mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
433 lines
16 KiB
433 lines
16 KiB
// This file is part of OpenCV project. |
|
// It is subject to the license terms in the LICENSE file found in the top-level directory |
|
// of this distribution and at http://opencv.org/license.html. |
|
// |
|
// Copyright (C) 2018 Intel Corporation |
|
|
|
|
|
#include "test_precomp.hpp" |
|
|
|
#include <stdexcept> |
|
#include <ade/util/iota_range.hpp> |
|
#include "logger.hpp" |
|
|
|
#include <opencv2/gapi/core.hpp> |
|
|
|
namespace opencv_test |
|
{ |
|
|
|
namespace |
|
{ |
|
G_TYPED_KERNEL(GInvalidResize, <GMat(GMat,Size,double,double,int)>, "org.opencv.test.invalid_resize") |
|
{ |
|
static GMatDesc outMeta(GMatDesc in, Size, double, double, int) { return in; } |
|
}; |
|
|
|
GAPI_OCV_KERNEL(GOCVInvalidResize, GInvalidResize) |
|
{ |
|
static void run(const cv::Mat& in, cv::Size sz, double fx, double fy, int interp, cv::Mat &out) |
|
{ |
|
cv::resize(in, out, sz, fx, fy, interp); |
|
} |
|
}; |
|
|
|
G_TYPED_KERNEL(GReallocatingCopy, <GMat(GMat)>, "org.opencv.test.reallocating_copy") |
|
{ |
|
static GMatDesc outMeta(GMatDesc in) { return in; } |
|
}; |
|
|
|
GAPI_OCV_KERNEL(GOCVReallocatingCopy, GReallocatingCopy) |
|
{ |
|
static void run(const cv::Mat& in, cv::Mat &out) |
|
{ |
|
out = in.clone(); |
|
} |
|
}; |
|
|
|
G_TYPED_KERNEL(GCustom, <GMat(GMat)>, "org.opencv.test.custom") |
|
{ |
|
static GMatDesc outMeta(GMatDesc in) { return in; } |
|
}; |
|
|
|
// These definitons test the correct macro work if the kernel has multiple output values |
|
G_TYPED_KERNEL(GRetGArrayTupleOfGMat2Kernel, <GArray<std::tuple<GMat, GMat>>(GMat, Scalar)>, "org.opencv.test.retarrayoftupleofgmat2kernel") {}; |
|
G_TYPED_KERNEL(GRetGArraTupleyOfGMat3Kernel, <GArray<std::tuple<GMat, GMat, GMat>>(GMat)>, "org.opencv.test.retarrayoftupleofgmat3kernel") {}; |
|
G_TYPED_KERNEL(GRetGArraTupleyOfGMat4Kernel, <GArray<std::tuple<GMat, GMat, GMat, GMat>>(GMat)>, "org.opencv.test.retarrayoftupleofgmat4kernel") {}; |
|
G_TYPED_KERNEL(GRetGArraTupleyOfGMat5Kernel, <GArray<std::tuple<GMat, GMat, GMat, GMat, GMat>>(GMat)>, "org.opencv.test.retarrayoftupleofgmat5kernel") {}; |
|
G_TYPED_KERNEL(GRetGArraTupleyOfGMat6Kernel, <GArray<std::tuple<GMat, GMat, GMat, GMat, GMat, GMat>>(GMat)>, "org.opencv.test.retarrayoftupleofgmat6kernel") {}; |
|
G_TYPED_KERNEL(GRetGArraTupleyOfGMat7Kernel, <GArray<std::tuple<GMat, GMat, GMat, GMat, GMat, GMat, GMat>>(GMat)>, "org.opencv.test.retarrayoftupleofgmat7kernel") {}; |
|
G_TYPED_KERNEL(GRetGArraTupleyOfGMat8Kernel, <GArray<std::tuple<GMat, GMat, GMat, GMat, GMat, GMat, GMat, GMat>>(GMat)>, "org.opencv.test.retarrayoftupleofgmat8kernel") {}; |
|
G_TYPED_KERNEL(GRetGArraTupleyOfGMat9Kernel, <GArray<std::tuple<GMat, GMat, GMat, GMat, GMat, GMat, GMat, GMat, GMat>>(GMat)>, "org.opencv.test.retarrayoftupleofgmat9kernel") {}; |
|
G_TYPED_KERNEL(GRetGArraTupleyOfGMat10Kernel, <GArray<std::tuple<GMat, GMat, GMat, GMat, GMat, GMat, GMat, GMat, GMat, GMat>>(GMat)>, "org.opencv.test.retarrayoftupleofgmat10kernel") {}; |
|
|
|
G_TYPED_KERNEL_M(GRetGMat2Kernel, <std::tuple<GMat, GMat>(GMat, GMat, GMat)>, "org.opencv.test.retgmat2kernel") {}; |
|
G_TYPED_KERNEL_M(GRetGMat3Kernel, <std::tuple<GMat, GMat, GMat>(GMat, GScalar)>, "org.opencv.test.retgmat3kernel") {}; |
|
G_TYPED_KERNEL_M(GRetGMat4Kernel, <std::tuple<GMat, GMat, GMat, GMat>(GMat, GArray<int>, GScalar)>, "org.opencv.test.retgmat4kernel") {}; |
|
G_TYPED_KERNEL_M(GRetGMat5Kernel, <std::tuple<GMat, GMat, GMat, GMat, GMat>(GMat)>, "org.opencv.test.retgmat5kernel") {}; |
|
G_TYPED_KERNEL_M(GRetGMat6Kernel, <std::tuple<GMat, GMat, GMat, GMat, GMat, GMat>(GMat)>, "org.opencv.test.retgmat6kernel") {}; |
|
G_TYPED_KERNEL_M(GRetGMat7Kernel, <std::tuple<GMat, GMat, GMat, GMat, GMat, GMat, GMat>(GMat)>, "org.opencv.test.retgmat7kernel") {}; |
|
G_TYPED_KERNEL_M(GRetGMat8Kernel, <std::tuple<GMat, GMat, GMat, GMat, GMat, GMat, GMat, GMat>(GMat)>, "org.opencv.test.retgmat8kernel") {}; |
|
G_TYPED_KERNEL_M(GRetGMat9Kernel, <std::tuple<GMat, GMat, GMat, GMat, GMat, GMat, GMat, GMat, GMat>(GMat)>, "org.opencv.test.retgmat9kernel") {}; |
|
G_TYPED_KERNEL_M(GRetGMat10Kernel, <std::tuple<GMat, GMat, GMat, GMat, GMat, GMat, GMat, GMat, GMat, GMat>(GMat)>, "org.opencv.test.retgmat10kernel") {}; |
|
} |
|
|
|
TEST(GAPI_Pipeline, OverloadUnary_MatMat) |
|
{ |
|
cv::GMat in; |
|
cv::GComputation comp(in, cv::gapi::bitwise_not(in)); |
|
|
|
cv::Mat in_mat = cv::Mat::eye(32, 32, CV_8UC1); |
|
cv::Mat ref_mat = ~in_mat; |
|
|
|
cv::Mat out_mat; |
|
comp.apply(in_mat, out_mat); |
|
EXPECT_EQ(0, cvtest::norm(out_mat, ref_mat, NORM_INF)); |
|
|
|
out_mat = cv::Mat(); |
|
auto cc = comp.compile(cv::descr_of(in_mat)); |
|
cc(in_mat, out_mat); |
|
EXPECT_EQ(0, cvtest::norm(out_mat, ref_mat, NORM_INF)); |
|
} |
|
|
|
TEST(GAPI_Pipeline, OverloadUnary_MatScalar) |
|
{ |
|
cv::GMat in; |
|
cv::GComputation comp(in, cv::gapi::sum(in)); |
|
|
|
cv::Mat in_mat = cv::Mat::eye(32, 32, CV_8UC1); |
|
cv::Scalar ref_scl = cv::sum(in_mat); |
|
|
|
cv::Scalar out_scl; |
|
comp.apply(in_mat, out_scl); |
|
EXPECT_EQ(out_scl, ref_scl); |
|
|
|
out_scl = cv::Scalar(); |
|
auto cc = comp.compile(cv::descr_of(in_mat)); |
|
cc(in_mat, out_scl); |
|
EXPECT_EQ(out_scl, ref_scl); |
|
} |
|
|
|
TEST(GAPI_Pipeline, OverloadBinary_Mat) |
|
{ |
|
cv::GMat a, b; |
|
cv::GComputation comp(a, b, cv::gapi::add(a, b)); |
|
|
|
cv::Mat in_mat = cv::Mat::eye(32, 32, CV_8UC1); |
|
cv::Mat ref_mat = (in_mat+in_mat); |
|
|
|
cv::Mat out_mat; |
|
comp.apply(in_mat, in_mat, out_mat); |
|
EXPECT_EQ(0, cvtest::norm(out_mat, ref_mat, NORM_INF)); |
|
|
|
out_mat = cv::Mat(); |
|
auto cc = comp.compile(cv::descr_of(in_mat), cv::descr_of(in_mat)); |
|
cc(in_mat, in_mat, out_mat); |
|
EXPECT_EQ(0, cvtest::norm(out_mat, ref_mat, NORM_INF)); |
|
} |
|
|
|
TEST(GAPI_Pipeline, OverloadBinary_Scalar) |
|
{ |
|
cv::GMat a, b; |
|
cv::GComputation comp(a, b, cv::gapi::sum(a + b)); |
|
|
|
cv::Mat in_mat = cv::Mat::eye(32, 32, CV_8UC1); |
|
cv::Scalar ref_scl = cv::sum(in_mat+in_mat); |
|
|
|
cv::Scalar out_scl; |
|
comp.apply(in_mat, in_mat, out_scl); |
|
EXPECT_EQ(out_scl, ref_scl); |
|
|
|
out_scl = cv::Scalar(); |
|
auto cc = comp.compile(cv::descr_of(in_mat), cv::descr_of(in_mat)); |
|
cc(in_mat, in_mat, out_scl); |
|
EXPECT_EQ(out_scl, ref_scl); |
|
} |
|
|
|
TEST(GAPI_Pipeline, Sharpen) |
|
{ |
|
const cv::Size sz_in (1280, 720); |
|
const cv::Size sz_out( 640, 480); |
|
cv::Mat in_mat (sz_in, CV_8UC3); |
|
in_mat = cv::Scalar(128, 33, 53); |
|
|
|
cv::Mat out_mat(sz_out, CV_8UC3); |
|
cv::Mat out_mat_y; |
|
cv::Mat out_mat_ocv(sz_out, CV_8UC3); |
|
|
|
float sharpen_coeffs[] = { |
|
0.0f, -1.f, 0.0f, |
|
-1.0f, 5.f, -1.0f, |
|
0.0f, -1.f, 0.0f |
|
}; |
|
cv::Mat sharpen_kernel(3, 3, CV_32F, sharpen_coeffs); |
|
|
|
// G-API code ////////////////////////////////////////////////////////////// |
|
|
|
cv::GMat in; |
|
auto vga = cv::gapi::resize(in, sz_out); |
|
auto yuv = cv::gapi::RGB2YUV(vga); |
|
auto yuv_p = cv::gapi::split3(yuv); |
|
auto y_sharp = cv::gapi::filter2D(std::get<0>(yuv_p), -1, sharpen_kernel); |
|
auto yuv_new = cv::gapi::merge3(y_sharp, std::get<1>(yuv_p), std::get<2>(yuv_p)); |
|
auto out = cv::gapi::YUV2RGB(yuv_new); |
|
|
|
cv::GComputation c(cv::GIn(in), cv::GOut(y_sharp, out)); |
|
c.apply(cv::gin(in_mat), cv::gout(out_mat_y, out_mat)); |
|
|
|
// OpenCV code ///////////////////////////////////////////////////////////// |
|
{ |
|
cv::Mat smaller; |
|
cv::resize(in_mat, smaller, sz_out); |
|
|
|
cv::Mat yuv_mat; |
|
cv::cvtColor(smaller, yuv_mat, cv::COLOR_RGB2YUV); |
|
std::vector<cv::Mat> yuv_planar(3); |
|
cv::split(yuv_mat, yuv_planar); |
|
cv::filter2D(yuv_planar[0], yuv_planar[0], -1, sharpen_kernel); |
|
cv::merge(yuv_planar, yuv_mat); |
|
cv::cvtColor(yuv_mat, out_mat_ocv, cv::COLOR_YUV2RGB); |
|
} |
|
|
|
// Comparison ////////////////////////////////////////////////////////////// |
|
{ |
|
cv::Mat diff = out_mat_ocv != out_mat; |
|
std::vector<cv::Mat> diffBGR(3); |
|
cv::split(diff, diffBGR); |
|
EXPECT_EQ(0, cvtest::norm(diffBGR[0], NORM_INF)); |
|
EXPECT_EQ(0, cvtest::norm(diffBGR[1], NORM_INF)); |
|
EXPECT_EQ(0, cvtest::norm(diffBGR[2], NORM_INF)); |
|
} |
|
|
|
// Metadata check ///////////////////////////////////////////////////////// |
|
{ |
|
auto cc = c.compile(cv::descr_of(in_mat)); |
|
auto metas = cc.outMetas(); |
|
ASSERT_EQ(2u, metas.size()); |
|
|
|
auto out_y_meta = cv::util::get<cv::GMatDesc>(metas[0]); |
|
auto out_meta = cv::util::get<cv::GMatDesc>(metas[1]); |
|
|
|
// Y-output |
|
EXPECT_EQ(CV_8U, out_y_meta.depth); |
|
EXPECT_EQ(1, out_y_meta.chan); |
|
EXPECT_EQ(640, out_y_meta.size.width); |
|
EXPECT_EQ(480, out_y_meta.size.height); |
|
|
|
// Final output |
|
EXPECT_EQ(CV_8U, out_meta.depth); |
|
EXPECT_EQ(3, out_meta.chan); |
|
EXPECT_EQ(640, out_meta.size.width); |
|
EXPECT_EQ(480, out_meta.size.height); |
|
} |
|
} |
|
|
|
TEST(GAPI_Pipeline, CustomRGB2YUV) |
|
{ |
|
const cv::Size sz(1280, 720); |
|
|
|
// BEWARE: |
|
// |
|
// std::vector<cv::Mat> out_mats_cv(3, cv::Mat(sz, CV_8U)) |
|
// |
|
// creates a vector of 3 elements pointing to the same Mat! |
|
// FIXME: Make a G-API check for that |
|
const int INS = 3; |
|
std::vector<cv::Mat> in_mats(INS); |
|
for (auto i : ade::util::iota(INS)) |
|
{ |
|
in_mats[i].create(sz, CV_8U); |
|
cv::randu(in_mats[i], cv::Scalar::all(0), cv::Scalar::all(255)); |
|
} |
|
|
|
const int OUTS = 3; |
|
std::vector<cv::Mat> out_mats_cv(OUTS); |
|
std::vector<cv::Mat> out_mats_gapi(OUTS); |
|
for (auto i : ade::util::iota(OUTS)) |
|
{ |
|
out_mats_cv [i].create(sz, CV_8U); |
|
out_mats_gapi[i].create(sz, CV_8U); |
|
} |
|
|
|
// G-API code ////////////////////////////////////////////////////////////// |
|
{ |
|
cv::GMat r, g, b; |
|
cv::GMat y = 0.299f*r + 0.587f*g + 0.114f*b; |
|
cv::GMat u = 0.492f*(b - y); |
|
cv::GMat v = 0.877f*(r - y); |
|
|
|
cv::GComputation customCvt({r, g, b}, {y, u, v}); |
|
customCvt.apply(in_mats, out_mats_gapi); |
|
} |
|
|
|
// OpenCV code ///////////////////////////////////////////////////////////// |
|
{ |
|
cv::Mat r = in_mats[0], g = in_mats[1], b = in_mats[2]; |
|
cv::Mat y = 0.299f*r + 0.587f*g + 0.114f*b; |
|
cv::Mat u = 0.492f*(b - y); |
|
cv::Mat v = 0.877f*(r - y); |
|
|
|
out_mats_cv[0] = y; |
|
out_mats_cv[1] = u; |
|
out_mats_cv[2] = v; |
|
} |
|
|
|
// Comparison ////////////////////////////////////////////////////////////// |
|
{ |
|
const auto diff = [](cv::Mat m1, cv::Mat m2, int t) { |
|
return cv::abs(m1-m2) > t; |
|
}; |
|
|
|
// FIXME: Not bit-accurate even now! |
|
cv::Mat |
|
diff_y = diff(out_mats_cv[0], out_mats_gapi[0], 2), |
|
diff_u = diff(out_mats_cv[1], out_mats_gapi[1], 2), |
|
diff_v = diff(out_mats_cv[2], out_mats_gapi[2], 2); |
|
|
|
EXPECT_EQ(0, cvtest::norm(diff_y, NORM_INF)); |
|
EXPECT_EQ(0, cvtest::norm(diff_u, NORM_INF)); |
|
EXPECT_EQ(0, cvtest::norm(diff_v, NORM_INF)); |
|
} |
|
} |
|
|
|
TEST(GAPI_Pipeline, PipelineWithInvalidKernel) |
|
{ |
|
cv::GMat in, out; |
|
cv::Mat in_mat(500, 500, CV_8UC1), out_mat; |
|
out = GInvalidResize::on(in, cv::Size(300, 300), 0.0, 0.0, cv::INTER_LINEAR); |
|
|
|
const auto pkg = cv::gapi::kernels<GOCVInvalidResize>(); |
|
cv::GComputation comp(cv::GIn(in), cv::GOut(out)); |
|
|
|
EXPECT_THROW(comp.apply(in_mat, out_mat, cv::compile_args(pkg)), std::logic_error); |
|
} |
|
|
|
TEST(GAPI_Pipeline, InvalidOutputComputation) |
|
{ |
|
cv::GMat in1, out1, out2, out3; |
|
|
|
std::tie(out1, out2, out2) = cv::gapi::split3(in1); |
|
cv::GComputation c({in1}, {out1, out2, out3}); |
|
cv::Mat in_mat; |
|
cv::Mat out_mat1, out_mat2, out_mat3, out_mat4; |
|
std::vector<cv::Mat> u_outs = {out_mat1, out_mat2, out_mat3, out_mat4}; |
|
std::vector<cv::Mat> u_ins = {in_mat}; |
|
|
|
EXPECT_THROW(c.apply(u_ins, u_outs), std::logic_error); |
|
} |
|
|
|
TEST(GAPI_Pipeline, PipelineAllocatingKernel) |
|
{ |
|
cv::GMat in, out; |
|
cv::Mat in_mat(500, 500, CV_8UC1), out_mat; |
|
out = GReallocatingCopy::on(in); |
|
|
|
const auto pkg = cv::gapi::kernels<GOCVReallocatingCopy>(); |
|
cv::GComputation comp(cv::GIn(in), cv::GOut(out)); |
|
|
|
EXPECT_THROW(comp.apply(in_mat, out_mat, cv::compile_args(pkg)), std::logic_error); |
|
} |
|
|
|
TEST(GAPI_Pipeline, CreateKernelImplFromLambda) |
|
{ |
|
cv::Size size(300, 300); |
|
int type = CV_8UC3; |
|
cv::Mat in_mat(size, type); |
|
cv::randu(in_mat, cv::Scalar::all(0), cv::Scalar::all(255)); |
|
int value = 5; |
|
|
|
cv::GMat in; |
|
cv::GMat out = GCustom::on(in); |
|
cv::GComputation comp(in, out); |
|
|
|
// OpenCV ////////////////////////////////////////////////////////////////////////// |
|
auto ref_mat = in_mat + value; |
|
|
|
// G-API ////////////////////////////////////////////////////////////////////////// |
|
auto impl = cv::gapi::cpu::ocv_kernel<GCustom>([&value](const cv::Mat& src, cv::Mat& dst) |
|
{ |
|
dst = src + value; |
|
}); |
|
|
|
cv::Mat out_mat; |
|
auto pkg = cv::gapi::kernels(impl); |
|
comp.apply(in_mat, out_mat, cv::compile_args(pkg)); |
|
|
|
EXPECT_EQ(0, cv::norm(out_mat, ref_mat)); |
|
} |
|
|
|
TEST(GAPI_Pipeline, ReplaceDefaultByLambda) |
|
{ |
|
cv::Size size(300, 300); |
|
int type = CV_8UC3; |
|
cv::Mat in_mat1(size, type); |
|
cv::Mat in_mat2(size, type); |
|
cv::randu(in_mat2, cv::Scalar::all(0), cv::Scalar::all(255)); |
|
cv::randu(in_mat1, cv::Scalar::all(0), cv::Scalar::all(255)); |
|
|
|
cv::GMat in1, in2; |
|
cv::GMat out = cv::gapi::add(in1, in2); |
|
cv::GComputation comp(cv::GIn(in1, in2), cv::GOut(out)); |
|
|
|
// OpenCV ////////////////////////////////////////////////////////////////////////// |
|
cv::Mat ref_mat = in_mat1 + in_mat2; |
|
|
|
|
|
// G-API ////////////////////////////////////////////////////////////////////////// |
|
bool is_called = false; |
|
auto impl = cv::gapi::cpu::ocv_kernel<cv::gapi::core::GAdd>([&is_called] |
|
(const cv::Mat& src1, const cv::Mat& src2, int, cv::Mat& dst) |
|
{ |
|
is_called = true; |
|
dst = src1 + src2; |
|
}); |
|
|
|
cv::Mat out_mat; |
|
auto pkg = cv::gapi::kernels(impl); |
|
comp.apply(cv::gin(in_mat1, in_mat2), cv::gout(out_mat), cv::compile_args(pkg)); |
|
|
|
EXPECT_EQ(0, cv::norm(out_mat, ref_mat)); |
|
EXPECT_TRUE(is_called); |
|
} |
|
|
|
struct AddImpl |
|
{ |
|
void operator()(const cv::Mat& in1, const cv::Mat& in2, int, cv::Mat& out) |
|
{ |
|
out = in1 + in2; |
|
is_called = true; |
|
} |
|
|
|
bool is_called = false; |
|
}; |
|
|
|
TEST(GAPI_Pipeline, ReplaceDefaultByFunctor) |
|
{ |
|
cv::Size size(300, 300); |
|
int type = CV_8UC3; |
|
cv::Mat in_mat1(size, type); |
|
cv::Mat in_mat2(size, type); |
|
cv::randu(in_mat2, cv::Scalar::all(0), cv::Scalar::all(255)); |
|
cv::randu(in_mat1, cv::Scalar::all(0), cv::Scalar::all(255)); |
|
|
|
cv::GMat in1, in2; |
|
cv::GMat out = cv::gapi::add(in1, in2); |
|
cv::GComputation comp(cv::GIn(in1, in2), cv::GOut(out)); |
|
|
|
// OpenCV ////////////////////////////////////////////////////////////////////////// |
|
cv::Mat ref_mat = in_mat1 + in_mat2; |
|
|
|
|
|
// G-API /////////////////////////////////////////////////////////////////////////// |
|
AddImpl f; |
|
EXPECT_FALSE(f.is_called); |
|
auto impl = cv::gapi::cpu::ocv_kernel<cv::gapi::core::GAdd>(f); |
|
|
|
cv::Mat out_mat; |
|
auto pkg = cv::gapi::kernels(impl); |
|
comp.apply(cv::gin(in_mat1, in_mat2), cv::gout(out_mat), cv::compile_args(pkg)); |
|
|
|
EXPECT_EQ(0, cv::norm(out_mat, ref_mat)); |
|
EXPECT_TRUE(f.is_called); |
|
} |
|
|
|
} // namespace opencv_test
|
|
|