
|
/* LDC (input) INTEGER */ |
|
/* The leading dimension of the array C. */ |
|
/* LDC >= max(1,N) if NCC > 0; LDC >=1 if NCC = 0. */ |
|
|
|
/* WORK (workspace) REAL array, dimension (4*N) */ |
|
|
|
/* INFO (output) INTEGER */ |
|
/* = 0: successful exit */ |
|
/* < 0: If INFO = -i, the i-th argument had an illegal value */ |
|
/* > 0: */ |
|
/* if NCVT = NRU = NCC = 0, */ |
|
/* = 1, a split was marked by a positive value in E */ |
|
/* = 2, current block of Z not diagonalized after 30*N */ |
|
/* iterations (in inner while loop) */ |
|
/* = 3, termination criterion of outer while loop not met */ |
|
/* (program created more than N unreduced blocks) */ |
|
/* else NCVT = NRU = NCC = 0, */ |
|
/* the algorithm did not converge; D and E contain the */ |
|
/* elements of a bidiagonal matrix which is orthogonally */ |
|
/* similar to the input matrix B; if INFO = i, i */ |
|
/* elements of E have not converged to zero. */ |
|
|
|
/* Internal Parameters */ |
|
/* =================== */ |
|
|
|
/* TOLMUL REAL, default = max(10,min(100,EPS**(-1/8))) */ |
|
/* TOLMUL controls the convergence criterion of the QR loop. */ |
|
/* If it is positive, TOLMUL*EPS is the desired relative */ |
|
/* precision in the computed singular values. */ |
|
/* If it is negative, abs(TOLMUL*EPS*sigma_max) is the */ |
|
/* desired absolute accuracy in the computed singular */ |
|
/* values (corresponds to relative accuracy */ |
|
/* abs(TOLMUL*EPS) in the largest singular value. */ |
|
/* abs(TOLMUL) should be between 1 and 1/EPS, and preferably */ |
|
/* between 10 (for fast convergence) and .1/EPS */ |
|
/* (for there to be some accuracy in the results). */ |
|
/* Default is to lose at either one eighth or 2 of the */ |
|
/* available decimal digits in each computed singular value */ |
|
/* (whichever is smaller). */ |
|
|
|
/* MAXITR INTEGER, default = 6 */ |
|
/* MAXITR controls the maximum number of passes of the */ |
|
/* algorithm through its inner loop. The algorithms stops */ |
|
/* (and so fails to converge) if the number of passes */ |
|
/* through the inner loop exceeds MAXITR*N**2. */ |
|
|
|
/* ===================================================================== */ |
|
|
|
/* .. Parameters .. */ |
|
/* .. */ |
|
/* .. Local Scalars .. */ |
|
/* .. */ |
|
/* .. External Functions .. */ |
|
/* .. */ |
|
/* .. External Subroutines .. */ |
|
/* .. */ |
|
/* .. Intrinsic Functions .. */ |
|
/* .. */ |
|
/* .. Executable Statements .. */ |
|
|
|
/* Test the input parameters. */ |
|
|
|
/* Parameter adjustments */ |
|
--d__; |
|
--e; |
|
vt_dim1 = *ldvt; |
|
vt_offset = 1 + vt_dim1; |
|
vt -= vt_offset; |
|
u_dim1 = *ldu; |
|
u_offset = 1 + u_dim1; |
|
u -= u_offset; |
|
c_dim1 = *ldc; |
|
c_offset = 1 + c_dim1; |
|
c__ -= c_offset; |
|
--work; |
|
|
|
/* Function Body */ |
|
*info = 0; |
|
lower = lsame_(uplo, "L"); |
|
if (! lsame_(uplo, "U") && ! lower) { |
|
*info = -1; |
|
} else if (*n < 0) { |
|
*info = -2; |
|
} else if (*ncvt < 0) { |
|
*info = -3; |
|
} else if (*nru < 0) { |
|
*info = -4; |
|
} else if (*ncc < 0) { |
|
*info = -5; |
|
} else if (*ncvt == 0 && *ldvt < 1 || *ncvt > 0 && *ldvt < max(1,*n)) { |
|
*info = -9; |
|
} else if (*ldu < max(1,*nru)) { |
|
*info = -11; |
|
} else if (*ncc == 0 && *ldc < 1 || *ncc > 0 && *ldc < max(1,*n)) { |
|
*info = -13; |
|
} |
|
if (*info != 0) { |
|
i__1 = -(*info); |
|
xerbla_("SBDSQR", &i__1); |
|
return 0; |
|
} |
|
if (*n == 0) { |
|
return 0; |
|
} |
|
if (*n == 1) { |
|
goto L160; |
|
} |
|
|
|
/* ROTATE is true if any singular vectors desired, false otherwise */ |
|
|
|
rotate = *ncvt > 0 || *nru > 0 || *ncc > 0; |
|
|
|
/* If no singular vectors desired, use qd algorithm */ |
|
|
|
if (! rotate) { |
|
slasq1_(n, &d__[1], &e[1], &work[1], info); |
|
return 0; |
|
} |
|
|
|
nm1 = *n - 1; |
|
nm12 = nm1 + nm1; |
|
nm13 = nm12 + nm1; |
|
idir = 0; |
|
|
|
/* Get machine constants */ |
|
|
|
eps = slamch_("Epsilon"); |
|
unfl = slamch_("Safe minimum"); |
|
|
|
/* If matrix lower bidiagonal, rotate to be upper bidiagonal */ |
|
/* by applying Givens rotations on the left */ |
|
|
|
if (lower) { |
|
i__1 = *n - 1; |
|
for (i__ = 1; i__ <= i__1; ++i__) { |
|
slartg_(&d__[i__], &e[i__], &cs, &sn, &r__); |
|
d__[i__] = r__; |
|
e[i__] = sn * d__[i__ + 1]; |
|
d__[i__ + 1] = cs * d__[i__ + 1]; |
|
work[i__] = cs; |
|
work[nm1 + i__] = sn; |
|
/* L10: */ |
|
} |
|
|
|
/* Update singular vectors if desired */ |
|
|
|
if (*nru > 0) { |
|
slasr_("R", "V", "F", nru, n, &work[1], &work[*n], &u[u_offset], |
|
ldu); |
|
} |
|
if (*ncc > 0) { |
|
slasr_("L", "V", "F", n, ncc, &work[1], &work[*n], &c__[c_offset], |
|
ldc); |
|
} |
|
} |
|
|
|
/* Compute singular values to relative accuracy TOL */ |
|
/* (By setting TOL to be negative, algorithm will compute */ |
|
/* singular values to absolute accuracy ABS(TOL)*norm(input matrix)) */ |
|
|
|
/* Computing MAX */ |
|
/* Computing MIN */ |
|
d__1 = (doublereal) eps; |
|
r__3 = 100.f, r__4 = pow_dd(&d__1, &c_b15); |
|
r__1 = 10.f, r__2 = dmin(r__3,r__4); |
|
tolmul = dmax(r__1,r__2); |
|
tol = tolmul * eps; |
|
|
|
/* Compute approximate maximum, minimum singular values */ |
|
|
|
smax = 0.f; |
|
i__1 = *n; |
|
for (i__ = 1; i__ <= i__1; ++i__) { |
|
/* Computing MAX */ |
|
r__2 = smax, r__3 = (r__1 = d__[i__], dabs(r__1)); |
|
smax = dmax(r__2,r__3); |
|
/* L20: */ |
|
} |
|
i__1 = *n - 1; |
|
for (i__ = 1; i__ <= i__1; ++i__) { |
|
/* Computing MAX */ |
|
r__2 = smax, r__3 = (r__1 = e[i__], dabs(r__1)); |
|
smax = dmax(r__2,r__3); |
|
/* L30: */ |
|
} |
|
sminl = 0.f; |
|
if (tol >= 0.f) { |
|
|
|
/* Relative accuracy desired */ |
|
|
|
sminoa = dabs(d__[1]); |
|
if (sminoa == 0.f) { |
|
goto L50; |
|
} |
|
mu = sminoa; |
|
i__1 = *n; |
|
for (i__ = 2; i__ <= i__1; ++i__) { |
|
mu = (r__2 = d__[i__], dabs(r__2)) * (mu / (mu + (r__1 = e[i__ - |
|
1], dabs(r__1)))); |
|
sminoa = dmin(sminoa,mu); |
|
if (sminoa == 0.f) { |
|
goto L50; |
|
} |
|
/* L40: */ |
|
} |
|
L50: |
|
sminoa /= sqrt((real) (*n)); |
|
/* Computing MAX */ |
|
r__1 = tol * sminoa, r__2 = *n * 6 * *n * unfl; |
|
thresh = dmax(r__1,r__2); |
|
} else { |
|
|
|
/* Absolute accuracy desired */ |
|
|
|
/* Computing MAX */ |
|
r__1 = dabs(tol) * smax, r__2 = *n * 6 * *n * unfl; |
|
thresh = dmax(r__1,r__2); |
|
} |
|
|
|
/* Prepare for main iteration loop for the singular values */ |
|
/* (MAXIT is the maximum number of passes through the inner */ |
|
/* loop permitted before nonconvergence signalled.) */ |
|
|
|
maxit = *n * 6 * *n; |
|
iter = 0; |
|
oldll = -1; |
|
oldm = -1; |
|
|
|
/* M points to last element of unconverged part of matrix */ |
|
|
|
m = *n; |
|
|
|
/* Begin main iteration loop */ |
|
|
|
L60: |
|
|
|
/* Check for convergence or exceeding iteration count */ |
|
|
|
if (m <= 1) { |
|
goto L160; |
|
} |
|
if (iter > maxit) { |
|
goto L200; |
|
} |
|
|
|
/* Find diagonal block of matrix to work on */ |
|
|
|
if (tol < 0.f && (r__1 = d__[m], dabs(r__1)) <= thresh) { |
|
d__[m] = 0.f; |
|
} |
|
smax = (r__1 = d__[m], dabs(r__1)); |
|
smin = smax; |
|
i__1 = m - 1; |
|
for (lll = 1; lll <= i__1; ++lll) { |
|
ll = m - lll; |
|
abss = (r__1 = d__[ll], dabs(r__1)); |
|
abse = (r__1 = e[ll], dabs(r__1)); |
|
if (tol < 0.f && abss <= thresh) { |
|
d__[ll] = 0.f; |
|
} |
|
if (abse <= thresh) { |
|
goto L80; |
|
} |
|
smin = dmin(smin,abss); |
|
/* Computing MAX */ |
|
r__1 = max(smax,abss); |
|
smax = dmax(r__1,abse); |
|
/* L70: */ |
|
} |
|
ll = 0; |
|
goto L90; |
|
L80: |
|
e[ll] = 0.f; |
|
|
|
/* Matrix splits since E(LL) = 0 */ |
|
|
|
if (ll == m - 1) { |
|
|
|
/* Convergence of bottom singular value, return to top of loop */ |
|
|
|
--m; |
|
goto L60; |
|
} |
|
L90: |
|
++ll; |
|
|
|
/* E(LL) through E(M-1) are nonzero, E(LL-1) is zero */ |
|
|
|
if (ll == m - 1) { |
|
|
|
/* 2 by 2 block, handle separately */ |
|
|
|
slasv2_(&d__[m - 1], &e[m - 1], &d__[m], &sigmn, &sigmx, &sinr, &cosr, |
|
&sinl, &cosl); |
|
d__[m - 1] = sigmx; |
|
e[m - 1] = 0.f; |
|
d__[m] = sigmn; |
|
|
|
/* Compute singular vectors, if desired */ |
|
|
|
if (*ncvt > 0) { |
|
srot_(ncvt, &vt[m - 1 + vt_dim1], ldvt, &vt[m + vt_dim1], ldvt, & |
|
cosr, &sinr); |
|
} |
|
if (*nru > 0) { |
|
srot_(nru, &u[(m - 1) * u_dim1 + 1], &c__1, &u[m * u_dim1 + 1], & |
|
c__1, &cosl, &sinl); |
|
} |
|
if (*ncc > 0) { |
|
srot_(ncc, &c__[m - 1 + c_dim1], ldc, &c__[m + c_dim1], ldc, & |
|
cosl, &sinl); |
|
} |
|
m += -2; |
|
goto L60; |
|
} |
|
|
|
/* If working on new submatrix, choose shift direction */ |
|
/* (from larger end diagonal element towards smaller) */ |
|
|
|
if (ll > oldm || m < oldll) { |
|
if ((r__1 = d__[ll], dabs(r__1)) >= (r__2 = d__[m], dabs(r__2))) { |
|
|
|
/* Chase bulge from top (big end) to bottom (small end) */ |
|
|
|
idir = 1; |
|
} else { |
|
|
|
/* Chase bulge from bottom (big end) to top (small end) */ |
|
|
|
idir = 2; |
|
} |
|
} |
|
|
|
/* Apply convergence tests */ |
|
|
|
if (idir == 1) { |
|
|
|
/* Run convergence test in forward direction */ |
|
/* First apply standard test to bottom of matrix */ |
|
|
|
if ((r__2 = e[m - 1], dabs(r__2)) <= dabs(tol) * (r__1 = d__[m], dabs( |
|
r__1)) || tol < 0.f && (r__3 = e[m - 1], dabs(r__3)) <= |
|
thresh) { |
|
e[m - 1] = 0.f; |
|
goto L60; |
|
} |
|
|
|
if (tol >= 0.f) { |
|
|
|
/* If relative accuracy desired, */ |
|
/* apply convergence criterion forward */ |
|
|
|
mu = (r__1 = d__[ll], dabs(r__1)); |
|
sminl = mu; |
|
i__1 = m - 1; |
|
for (lll = ll; lll <= i__1; ++lll) { |
|
if ((r__1 = e[lll], dabs(r__1)) <= tol * mu) { |
|
e[lll] = 0.f; |
|
goto L60; |
|
} |
|
mu = (r__2 = d__[lll + 1], dabs(r__2)) * (mu / (mu + (r__1 = |
|
e[lll], dabs(r__1)))); |
|
sminl = dmin(sminl,mu); |
|
/* L100: */ |
|
} |
|
} |
|
|
|
} else { |
|
|
|
/* Run convergence test in backward direction */ |
|
/* First apply standard test to top of matrix */ |
|
|
|
if ((r__2 = e[ll], dabs(r__2)) <= dabs(tol) * (r__1 = d__[ll], dabs( |
|
r__1)) || tol < 0.f && (r__3 = e[ll], dabs(r__3)) <= thresh) { |
|
e[ll] = 0.f; |
|
goto L60; |
|
} |
|
|
|
if (tol >= 0.f) { |
|
|
|
/* If relative accuracy desired, */ |
|
/* apply convergence criterion backward */ |
|
|
|
mu = (r__1 = d__[m], dabs(r__1)); |
|
sminl = mu; |
|
i__1 = ll; |
|
for (lll = m - 1; lll >= i__1; --lll) { |
|
if ((r__1 = e[lll], dabs(r__1)) <= tol * mu) { |
|
e[lll] = 0.f; |
|
goto L60; |
|
} |
|
mu = (r__2 = d__[lll], dabs(r__2)) * (mu / (mu + (r__1 = e[ |
|
lll], dabs(r__1)))); |
|
sminl = dmin(sminl,mu); |
|
/* L110: */ |
|
} |
|
} |
|
} |
|
oldll = ll; |
|
oldm = m; |
|
|
|
/* Compute shift. First, test if shifting would ruin relative */ |
|
/* accuracy, and if so set the shift to zero. */ |
|
|
|
/* Computing MAX */ |
|
r__1 = eps, r__2 = tol * .01f; |
|
if (tol >= 0.f && *n * tol * (sminl / smax) <= dmax(r__1,r__2)) { |
|
|
|
/* Use a zero shift to avoid loss of relative accuracy */ |
|
|
|
shift = 0.f; |
|
} else { |
|
|
|
/* Compute the shift from 2-by-2 block at end of matrix */ |
|
|
|
if (idir == 1) { |
|
sll = (r__1 = d__[ll], dabs(r__1)); |
|
slas2_(&d__[m - 1], &e[m - 1], &d__[m], &shift, &r__); |
|
} else { |
|
sll = (r__1 = d__[m], dabs(r__1)); |
|
slas2_(&d__[ll], &e[ll], &d__[ll + 1], &shift, &r__); |
|
} |
|
|
|
/* Test if shift negligible, and if so set to zero */ |
|
|
|
if (sll > 0.f) { |
|
/* Computing 2nd power */ |
|
r__1 = shift / sll; |
|
if (r__1 * r__1 < eps) { |
|
shift = 0.f; |
|
} |
|
} |
|
} |
|
|
|
/* Increment iteration count */ |
|
|
|
iter = iter + m - ll; |
|
|
|
/* If SHIFT = 0, do simplified QR iteration */ |
|
|
|
if (shift == 0.f) { |
|
if (idir == 1) { |
|
|
|
/* Chase bulge from top to bottom */ |
|
/* Save cosines and sines for later singular vector updates */ |
|
|
|
cs = 1.f; |
|
oldcs = 1.f; |
|
i__1 = m - 1; |
|
for (i__ = ll; i__ <= i__1; ++i__) { |
|
r__1 = d__[i__] * cs; |
|
slartg_(&r__1, &e[i__], &cs, &sn, &r__); |
|
if (i__ > ll) { |
|
e[i__ - 1] = oldsn * r__; |
|
} |
|
r__1 = oldcs * r__; |
|
r__2 = d__[i__ + 1] * sn; |
|
slartg_(&r__1, &r__2, &oldcs, &oldsn, &d__[i__]); |
|
work[i__ - ll + 1] = cs; |
|
work[i__ - ll + 1 + nm1] = sn; |
|
work[i__ - ll + 1 + nm12] = oldcs; |
|
work[i__ - ll + 1 + nm13] = oldsn; |
|
/* L120: */ |
|
} |
|
h__ = d__[m] * cs; |
|
d__[m] = h__ * oldcs; |
|
e[m - 1] = h__ * oldsn; |
|
|
|
/* Update singular vectors */ |
|
|
|
if (*ncvt > 0) { |
|
i__1 = m - ll + 1; |
|
slasr_("L", "V", "F", &i__1, ncvt, &work[1], &work[*n], &vt[ |
|
ll + vt_dim1], ldvt); |
|
} |
|
if (*nru > 0) { |
|
i__1 = m - ll + 1; |
|
slasr_("R", "V", "F", nru, &i__1, &work[nm12 + 1], &work[nm13 |
|
+ 1], &u[ll * u_dim1 + 1], ldu); |
|
} |
|
if (*ncc > 0) { |
|
i__1 = m - ll + 1; |
|
slasr_("L", "V", "F", &i__1, ncc, &work[nm12 + 1], &work[nm13 |
|
+ 1], &c__[ll + c_dim1], ldc); |
|
} |
|
|
|
/* Test convergence */ |
|
|
|
if ((r__1 = e[m - 1], dabs(r__1)) <= thresh) { |
|
e[m - 1] = 0.f; |
|
} |
|
|
|
} else { |
|
|
|
/* Chase bulge from bottom to top */ |
|
/* Save cosines and sines for later singular vector updates */ |
|
|
|
cs = 1.f; |
|
oldcs = 1.f; |
|
i__1 = ll + 1; |
|
for (i__ = m; i__ >= i__1; --i__) { |
|
r__1 = d__[i__] * cs; |
|
slartg_(&r__1, &e[i__ - 1], &cs, &sn, &r__); |
|
if (i__ < m) { |
|
e[i__] = oldsn * r__; |
|
} |
|
r__1 = oldcs * r__; |
|
r__2 = d__[i__ - 1] * sn; |
|
slartg_(&r__1, &r__2, &oldcs, &oldsn, &d__[i__]); |
|
work[i__ - ll] = cs; |
|
work[i__ - ll + nm1] = -sn; |
|
work[i__ - ll + nm12] = oldcs; |
|
work[i__ - ll + nm13] = -oldsn; |
|
/* L130: */ |
|
} |
|
h__ = d__[ll] * cs; |
|
d__[ll] = h__ * oldcs; |
|
e[ll] = h__ * oldsn; |
|
|
|
/* Update singular vectors */ |
|
|
|
if (*ncvt > 0) { |
|
i__1 = m - ll + 1; |
|
slasr_("L", "V", "B", &i__1, ncvt, &work[nm12 + 1], &work[ |
|
nm13 + 1], &vt[ll + vt_dim1], ldvt); |
|
} |
|
if (*nru > 0) { |
|
i__1 = m - ll + 1; |
|
slasr_("R", "V", "B", nru, &i__1, &work[1], &work[*n], &u[ll * |
|
u_dim1 + 1], ldu); |
|
} |
|
if (*ncc > 0) { |
|
i__1 = m - ll + 1; |
|
slasr_("L", "V", "B", &i__1, ncc, &work[1], &work[*n], &c__[ |
|
ll + c_dim1], ldc); |
|
} |
|
|
|
/* Test convergence */ |
|
|
|
if ((r__1 = e[ll], dabs(r__1)) <= thresh) { |
|
e[ll] = 0.f; |
|
} |
|
} |
|
} else { |
|
|
|
/* Use nonzero shift */ |
|
|
|
if (idir == 1) { |
|
|
|
/* Chase bulge from top to bottom */ |
|
/* Save cosines and sines for later singular vector updates */ |
|
|
|
f = ((r__1 = d__[ll], dabs(r__1)) - shift) * (r_sign(&c_b49, &d__[ |
|
ll]) + shift / d__[ll]); |
|
g = e[ll]; |
|
i__1 = m - 1; |
|
for (i__ = ll; i__ <= i__1; ++i__) { |
|
slartg_(&f, &g, &cosr, &sinr, &r__); |
|
if (i__ > ll) { |
|
e[i__ - 1] = r__; |
|
} |
|
f = cosr * d__[i__] + sinr * e[i__]; |
|
e[i__] = cosr * e[i__] - sinr * d__[i__]; |
|
g = sinr * d__[i__ + 1]; |
|
d__[i__ + 1] = cosr * d__[i__ + 1]; |
|
slartg_(&f, &g, &cosl, &sinl, &r__); |
|
d__[i__] = r__; |
|
f = cosl * e[i__] + sinl * d__[i__ + 1]; |
|
d__[i__ + 1] = cosl * d__[i__ + 1] - sinl * e[i__]; |
|
if (i__ < m - 1) { |
|
g = sinl * e[i__ + 1]; |
|
e[i__ + 1] = cosl * e[i__ + 1]; |
|
} |
|
work[i__ - ll + 1] = cosr; |
|
work[i__ - ll + 1 + nm1] = sinr; |
|
work[i__ - ll + 1 + nm12] = cosl; |
|
work[i__ - ll + 1 + nm13] = sinl; |
|
/* L140: */ |
|
} |
|
e[m - 1] = f; |
|
|
|
/* Update singular vectors */ |
|
|
|
if (*ncvt > 0) { |
|
i__1 = m - ll + 1; |
|
slasr_("L", "V", "F", &i__1, ncvt, &work[1], &work[*n], &vt[ |
|
ll + vt_dim1], ldvt); |
|
} |
|
if (*nru > 0) { |
|
i__1 = m - ll + 1; |
|
slasr_("R", "V", "F", nru, &i__1, &work[nm12 + 1], &work[nm13 |
|
+ 1], &u[ll * u_dim1 + 1], ldu); |
|
} |
|
if (*ncc > 0) { |
|
i__1 = m - ll + 1; |
|
slasr_("L", "V", "F", &i__1, ncc, &work[nm12 + 1], &work[nm13 |
|
+ 1], &c__[ll + c_dim1], ldc); |
|
} |
|
|
|
/* Test convergence */ |
|
|
|
if ((r__1 = e[m - 1], dabs(r__1)) <= thresh) { |
|
e[m - 1] = 0.f; |
|
} |
|
|
|
} else { |
|
|
|
/* Chase bulge from bottom to top */ |
|
/* Save cosines and sines for later singular vector updates */ |
|
|
|
f = ((r__1 = d__[m], dabs(r__1)) - shift) * (r_sign(&c_b49, &d__[ |
|
m]) + shift / d__[m]); |
|
g = e[m - 1]; |
|
i__1 = ll + 1; |
|
for (i__ = m; i__ >= i__1; --i__) { |
|
slartg_(&f, &g, &cosr, &sinr, &r__); |
|
if (i__ < m) { |
|
e[i__] = r__; |
|
} |
|
f = cosr * d__[i__] + sinr * e[i__ - 1]; |
|
e[i__ - 1] = cosr * e[i__ - 1] - sinr * d__[i__]; |
|
g = sinr * d__[i__ - 1]; |
|
d__[i__ - 1] = cosr * d__[i__ - 1]; |
|
slartg_(&f, &g, &cosl, &sinl, &r__); |
|
d__[i__] = r__; |
|
f = cosl * e[i__ - 1] + sinl * d__[i__ - 1]; |
|
d__[i__ - 1] = cosl * d__[i__ - 1] - sinl * e[i__ - 1]; |
|
if (i__ > ll + 1) { |
|
g = sinl * e[i__ - 2]; |
|
e[i__ - 2] = cosl * e[i__ - 2]; |
|
} |
|
work[i__ - ll] = cosr; |
|
work[i__ - ll + nm1] = -sinr; |
|
work[i__ - ll + nm12] = cosl; |
|
work[i__ - ll + nm13] = -sinl; |
|
/* L150: */ |
|
} |
|
e[ll] = f; |
|
|
|
/* Test convergence */ |
|
|
|
if ((r__1 = e[ll], dabs(r__1)) <= thresh) { |
|
e[ll] = 0.f; |
|
} |
|
|
|
/* Update singular vectors if desired */ |
|
|
|
if (*ncvt > 0) { |
|
i__1 = m - ll + 1; |
|
slasr_("L", "V", "B", &i__1, ncvt, &work[nm12 + 1], &work[ |
|
nm13 + 1], &vt[ll + vt_dim1], ldvt); |
|
} |
|
if (*nru > 0) { |
|
i__1 = m - ll + 1; |
|
slasr_("R", "V", "B", nru, &i__1, &work[1], &work[*n], &u[ll * |
|
u_dim1 + 1], ldu); |
|
} |
|
if (*ncc > 0) { |
|
i__1 = m - ll + 1; |
|
slasr_("L", "V", "B", &i__1, ncc, &work[1], &work[*n], &c__[ |
|
ll + c_dim1], ldc); |
|
} |
|
} |
|
} |
|
|
|
/* QR iteration finished, go back and check convergence */ |
|
|
|
goto L60; |
|
|
|
/* All singular values converged, so make them positive */ |
|
|
|
L160: |
|
i__1 = *n; |
|
for (i__ = 1; i__ <= i__1; ++i__) { |
|
if (d__[i__] < 0.f) { |
|
d__[i__] = -d__[i__]; |
|
|
|
/* Change sign of singular vectors, if desired */ |
|
|
|
if (*ncvt > 0) { |
|
sscal_(ncvt, &c_b72, &vt[i__ + vt_dim1], ldvt); |
|
} |
|
} |
|
/* L170: */ |
|
} |
|
|
|
/* Sort the singular values into decreasing order (insertion sort on */ |
|
/* singular values, but only one transposition per singular vector) */ |
|
|
|
i__1 = *n - 1; |
|
for (i__ = 1; i__ <= i__1; ++i__) { |
|
|
|
/* Scan for smallest D(I) */ |
|
|
|
isub = 1; |
|
smin = d__[1]; |
|
i__2 = *n + 1 - i__; |
|
for (j = 2; j <= i__2; ++j) { |
|
if (d__[j] <= smin) { |
|
isub = j; |
|
smin = d__[j]; |
|
} |
|
/* L180: */ |
|
} |
|
if (isub != *n + 1 - i__) { |
|
|
|
/* Swap singular values and vectors */ |
|
|
|
d__[isub] = d__[*n + 1 - i__]; |
|
d__[*n + 1 - i__] = smin; |
|
if (*ncvt > 0) { |
|
sswap_(ncvt, &vt[isub + vt_dim1], ldvt, &vt[*n + 1 - i__ + |
|
vt_dim1], ldvt); |
|
} |
|
if (*nru > 0) { |
|
sswap_(nru, &u[isub * u_dim1 + 1], &c__1, &u[(*n + 1 - i__) * |
|
u_dim1 + 1], &c__1); |
|
} |
|
if (*ncc > 0) { |
|
sswap_(ncc, &c__[isub + c_dim1], ldc, &c__[*n + 1 - i__ + |
|
c_dim1], ldc); |
|
} |
|
} |
|
/* L190: */ |
|
} |
|
goto L220; |
|
|
|
/* Maximum number of iterations exceeded, failure to converge */ |
|
|
|
L200: |
|
*info = 0; |
|
i__1 = *n - 1; |
|
for (i__ = 1; i__ <= i__1; ++i__) { |
|
if (e[i__] != 0.f) { |
|
++(*info); |
|
} |
|
/* L210: */ |
|
} |
|
L220: |
|
return 0; |
|
|
|
/* End of SBDSQR */ |
|
|
|
} /* sbdsqr_ */
|
|
|