mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
111 lines
3.1 KiB
111 lines
3.1 KiB
#include "opencv2/core.hpp" |
|
#include <opencv2/core/utility.hpp> |
|
#include "opencv2/imgproc.hpp" |
|
#include "opencv2/video/background_segm.hpp" |
|
#include "opencv2/videoio.hpp" |
|
#include "opencv2/highgui.hpp" |
|
#include <stdio.h> |
|
|
|
using namespace std; |
|
using namespace cv; |
|
|
|
static void help() |
|
{ |
|
printf("\nDo background segmentation, especially demonstrating the use of cvUpdateBGStatModel().\n" |
|
"Learns the background at the start and then segments.\n" |
|
"Learning is togged by the space key. Will read from file or camera\n" |
|
"Usage: \n" |
|
" ./bgfg_segm [--camera]=<use camera, if this key is present>, [--file_name]=<path to movie file> \n\n"); |
|
} |
|
|
|
const char* keys = |
|
{ |
|
"{c camera | | use camera or not}" |
|
"{m method |mog2 | method (knn or mog2) }" |
|
"{s smooth | | smooth the mask }" |
|
"{fn file_name|../data/tree.avi | movie file }" |
|
}; |
|
|
|
//this is a sample for foreground detection functions |
|
int main(int argc, const char** argv) |
|
{ |
|
help(); |
|
|
|
CommandLineParser parser(argc, argv, keys); |
|
bool useCamera = parser.has("camera"); |
|
bool smoothMask = parser.has("smooth"); |
|
string file = parser.get<string>("file_name"); |
|
string method = parser.get<string>("method"); |
|
VideoCapture cap; |
|
bool update_bg_model = true; |
|
|
|
if( useCamera ) |
|
cap.open(0); |
|
else |
|
cap.open(file.c_str()); |
|
|
|
parser.printMessage(); |
|
|
|
if( !cap.isOpened() ) |
|
{ |
|
printf("can not open camera or video file\n"); |
|
return -1; |
|
} |
|
|
|
namedWindow("image", WINDOW_NORMAL); |
|
namedWindow("foreground mask", WINDOW_NORMAL); |
|
namedWindow("foreground image", WINDOW_NORMAL); |
|
namedWindow("mean background image", WINDOW_NORMAL); |
|
|
|
Ptr<BackgroundSubtractor> bg_model = method == "knn" ? |
|
createBackgroundSubtractorKNN().dynamicCast<BackgroundSubtractor>() : |
|
createBackgroundSubtractorMOG2().dynamicCast<BackgroundSubtractor>(); |
|
|
|
Mat img0, img, fgmask, fgimg; |
|
|
|
for(;;) |
|
{ |
|
cap >> img0; |
|
|
|
if( img0.empty() ) |
|
break; |
|
|
|
resize(img0, img, Size(640, 640*img0.rows/img0.cols), INTER_LINEAR); |
|
|
|
if( fgimg.empty() ) |
|
fgimg.create(img.size(), img.type()); |
|
|
|
//update the model |
|
bg_model->apply(img, fgmask, update_bg_model ? -1 : 0); |
|
if( smoothMask ) |
|
{ |
|
GaussianBlur(fgmask, fgmask, Size(11, 11), 3.5, 3.5); |
|
threshold(fgmask, fgmask, 10, 255, THRESH_BINARY); |
|
} |
|
|
|
fgimg = Scalar::all(0); |
|
img.copyTo(fgimg, fgmask); |
|
|
|
Mat bgimg; |
|
bg_model->getBackgroundImage(bgimg); |
|
|
|
imshow("image", img); |
|
imshow("foreground mask", fgmask); |
|
imshow("foreground image", fgimg); |
|
if(!bgimg.empty()) |
|
imshow("mean background image", bgimg ); |
|
|
|
char k = (char)waitKey(30); |
|
if( k == 27 ) break; |
|
if( k == ' ' ) |
|
{ |
|
update_bg_model = !update_bg_model; |
|
if(update_bg_model) |
|
printf("Background update is on\n"); |
|
else |
|
printf("Background update is off\n"); |
|
} |
|
} |
|
|
|
return 0; |
|
}
|
|
|