mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
360 lines
10 KiB
360 lines
10 KiB
/* dormbr.f -- translated by f2c (version 20061008). |
|
You must link the resulting object file with libf2c: |
|
on Microsoft Windows system, link with libf2c.lib; |
|
on Linux or Unix systems, link with .../path/to/libf2c.a -lm |
|
or, if you install libf2c.a in a standard place, with -lf2c -lm |
|
-- in that order, at the end of the command line, as in |
|
cc *.o -lf2c -lm |
|
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., |
|
|
|
http://www.netlib.org/f2c/libf2c.zip |
|
*/ |
|
|
|
#include "clapack.h" |
|
|
|
|
|
/* Table of constant values */ |
|
|
|
static integer c__1 = 1; |
|
static integer c_n1 = -1; |
|
static integer c__2 = 2; |
|
|
|
/* Subroutine */ int dormbr_(char *vect, char *side, char *trans, integer *m, |
|
integer *n, integer *k, doublereal *a, integer *lda, doublereal *tau, |
|
doublereal *c__, integer *ldc, doublereal *work, integer *lwork, |
|
integer *info) |
|
{ |
|
/* System generated locals */ |
|
address a__1[2]; |
|
integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2, i__3[2]; |
|
char ch__1[2]; |
|
|
|
/* Builtin functions */ |
|
/* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen); |
|
|
|
/* Local variables */ |
|
integer i1, i2, nb, mi, ni, nq, nw; |
|
logical left; |
|
extern logical lsame_(char *, char *); |
|
integer iinfo; |
|
extern /* Subroutine */ int xerbla_(char *, integer *); |
|
extern integer ilaenv_(integer *, char *, char *, integer *, integer *, |
|
integer *, integer *); |
|
extern /* Subroutine */ int dormlq_(char *, char *, integer *, integer *, |
|
integer *, doublereal *, integer *, doublereal *, doublereal *, |
|
integer *, doublereal *, integer *, integer *); |
|
logical notran; |
|
extern /* Subroutine */ int dormqr_(char *, char *, integer *, integer *, |
|
integer *, doublereal *, integer *, doublereal *, doublereal *, |
|
integer *, doublereal *, integer *, integer *); |
|
logical applyq; |
|
char transt[1]; |
|
integer lwkopt; |
|
logical lquery; |
|
|
|
|
|
/* -- LAPACK routine (version 3.2) -- */ |
|
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ |
|
/* November 2006 */ |
|
|
|
/* .. Scalar Arguments .. */ |
|
/* .. */ |
|
/* .. Array Arguments .. */ |
|
/* .. */ |
|
|
|
/* Purpose */ |
|
/* ======= */ |
|
|
|
/* If VECT = 'Q', DORMBR overwrites the general real M-by-N matrix C */ |
|
/* with */ |
|
/* SIDE = 'L' SIDE = 'R' */ |
|
/* TRANS = 'N': Q * C C * Q */ |
|
/* TRANS = 'T': Q**T * C C * Q**T */ |
|
|
|
/* If VECT = 'P', DORMBR overwrites the general real M-by-N matrix C */ |
|
/* with */ |
|
/* SIDE = 'L' SIDE = 'R' */ |
|
/* TRANS = 'N': P * C C * P */ |
|
/* TRANS = 'T': P**T * C C * P**T */ |
|
|
|
/* Here Q and P**T are the orthogonal matrices determined by DGEBRD when */ |
|
/* reducing a real matrix A to bidiagonal form: A = Q * B * P**T. Q and */ |
|
/* P**T are defined as products of elementary reflectors H(i) and G(i) */ |
|
/* respectively. */ |
|
|
|
/* Let nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Thus nq is the */ |
|
/* order of the orthogonal matrix Q or P**T that is applied. */ |
|
|
|
/* If VECT = 'Q', A is assumed to have been an NQ-by-K matrix: */ |
|
/* if nq >= k, Q = H(1) H(2) . . . H(k); */ |
|
/* if nq < k, Q = H(1) H(2) . . . H(nq-1). */ |
|
|
|
/* If VECT = 'P', A is assumed to have been a K-by-NQ matrix: */ |
|
/* if k < nq, P = G(1) G(2) . . . G(k); */ |
|
/* if k >= nq, P = G(1) G(2) . . . G(nq-1). */ |
|
|
|
/* Arguments */ |
|
/* ========= */ |
|
|
|
/* VECT (input) CHARACTER*1 */ |
|
/* = 'Q': apply Q or Q**T; */ |
|
/* = 'P': apply P or P**T. */ |
|
|
|
/* SIDE (input) CHARACTER*1 */ |
|
/* = 'L': apply Q, Q**T, P or P**T from the Left; */ |
|
/* = 'R': apply Q, Q**T, P or P**T from the Right. */ |
|
|
|
/* TRANS (input) CHARACTER*1 */ |
|
/* = 'N': No transpose, apply Q or P; */ |
|
/* = 'T': Transpose, apply Q**T or P**T. */ |
|
|
|
/* M (input) INTEGER */ |
|
/* The number of rows of the matrix C. M >= 0. */ |
|
|
|
/* N (input) INTEGER */ |
|
/* The number of columns of the matrix C. N >= 0. */ |
|
|
|
/* K (input) INTEGER */ |
|
/* If VECT = 'Q', the number of columns in the original */ |
|
/* matrix reduced by DGEBRD. */ |
|
/* If VECT = 'P', the number of rows in the original */ |
|
/* matrix reduced by DGEBRD. */ |
|
/* K >= 0. */ |
|
|
|
/* A (input) DOUBLE PRECISION array, dimension */ |
|
/* (LDA,min(nq,K)) if VECT = 'Q' */ |
|
/* (LDA,nq) if VECT = 'P' */ |
|
/* The vectors which define the elementary reflectors H(i) and */ |
|
/* G(i), whose products determine the matrices Q and P, as */ |
|
/* returned by DGEBRD. */ |
|
|
|
/* LDA (input) INTEGER */ |
|
/* The leading dimension of the array A. */ |
|
/* If VECT = 'Q', LDA >= max(1,nq); */ |
|
/* if VECT = 'P', LDA >= max(1,min(nq,K)). */ |
|
|
|
/* TAU (input) DOUBLE PRECISION array, dimension (min(nq,K)) */ |
|
/* TAU(i) must contain the scalar factor of the elementary */ |
|
/* reflector H(i) or G(i) which determines Q or P, as returned */ |
|
/* by DGEBRD in the array argument TAUQ or TAUP. */ |
|
|
|
/* C (input/output) DOUBLE PRECISION array, dimension (LDC,N) */ |
|
/* On entry, the M-by-N matrix C. */ |
|
/* On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q */ |
|
/* or P*C or P**T*C or C*P or C*P**T. */ |
|
|
|
/* LDC (input) INTEGER */ |
|
/* The leading dimension of the array C. LDC >= max(1,M). */ |
|
|
|
/* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */ |
|
/* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ |
|
|
|
/* LWORK (input) INTEGER */ |
|
/* The dimension of the array WORK. */ |
|
/* If SIDE = 'L', LWORK >= max(1,N); */ |
|
/* if SIDE = 'R', LWORK >= max(1,M). */ |
|
/* For optimum performance LWORK >= N*NB if SIDE = 'L', and */ |
|
/* LWORK >= M*NB if SIDE = 'R', where NB is the optimal */ |
|
/* blocksize. */ |
|
|
|
/* If LWORK = -1, then a workspace query is assumed; the routine */ |
|
/* only calculates the optimal size of the WORK array, returns */ |
|
/* this value as the first entry of the WORK array, and no error */ |
|
/* message related to LWORK is issued by XERBLA. */ |
|
|
|
/* INFO (output) INTEGER */ |
|
/* = 0: successful exit */ |
|
/* < 0: if INFO = -i, the i-th argument had an illegal value */ |
|
|
|
/* ===================================================================== */ |
|
|
|
/* .. Local Scalars .. */ |
|
/* .. */ |
|
/* .. External Functions .. */ |
|
/* .. */ |
|
/* .. External Subroutines .. */ |
|
/* .. */ |
|
/* .. Intrinsic Functions .. */ |
|
/* .. */ |
|
/* .. Executable Statements .. */ |
|
|
|
/* Test the input arguments */ |
|
|
|
/* Parameter adjustments */ |
|
a_dim1 = *lda; |
|
a_offset = 1 + a_dim1; |
|
a -= a_offset; |
|
--tau; |
|
c_dim1 = *ldc; |
|
c_offset = 1 + c_dim1; |
|
c__ -= c_offset; |
|
--work; |
|
|
|
/* Function Body */ |
|
*info = 0; |
|
applyq = lsame_(vect, "Q"); |
|
left = lsame_(side, "L"); |
|
notran = lsame_(trans, "N"); |
|
lquery = *lwork == -1; |
|
|
|
/* NQ is the order of Q or P and NW is the minimum dimension of WORK */ |
|
|
|
if (left) { |
|
nq = *m; |
|
nw = *n; |
|
} else { |
|
nq = *n; |
|
nw = *m; |
|
} |
|
if (! applyq && ! lsame_(vect, "P")) { |
|
*info = -1; |
|
} else if (! left && ! lsame_(side, "R")) { |
|
*info = -2; |
|
} else if (! notran && ! lsame_(trans, "T")) { |
|
*info = -3; |
|
} else if (*m < 0) { |
|
*info = -4; |
|
} else if (*n < 0) { |
|
*info = -5; |
|
} else if (*k < 0) { |
|
*info = -6; |
|
} else /* if(complicated condition) */ { |
|
/* Computing MAX */ |
|
i__1 = 1, i__2 = min(nq,*k); |
|
if (applyq && *lda < max(1,nq) || ! applyq && *lda < max(i__1,i__2)) { |
|
*info = -8; |
|
} else if (*ldc < max(1,*m)) { |
|
*info = -11; |
|
} else if (*lwork < max(1,nw) && ! lquery) { |
|
*info = -13; |
|
} |
|
} |
|
|
|
if (*info == 0) { |
|
if (applyq) { |
|
if (left) { |
|
/* Writing concatenation */ |
|
i__3[0] = 1, a__1[0] = side; |
|
i__3[1] = 1, a__1[1] = trans; |
|
s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2); |
|
i__1 = *m - 1; |
|
i__2 = *m - 1; |
|
nb = ilaenv_(&c__1, "DORMQR", ch__1, &i__1, n, &i__2, &c_n1); |
|
} else { |
|
/* Writing concatenation */ |
|
i__3[0] = 1, a__1[0] = side; |
|
i__3[1] = 1, a__1[1] = trans; |
|
s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2); |
|
i__1 = *n - 1; |
|
i__2 = *n - 1; |
|
nb = ilaenv_(&c__1, "DORMQR", ch__1, m, &i__1, &i__2, &c_n1); |
|
} |
|
} else { |
|
if (left) { |
|
/* Writing concatenation */ |
|
i__3[0] = 1, a__1[0] = side; |
|
i__3[1] = 1, a__1[1] = trans; |
|
s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2); |
|
i__1 = *m - 1; |
|
i__2 = *m - 1; |
|
nb = ilaenv_(&c__1, "DORMLQ", ch__1, &i__1, n, &i__2, &c_n1); |
|
} else { |
|
/* Writing concatenation */ |
|
i__3[0] = 1, a__1[0] = side; |
|
i__3[1] = 1, a__1[1] = trans; |
|
s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2); |
|
i__1 = *n - 1; |
|
i__2 = *n - 1; |
|
nb = ilaenv_(&c__1, "DORMLQ", ch__1, m, &i__1, &i__2, &c_n1); |
|
} |
|
} |
|
lwkopt = max(1,nw) * nb; |
|
work[1] = (doublereal) lwkopt; |
|
} |
|
|
|
if (*info != 0) { |
|
i__1 = -(*info); |
|
xerbla_("DORMBR", &i__1); |
|
return 0; |
|
} else if (lquery) { |
|
return 0; |
|
} |
|
|
|
/* Quick return if possible */ |
|
|
|
work[1] = 1.; |
|
if (*m == 0 || *n == 0) { |
|
return 0; |
|
} |
|
|
|
if (applyq) { |
|
|
|
/* Apply Q */ |
|
|
|
if (nq >= *k) { |
|
|
|
/* Q was determined by a call to DGEBRD with nq >= k */ |
|
|
|
dormqr_(side, trans, m, n, k, &a[a_offset], lda, &tau[1], &c__[ |
|
c_offset], ldc, &work[1], lwork, &iinfo); |
|
} else if (nq > 1) { |
|
|
|
/* Q was determined by a call to DGEBRD with nq < k */ |
|
|
|
if (left) { |
|
mi = *m - 1; |
|
ni = *n; |
|
i1 = 2; |
|
i2 = 1; |
|
} else { |
|
mi = *m; |
|
ni = *n - 1; |
|
i1 = 1; |
|
i2 = 2; |
|
} |
|
i__1 = nq - 1; |
|
dormqr_(side, trans, &mi, &ni, &i__1, &a[a_dim1 + 2], lda, &tau[1] |
|
, &c__[i1 + i2 * c_dim1], ldc, &work[1], lwork, &iinfo); |
|
} |
|
} else { |
|
|
|
/* Apply P */ |
|
|
|
if (notran) { |
|
*(unsigned char *)transt = 'T'; |
|
} else { |
|
*(unsigned char *)transt = 'N'; |
|
} |
|
if (nq > *k) { |
|
|
|
/* P was determined by a call to DGEBRD with nq > k */ |
|
|
|
dormlq_(side, transt, m, n, k, &a[a_offset], lda, &tau[1], &c__[ |
|
c_offset], ldc, &work[1], lwork, &iinfo); |
|
} else if (nq > 1) { |
|
|
|
/* P was determined by a call to DGEBRD with nq <= k */ |
|
|
|
if (left) { |
|
mi = *m - 1; |
|
ni = *n; |
|
i1 = 2; |
|
i2 = 1; |
|
} else { |
|
mi = *m; |
|
ni = *n - 1; |
|
i1 = 1; |
|
i2 = 2; |
|
} |
|
i__1 = nq - 1; |
|
dormlq_(side, transt, &mi, &ni, &i__1, &a[(a_dim1 << 1) + 1], lda, |
|
&tau[1], &c__[i1 + i2 * c_dim1], ldc, &work[1], lwork, & |
|
iinfo); |
|
} |
|
} |
|
work[1] = (doublereal) lwkopt; |
|
return 0; |
|
|
|
/* End of DORMBR */ |
|
|
|
} /* dormbr_ */
|
|
|