mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
817 lines
31 KiB
817 lines
31 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// (3-clause BSD License) |
|
// |
|
// Copyright (C) 2017, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistributions of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistributions in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * Neither the names of the copyright holders nor the names of the contributors |
|
// may be used to endorse or promote products derived from this software |
|
// without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall copyright holders or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "test_precomp.hpp" |
|
#include "npy_blob.hpp" |
|
#include <opencv2/dnn/shape_utils.hpp> |
|
|
|
namespace opencv_test { namespace { |
|
|
|
template<typename TString> |
|
static std::string _tf(TString filename) |
|
{ |
|
return (getOpenCVExtraDir() + "/dnn/") + filename; |
|
} |
|
|
|
TEST(Test_Darknet, read_tiny_yolo_voc) |
|
{ |
|
Net net = readNetFromDarknet(_tf("tiny-yolo-voc.cfg")); |
|
ASSERT_FALSE(net.empty()); |
|
} |
|
|
|
TEST(Test_Darknet, read_yolo_voc) |
|
{ |
|
Net net = readNetFromDarknet(_tf("yolo-voc.cfg")); |
|
ASSERT_FALSE(net.empty()); |
|
} |
|
|
|
TEST(Test_Darknet, read_yolo_voc_stream) |
|
{ |
|
applyTestTag(CV_TEST_TAG_MEMORY_1GB); |
|
Mat ref; |
|
Mat sample = imread(_tf("dog416.png")); |
|
Mat inp = blobFromImage(sample, 1.0/255, Size(416, 416), Scalar(), true, false); |
|
const std::string cfgFile = findDataFile("dnn/yolo-voc.cfg"); |
|
const std::string weightsFile = findDataFile("dnn/yolo-voc.weights", false); |
|
// Import by paths. |
|
{ |
|
Net net = readNetFromDarknet(cfgFile, weightsFile); |
|
net.setInput(inp); |
|
net.setPreferableBackend(DNN_BACKEND_OPENCV); |
|
ref = net.forward(); |
|
} |
|
// Import from bytes array. |
|
{ |
|
std::vector<char> cfg, weights; |
|
readFileContent(cfgFile, cfg); |
|
readFileContent(weightsFile, weights); |
|
|
|
Net net = readNetFromDarknet(cfg.data(), cfg.size(), weights.data(), weights.size()); |
|
net.setInput(inp); |
|
net.setPreferableBackend(DNN_BACKEND_OPENCV); |
|
Mat out = net.forward(); |
|
normAssert(ref, out); |
|
} |
|
} |
|
|
|
class Test_Darknet_layers : public DNNTestLayer |
|
{ |
|
public: |
|
void testDarknetLayer(const std::string& name, bool hasWeights = false, bool testBatchProcessing = true) |
|
{ |
|
SCOPED_TRACE(name); |
|
Mat inp = blobFromNPY(findDataFile("dnn/darknet/" + name + "_in.npy")); |
|
Mat ref = blobFromNPY(findDataFile("dnn/darknet/" + name + "_out.npy")); |
|
|
|
std::string cfg = findDataFile("dnn/darknet/" + name + ".cfg"); |
|
std::string model = ""; |
|
if (hasWeights) |
|
model = findDataFile("dnn/darknet/" + name + ".weights"); |
|
|
|
checkBackend(&inp, &ref); |
|
|
|
Net net = readNet(cfg, model); |
|
net.setPreferableBackend(backend); |
|
net.setPreferableTarget(target); |
|
net.setInput(inp); |
|
Mat out = net.forward(); |
|
normAssert(out, ref, "", default_l1, default_lInf); |
|
|
|
if (inp.size[0] == 1 && testBatchProcessing) // test handling of batch size |
|
{ |
|
SCOPED_TRACE("batch size 2"); |
|
|
|
#if defined(INF_ENGINE_RELEASE) |
|
if (target == DNN_TARGET_MYRIAD && name == "shortcut") |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD); |
|
#endif |
|
|
|
std::vector<int> sz2 = shape(inp); |
|
sz2[0] = 2; |
|
|
|
Net net2 = readNet(cfg, model); |
|
net2.setPreferableBackend(backend); |
|
net2.setPreferableTarget(target); |
|
Range ranges0[4] = { Range(0, 1), Range::all(), Range::all(), Range::all() }; |
|
Range ranges1[4] = { Range(1, 2), Range::all(), Range::all(), Range::all() }; |
|
Mat inp2(sz2, inp.type(), Scalar::all(0)); |
|
inp.copyTo(inp2(ranges0)); |
|
inp.copyTo(inp2(ranges1)); |
|
net2.setInput(inp2); |
|
Mat out2 = net2.forward(); |
|
EXPECT_EQ(0, cv::norm(out2(ranges0), out2(ranges1), NORM_INF)) << "Batch result is not equal: " << name; |
|
|
|
Mat ref2 = ref; |
|
if (ref.dims == 2 && out2.dims == 3) |
|
{ |
|
int ref_3d_sizes[3] = {1, ref.rows, ref.cols}; |
|
ref2 = Mat(3, ref_3d_sizes, ref.type(), (void*)ref.data); |
|
} |
|
/*else if (ref.dims == 3 && out2.dims == 4) |
|
{ |
|
int ref_4d_sizes[4] = {1, ref.size[0], ref.size[1], ref.size[2]}; |
|
ref2 = Mat(4, ref_4d_sizes, ref.type(), (void*)ref.data); |
|
}*/ |
|
ASSERT_EQ(out2.dims, ref2.dims) << ref.dims; |
|
|
|
normAssert(out2(ranges0), ref2, "", default_l1, default_lInf); |
|
normAssert(out2(ranges1), ref2, "", default_l1, default_lInf); |
|
} |
|
} |
|
}; |
|
|
|
class Test_Darknet_nets : public DNNTestLayer |
|
{ |
|
public: |
|
// Test object detection network from Darknet framework. |
|
void testDarknetModel(const std::string& cfg, const std::string& weights, |
|
const std::vector<std::vector<int> >& refClassIds, |
|
const std::vector<std::vector<float> >& refConfidences, |
|
const std::vector<std::vector<Rect2d> >& refBoxes, |
|
double scoreDiff, double iouDiff, float confThreshold = 0.24, float nmsThreshold = 0.4) |
|
{ |
|
checkBackend(); |
|
|
|
Mat img1 = imread(_tf("dog416.png")); |
|
Mat img2 = imread(_tf("street.png")); |
|
std::vector<Mat> samples(2); |
|
samples[0] = img1; samples[1] = img2; |
|
|
|
// determine test type, whether batch or single img |
|
int batch_size = refClassIds.size(); |
|
CV_Assert(batch_size == 1 || batch_size == 2); |
|
samples.resize(batch_size); |
|
|
|
Mat inp = blobFromImages(samples, 1.0/255, Size(416, 416), Scalar(), true, false); |
|
|
|
Net net = readNet(findDataFile("dnn/" + cfg), |
|
findDataFile("dnn/" + weights, false)); |
|
net.setPreferableBackend(backend); |
|
net.setPreferableTarget(target); |
|
net.setInput(inp); |
|
std::vector<Mat> outs; |
|
net.forward(outs, net.getUnconnectedOutLayersNames()); |
|
|
|
for (int b = 0; b < batch_size; ++b) |
|
{ |
|
std::vector<int> classIds; |
|
std::vector<float> confidences; |
|
std::vector<Rect2d> boxes; |
|
for (int i = 0; i < outs.size(); ++i) |
|
{ |
|
Mat out; |
|
if (batch_size > 1){ |
|
// get the sample slice from 3D matrix (batch, box, classes+5) |
|
Range ranges[3] = {Range(b, b+1), Range::all(), Range::all()}; |
|
out = outs[i](ranges).reshape(1, outs[i].size[1]); |
|
}else{ |
|
out = outs[i]; |
|
} |
|
for (int j = 0; j < out.rows; ++j) |
|
{ |
|
Mat scores = out.row(j).colRange(5, out.cols); |
|
double confidence; |
|
Point maxLoc; |
|
minMaxLoc(scores, 0, &confidence, 0, &maxLoc); |
|
|
|
if (confidence > confThreshold) { |
|
float* detection = out.ptr<float>(j); |
|
double centerX = detection[0]; |
|
double centerY = detection[1]; |
|
double width = detection[2]; |
|
double height = detection[3]; |
|
boxes.push_back(Rect2d(centerX - 0.5 * width, centerY - 0.5 * height, |
|
width, height)); |
|
confidences.push_back(confidence); |
|
classIds.push_back(maxLoc.x); |
|
} |
|
} |
|
} |
|
|
|
// here we need NMS of boxes |
|
std::vector<int> indices; |
|
NMSBoxes(boxes, confidences, confThreshold, nmsThreshold, indices); |
|
|
|
std::vector<int> nms_classIds; |
|
std::vector<float> nms_confidences; |
|
std::vector<Rect2d> nms_boxes; |
|
|
|
for (size_t i = 0; i < indices.size(); ++i) |
|
{ |
|
int idx = indices[i]; |
|
Rect2d box = boxes[idx]; |
|
float conf = confidences[idx]; |
|
int class_id = classIds[idx]; |
|
nms_boxes.push_back(box); |
|
nms_confidences.push_back(conf); |
|
nms_classIds.push_back(class_id); |
|
#if 0 // use to update test reference data |
|
std::cout << b << ", " << class_id << ", " << conf << "f, " |
|
<< box.x << "f, " << box.y << "f, " |
|
<< box.x + box.width << "f, " << box.y + box.height << "f," |
|
<< std::endl; |
|
#endif |
|
|
|
} |
|
|
|
if (cvIsNaN(iouDiff)) |
|
{ |
|
if (b == 0) |
|
std::cout << "Skip accuracy checks" << std::endl; |
|
continue; |
|
} |
|
|
|
normAssertDetections(refClassIds[b], refConfidences[b], refBoxes[b], nms_classIds, |
|
nms_confidences, nms_boxes, format("batch size %d, sample %d\n", batch_size, b).c_str(), confThreshold, scoreDiff, iouDiff); |
|
} |
|
} |
|
|
|
void testDarknetModel(const std::string& cfg, const std::string& weights, |
|
const std::vector<int>& refClassIds, |
|
const std::vector<float>& refConfidences, |
|
const std::vector<Rect2d>& refBoxes, |
|
double scoreDiff, double iouDiff, float confThreshold = 0.24, float nmsThreshold = 0.4) |
|
{ |
|
testDarknetModel(cfg, weights, |
|
std::vector<std::vector<int> >(1, refClassIds), |
|
std::vector<std::vector<float> >(1, refConfidences), |
|
std::vector<std::vector<Rect2d> >(1, refBoxes), |
|
scoreDiff, iouDiff, confThreshold, nmsThreshold); |
|
} |
|
|
|
void testDarknetModel(const std::string& cfg, const std::string& weights, |
|
const cv::Mat& ref, double scoreDiff, double iouDiff, |
|
float confThreshold = 0.24, float nmsThreshold = 0.4) |
|
{ |
|
CV_Assert(ref.cols == 7); |
|
std::vector<std::vector<int> > refClassIds; |
|
std::vector<std::vector<float> > refScores; |
|
std::vector<std::vector<Rect2d> > refBoxes; |
|
for (int i = 0; i < ref.rows; ++i) |
|
{ |
|
int batchId = static_cast<int>(ref.at<float>(i, 0)); |
|
int classId = static_cast<int>(ref.at<float>(i, 1)); |
|
float score = ref.at<float>(i, 2); |
|
float left = ref.at<float>(i, 3); |
|
float top = ref.at<float>(i, 4); |
|
float right = ref.at<float>(i, 5); |
|
float bottom = ref.at<float>(i, 6); |
|
Rect2d box(left, top, right - left, bottom - top); |
|
if (batchId >= refClassIds.size()) |
|
{ |
|
refClassIds.resize(batchId + 1); |
|
refScores.resize(batchId + 1); |
|
refBoxes.resize(batchId + 1); |
|
} |
|
refClassIds[batchId].push_back(classId); |
|
refScores[batchId].push_back(score); |
|
refBoxes[batchId].push_back(box); |
|
} |
|
testDarknetModel(cfg, weights, refClassIds, refScores, refBoxes, |
|
scoreDiff, iouDiff, confThreshold, nmsThreshold); |
|
} |
|
}; |
|
|
|
TEST_P(Test_Darknet_nets, YoloVoc) |
|
{ |
|
applyTestTag( |
|
#if defined(OPENCV_32BIT_CONFIGURATION) && defined(HAVE_OPENCL) |
|
CV_TEST_TAG_MEMORY_2GB, |
|
#else |
|
CV_TEST_TAG_MEMORY_1GB, |
|
#endif |
|
CV_TEST_TAG_LONG |
|
); |
|
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2020040000) // nGraph compilation failure |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_VERSION); |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL_FP16) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_VERSION); |
|
#endif |
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019010000) |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_OPENCL_FP16) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16); |
|
#endif |
|
#if defined(INF_ENGINE_RELEASE) |
|
if ((backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 || backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) && |
|
target == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X); // need to update check function |
|
#endif |
|
|
|
// batchId, classId, confidence, left, top, right, bottom |
|
Mat ref = (Mat_<float>(6, 7) << 0, 6, 0.750469f, 0.577374f, 0.127391f, 0.902949f, 0.300809f, // a car |
|
0, 1, 0.780879f, 0.270762f, 0.264102f, 0.732475f, 0.745412f, // a bicycle |
|
0, 11, 0.901615f, 0.1386f, 0.338509f, 0.421337f, 0.938789f, // a dog |
|
1, 14, 0.623813f, 0.183179f, 0.381921f, 0.247726f, 0.625847f, // a person |
|
1, 6, 0.667770f, 0.446555f, 0.453578f, 0.499986f, 0.519167f, // a car |
|
1, 6, 0.844947f, 0.637058f, 0.460398f, 0.828508f, 0.66427f); // a car |
|
|
|
double nmsThreshold = (target == DNN_TARGET_MYRIAD) ? 0.397 : 0.4; |
|
double scoreDiff = 8e-5, iouDiff = 3e-4; |
|
if (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) |
|
{ |
|
scoreDiff = 1e-2; |
|
iouDiff = 0.018; |
|
} |
|
else if (target == DNN_TARGET_CUDA_FP16) |
|
{ |
|
scoreDiff = 0.03; |
|
iouDiff = 0.018; |
|
} |
|
|
|
std::string config_file = "yolo-voc.cfg"; |
|
std::string weights_file = "yolo-voc.weights"; |
|
|
|
{ |
|
SCOPED_TRACE("batch size 1"); |
|
testDarknetModel(config_file, weights_file, ref.rowRange(0, 3), scoreDiff, iouDiff); |
|
} |
|
|
|
{ |
|
SCOPED_TRACE("batch size 2"); |
|
testDarknetModel(config_file, weights_file, ref, scoreDiff, iouDiff, 0.24, nmsThreshold); |
|
} |
|
} |
|
|
|
TEST_P(Test_Darknet_nets, TinyYoloVoc) |
|
{ |
|
applyTestTag(CV_TEST_TAG_MEMORY_512MB); |
|
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2020040000) // nGraph compilation failure |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_VERSION); |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL_FP16) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_VERSION); |
|
#endif |
|
#if defined(INF_ENGINE_RELEASE) |
|
if ((backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 || backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) && |
|
target == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X); // need to update check function |
|
#endif |
|
// batchId, classId, confidence, left, top, right, bottom |
|
Mat ref = (Mat_<float>(4, 7) << 0, 6, 0.761967f, 0.579042f, 0.159161f, 0.894482f, 0.31994f, // a car |
|
0, 11, 0.780595f, 0.129696f, 0.386467f, 0.445275f, 0.920994f, // a dog |
|
1, 6, 0.651450f, 0.460526f, 0.458019f, 0.522527f, 0.5341f, // a car |
|
1, 6, 0.928758f, 0.651024f, 0.463539f, 0.823784f, 0.654998f); // a car |
|
|
|
double scoreDiff = 8e-5, iouDiff = 3e-4; |
|
if (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) |
|
{ |
|
scoreDiff = 8e-3; |
|
iouDiff = 0.018; |
|
} |
|
else if(target == DNN_TARGET_CUDA_FP16) |
|
{ |
|
scoreDiff = 0.008; |
|
iouDiff = 0.02; |
|
} |
|
|
|
std::string config_file = "tiny-yolo-voc.cfg"; |
|
std::string weights_file = "tiny-yolo-voc.weights"; |
|
|
|
{ |
|
SCOPED_TRACE("batch size 1"); |
|
testDarknetModel(config_file, weights_file, ref.rowRange(0, 2), scoreDiff, iouDiff); |
|
} |
|
|
|
{ |
|
SCOPED_TRACE("batch size 2"); |
|
testDarknetModel(config_file, weights_file, ref, scoreDiff, iouDiff); |
|
} |
|
} |
|
|
|
#ifdef HAVE_INF_ENGINE |
|
static const std::chrono::milliseconds async_timeout(10000); |
|
|
|
typedef testing::TestWithParam<tuple<std::string, tuple<Backend, Target> > > Test_Darknet_nets_async; |
|
TEST_P(Test_Darknet_nets_async, Accuracy) |
|
{ |
|
Backend backendId = get<0>(get<1>(GetParam())); |
|
Target targetId = get<1>(get<1>(GetParam())); |
|
|
|
if (INF_ENGINE_VER_MAJOR_LT(2019020000) && backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER); |
|
applyTestTag(CV_TEST_TAG_MEMORY_512MB); |
|
|
|
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); |
|
|
|
std::string prefix = get<0>(GetParam()); |
|
|
|
if (targetId == DNN_TARGET_MYRIAD && prefix == "yolov4") // NC_OUT_OF_MEMORY |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_VERSION); |
|
|
|
if (backendId != DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && backendId != DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) |
|
throw SkipTestException("No support for async forward"); |
|
|
|
const int numInputs = 2; |
|
std::vector<Mat> inputs(numInputs); |
|
int blobSize[] = {1, 3, 416, 416}; |
|
for (int i = 0; i < numInputs; ++i) |
|
{ |
|
inputs[i].create(4, &blobSize[0], CV_32F); |
|
randu(inputs[i], 0, 1); |
|
} |
|
|
|
Net netSync = readNet(findDataFile("dnn/" + prefix + ".cfg"), |
|
findDataFile("dnn/" + prefix + ".weights", false)); |
|
netSync.setPreferableBackend(backendId); |
|
netSync.setPreferableTarget(targetId); |
|
|
|
// Run synchronously. |
|
std::vector<Mat> refs(numInputs); |
|
for (int i = 0; i < numInputs; ++i) |
|
{ |
|
netSync.setInput(inputs[i]); |
|
refs[i] = netSync.forward().clone(); |
|
} |
|
|
|
Net netAsync = readNet(findDataFile("dnn/" + prefix + ".cfg"), |
|
findDataFile("dnn/" + prefix + ".weights", false)); |
|
netAsync.setPreferableBackend(backendId); |
|
netAsync.setPreferableTarget(targetId); |
|
|
|
// Run asynchronously. To make test more robust, process inputs in the reversed order. |
|
for (int i = numInputs - 1; i >= 0; --i) |
|
{ |
|
netAsync.setInput(inputs[i]); |
|
|
|
AsyncArray out = netAsync.forwardAsync(); |
|
ASSERT_TRUE(out.valid()); |
|
Mat result; |
|
EXPECT_TRUE(out.get(result, async_timeout)); |
|
normAssert(refs[i], result, format("Index: %d", i).c_str(), 0, 0); |
|
} |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(/**/, Test_Darknet_nets_async, Combine( |
|
Values("yolo-voc", "tiny-yolo-voc", "yolov3", "yolov4", "yolov4-tiny"), |
|
dnnBackendsAndTargets() |
|
)); |
|
|
|
#endif |
|
|
|
TEST_P(Test_Darknet_nets, YOLOv3) |
|
{ |
|
applyTestTag(CV_TEST_TAG_LONG, (target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_1GB : CV_TEST_TAG_MEMORY_2GB)); |
|
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2020040000) // nGraph compilation failure |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_VERSION); |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL_FP16) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_VERSION); |
|
#endif |
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); |
|
|
|
// batchId, classId, confidence, left, top, right, bottom |
|
const int N0 = 3; |
|
const int N1 = 6; |
|
static const float ref_[/* (N0 + N1) * 7 */] = { |
|
0, 16, 0.998836f, 0.160024f, 0.389964f, 0.417885f, 0.943716f, |
|
0, 1, 0.987908f, 0.150913f, 0.221933f, 0.742255f, 0.746261f, |
|
0, 7, 0.952983f, 0.614621f, 0.150257f, 0.901368f, 0.289251f, |
|
|
|
1, 2, 0.997412f, 0.647584f, 0.459939f, 0.821037f, 0.663947f, |
|
1, 2, 0.989633f, 0.450719f, 0.463353f, 0.496306f, 0.522258f, |
|
1, 0, 0.980053f, 0.195856f, 0.378454f, 0.258626f, 0.629257f, |
|
1, 9, 0.785341f, 0.665503f, 0.373543f, 0.688893f, 0.439244f, |
|
1, 9, 0.733275f, 0.376029f, 0.315694f, 0.401776f, 0.395165f, |
|
1, 9, 0.384815f, 0.659824f, 0.372389f, 0.673927f, 0.429412f, |
|
}; |
|
Mat ref(N0 + N1, 7, CV_32FC1, (void*)ref_); |
|
|
|
double scoreDiff = 8e-5, iouDiff = 3e-4; |
|
if (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) |
|
{ |
|
scoreDiff = 0.006; |
|
iouDiff = 0.042; |
|
} |
|
else if (target == DNN_TARGET_CUDA_FP16) |
|
{ |
|
scoreDiff = 0.04; |
|
iouDiff = 0.03; |
|
} |
|
std::string config_file = "yolov3.cfg"; |
|
std::string weights_file = "yolov3.weights"; |
|
|
|
#if defined(INF_ENGINE_RELEASE) |
|
if ((backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 || |
|
backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) && target == DNN_TARGET_MYRIAD && |
|
getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X) |
|
{ |
|
scoreDiff = 0.04; |
|
iouDiff = 0.2; |
|
} |
|
#endif |
|
|
|
{ |
|
SCOPED_TRACE("batch size 1"); |
|
testDarknetModel(config_file, weights_file, ref.rowRange(0, N0), scoreDiff, iouDiff); |
|
} |
|
|
|
#if defined(INF_ENGINE_RELEASE) |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) |
|
{ |
|
if (target == DNN_TARGET_OPENCL) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_VERSION); |
|
else if (target == DNN_TARGET_OPENCL_FP16 && INF_ENGINE_VER_MAJOR_LE(202010000)) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_VERSION); |
|
else if (target == DNN_TARGET_MYRIAD && |
|
getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X); |
|
} |
|
#endif |
|
|
|
{ |
|
SCOPED_TRACE("batch size 2"); |
|
testDarknetModel(config_file, weights_file, ref, scoreDiff, iouDiff); |
|
} |
|
} |
|
|
|
TEST_P(Test_Darknet_nets, YOLOv4) |
|
{ |
|
applyTestTag(CV_TEST_TAG_LONG, (target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_1GB : CV_TEST_TAG_MEMORY_2GB)); |
|
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2020040000) // nGraph compilation failure |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_VERSION); |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL_FP16) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_VERSION); |
|
#endif |
|
#if defined(INF_ENGINE_RELEASE) |
|
if (target == DNN_TARGET_MYRIAD) // NC_OUT_OF_MEMORY |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_VERSION); |
|
#endif |
|
|
|
// batchId, classId, confidence, left, top, right, bottom |
|
const int N0 = 3; |
|
const int N1 = 7; |
|
static const float ref_[/* (N0 + N1) * 7 */] = { |
|
0, 16, 0.992194f, 0.172375f, 0.402458f, 0.403918f, 0.932801f, |
|
0, 1, 0.988326f, 0.166708f, 0.228236f, 0.737208f, 0.735803f, |
|
0, 7, 0.94639f, 0.602523f, 0.130399f, 0.901623f, 0.298452f, |
|
|
|
1, 2, 0.99761f, 0.646556f, 0.45985f, 0.816041f, 0.659067f, |
|
1, 0, 0.988913f, 0.201726f, 0.360282f, 0.266181f, 0.631728f, |
|
1, 2, 0.98233f, 0.452007f, 0.462217f, 0.495612f, 0.521687f, |
|
1, 9, 0.919195f, 0.374642f, 0.316524f, 0.398126f, 0.393714f, |
|
1, 9, 0.856303f, 0.666842f, 0.372215f, 0.685539f, 0.44141f, |
|
1, 9, 0.313516f, 0.656791f, 0.374734f, 0.671959f, 0.438371f, |
|
1, 9, 0.256625f, 0.940232f, 0.326931f, 0.967586f, 0.374002f, |
|
}; |
|
Mat ref(N0 + N1, 7, CV_32FC1, (void*)ref_); |
|
|
|
double scoreDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.006 : 8e-5; |
|
double iouDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.042 : 3e-4; |
|
if (target == DNN_TARGET_CUDA_FP16) |
|
{ |
|
scoreDiff = 0.008; |
|
iouDiff = 0.03; |
|
} |
|
|
|
std::string config_file = "yolov4.cfg"; |
|
std::string weights_file = "yolov4.weights"; |
|
|
|
#if defined(INF_ENGINE_RELEASE) |
|
if ((backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 || |
|
backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) && target == DNN_TARGET_MYRIAD && |
|
getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X) |
|
{ |
|
scoreDiff = 0.04; |
|
iouDiff = 0.2; |
|
} |
|
#endif |
|
|
|
{ |
|
SCOPED_TRACE("batch size 1"); |
|
testDarknetModel(config_file, weights_file, ref.rowRange(0, N0), scoreDiff, iouDiff); |
|
} |
|
|
|
{ |
|
SCOPED_TRACE("batch size 2"); |
|
|
|
#if defined(INF_ENGINE_RELEASE) |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) |
|
{ |
|
if (target == DNN_TARGET_OPENCL) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_VERSION); |
|
else if (target == DNN_TARGET_OPENCL_FP16 && INF_ENGINE_VER_MAJOR_LE(202010000)) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_VERSION); |
|
else if (target == DNN_TARGET_MYRIAD && |
|
getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X); |
|
} |
|
#endif |
|
|
|
testDarknetModel(config_file, weights_file, ref, scoreDiff, iouDiff); |
|
} |
|
} |
|
|
|
TEST_P(Test_Darknet_nets, YOLOv4_tiny) |
|
{ |
|
applyTestTag( |
|
target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_512MB : CV_TEST_TAG_MEMORY_1GB |
|
); |
|
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2021010000) // nGraph compilation failure |
|
if (target == DNN_TARGET_MYRIAD) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_VERSION); |
|
#endif |
|
|
|
const double confThreshold = 0.5; |
|
// batchId, classId, confidence, left, top, right, bottom |
|
const int N0 = 2; |
|
const int N1 = 3; |
|
static const float ref_[/* (N0 + N1) * 7 */] = { |
|
0, 7, 0.85935f, 0.593484f, 0.141211f, 0.920356f, 0.291593f, |
|
0, 16, 0.795188f, 0.169207f, 0.386886f, 0.423753f, 0.933004f, |
|
|
|
1, 2, 0.996832f, 0.653802f, 0.464573f, 0.815193f, 0.653292f, |
|
1, 2, 0.963325f, 0.451151f, 0.458915f, 0.496255f, 0.52241f, |
|
1, 0, 0.926244f, 0.194851f, 0.361743f, 0.260277f, 0.632364f, |
|
}; |
|
Mat ref(N0 + N1, 7, CV_32FC1, (void*)ref_); |
|
|
|
double scoreDiff = 0.01f; |
|
double iouDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.15 : 0.01f; |
|
if (target == DNN_TARGET_CUDA_FP16) |
|
iouDiff = 0.02; |
|
|
|
std::string config_file = "yolov4-tiny.cfg"; |
|
std::string weights_file = "yolov4-tiny.weights"; |
|
|
|
#if defined(INF_ENGINE_RELEASE) |
|
if (target == DNN_TARGET_MYRIAD) // bad accuracy |
|
iouDiff = std::numeric_limits<double>::quiet_NaN(); |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_OPENCL) |
|
iouDiff = std::numeric_limits<double>::quiet_NaN(); |
|
if ((backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 || |
|
backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) && target == DNN_TARGET_OPENCL_FP16) |
|
iouDiff = std::numeric_limits<double>::quiet_NaN(); |
|
#endif |
|
|
|
{ |
|
SCOPED_TRACE("batch size 1"); |
|
testDarknetModel(config_file, weights_file, ref.rowRange(0, N0), scoreDiff, iouDiff, confThreshold); |
|
} |
|
|
|
{ |
|
SCOPED_TRACE("batch size 2"); |
|
testDarknetModel(config_file, weights_file, ref, scoreDiff, iouDiff, confThreshold); |
|
} |
|
|
|
#if defined(INF_ENGINE_RELEASE) |
|
if (target == DNN_TARGET_MYRIAD) // bad accuracy |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_VERSION); |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_OPENCL) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_VERSION); |
|
if ((backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 || |
|
backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) && target == DNN_TARGET_OPENCL_FP16) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16, CV_TEST_TAG_DNN_SKIP_IE_VERSION); |
|
#endif |
|
} |
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(/**/, Test_Darknet_nets, dnnBackendsAndTargets()); |
|
|
|
TEST_P(Test_Darknet_layers, shortcut) |
|
{ |
|
testDarknetLayer("shortcut"); |
|
testDarknetLayer("shortcut_leaky"); |
|
testDarknetLayer("shortcut_unequal"); |
|
testDarknetLayer("shortcut_unequal_2"); |
|
} |
|
|
|
TEST_P(Test_Darknet_layers, upsample) |
|
{ |
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2021030000) |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH); // exception |
|
#endif |
|
testDarknetLayer("upsample"); |
|
} |
|
|
|
TEST_P(Test_Darknet_layers, mish) |
|
{ |
|
testDarknetLayer("mish", true); |
|
} |
|
|
|
TEST_P(Test_Darknet_layers, tanh) |
|
{ |
|
testDarknetLayer("tanh"); |
|
} |
|
|
|
TEST_P(Test_Darknet_layers, avgpool_softmax) |
|
{ |
|
testDarknetLayer("avgpool_softmax"); |
|
} |
|
|
|
TEST_P(Test_Darknet_layers, region) |
|
{ |
|
#if defined(INF_ENGINE_RELEASE) |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && INF_ENGINE_VER_MAJOR_GE(2020020000)) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION); |
|
#endif |
|
testDarknetLayer("region"); |
|
} |
|
|
|
TEST_P(Test_Darknet_layers, reorg) |
|
{ |
|
testDarknetLayer("reorg"); |
|
} |
|
|
|
TEST_P(Test_Darknet_layers, route) |
|
{ |
|
testDarknetLayer("route"); |
|
testDarknetLayer("route_multi"); |
|
} |
|
|
|
TEST_P(Test_Darknet_layers, maxpool) |
|
{ |
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2020020000) |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION); |
|
#endif |
|
testDarknetLayer("maxpool"); |
|
} |
|
|
|
TEST_P(Test_Darknet_layers, convolutional) |
|
{ |
|
if (target == DNN_TARGET_MYRIAD) |
|
{ |
|
default_l1 = 0.01f; |
|
} |
|
testDarknetLayer("convolutional", true); |
|
} |
|
|
|
TEST_P(Test_Darknet_layers, scale_channels) |
|
{ |
|
bool testBatches = backend == DNN_BACKEND_CUDA; |
|
testDarknetLayer("scale_channels", false, testBatches); |
|
} |
|
|
|
TEST_P(Test_Darknet_layers, connected) |
|
{ |
|
if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16); |
|
testDarknetLayer("connected", true); |
|
} |
|
|
|
TEST_P(Test_Darknet_layers, relu) |
|
{ |
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD) |
|
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD); |
|
testDarknetLayer("relu"); |
|
} |
|
|
|
TEST_P(Test_Darknet_layers, sam) |
|
{ |
|
testDarknetLayer("sam", true); |
|
} |
|
|
|
INSTANTIATE_TEST_CASE_P(/**/, Test_Darknet_layers, dnnBackendsAndTargets()); |
|
|
|
}} // namespace
|
|
|