mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
97 lines
3.0 KiB
97 lines
3.0 KiB
#include "test_precomp.hpp" |
|
#include <string> |
|
|
|
using namespace cv; |
|
using namespace std; |
|
|
|
class CV_UndistortTest : public cvtest::BaseTest |
|
{ |
|
public: |
|
CV_UndistortTest(); |
|
~CV_UndistortTest(); |
|
protected: |
|
void run(int); |
|
private: |
|
void generate3DPointCloud(vector<Point3f>& points, Point3f pmin = Point3f(-1, |
|
-1, 5), Point3f pmax = Point3f(1, 1, 10)); |
|
void generateCameraMatrix(Mat& cameraMatrix); |
|
void generateDistCoeffs(Mat& distCoeffs, int count); |
|
|
|
double thresh; |
|
RNG rng; |
|
}; |
|
|
|
CV_UndistortTest::CV_UndistortTest() |
|
{ |
|
thresh = 1.0e-2; |
|
} |
|
CV_UndistortTest::~CV_UndistortTest() {} |
|
|
|
void CV_UndistortTest::generate3DPointCloud(vector<Point3f>& points, Point3f pmin, Point3f pmax) |
|
{ |
|
const Point3f delta = pmax - pmin; |
|
for (size_t i = 0; i < points.size(); i++) |
|
{ |
|
Point3f p(float(rand()) / RAND_MAX, float(rand()) / RAND_MAX, |
|
float(rand()) / RAND_MAX); |
|
p.x *= delta.x; |
|
p.y *= delta.y; |
|
p.z *= delta.z; |
|
p = p + pmin; |
|
points[i] = p; |
|
} |
|
} |
|
void CV_UndistortTest::generateCameraMatrix(Mat& cameraMatrix) |
|
{ |
|
const double fcMinVal = 1e-3; |
|
const double fcMaxVal = 100; |
|
cameraMatrix.create(3, 3, CV_64FC1); |
|
cameraMatrix.setTo(Scalar(0)); |
|
cameraMatrix.at<double>(0,0) = rng.uniform(fcMinVal, fcMaxVal); |
|
cameraMatrix.at<double>(1,1) = rng.uniform(fcMinVal, fcMaxVal); |
|
cameraMatrix.at<double>(0,2) = rng.uniform(fcMinVal, fcMaxVal); |
|
cameraMatrix.at<double>(1,2) = rng.uniform(fcMinVal, fcMaxVal); |
|
cameraMatrix.at<double>(2,2) = 1; |
|
} |
|
void CV_UndistortTest::generateDistCoeffs(Mat& distCoeffs, int count) |
|
{ |
|
distCoeffs = Mat::zeros(count, 1, CV_64FC1); |
|
for (int i = 0; i < count; i++) |
|
distCoeffs.at<double>(i,0) = rng.uniform(0.0, 1.0e-3); |
|
} |
|
|
|
void CV_UndistortTest::run(int /* start_from */) |
|
{ |
|
Mat intrinsics, distCoeffs; |
|
generateCameraMatrix(intrinsics); |
|
vector<Point3f> points(500); |
|
generate3DPointCloud(points); |
|
vector<Point2f> projectedPoints; |
|
projectedPoints.resize(points.size()); |
|
|
|
int modelMembersCount[] = {4,5,8}; |
|
for (int idx = 0; idx < 3; idx++) |
|
{ |
|
generateDistCoeffs(distCoeffs, modelMembersCount[idx]); |
|
projectPoints(Mat(points), Mat::zeros(3,1,CV_64FC1), Mat::zeros(3,1,CV_64FC1), intrinsics, distCoeffs, projectedPoints); |
|
|
|
vector<Point2f> realUndistortedPoints; |
|
projectPoints(Mat(points), Mat::zeros(3,1,CV_64FC1), Mat::zeros(3,1,CV_64FC1), intrinsics, Mat::zeros(4,1,CV_64FC1), realUndistortedPoints); |
|
|
|
Mat undistortedPoints; |
|
undistortPoints(Mat(projectedPoints), undistortedPoints, intrinsics, distCoeffs); |
|
|
|
Mat p; |
|
perspectiveTransform(undistortedPoints, p, intrinsics); |
|
undistortedPoints = p; |
|
double diff = norm(Mat(realUndistortedPoints), undistortedPoints); |
|
if (diff > thresh) |
|
{ |
|
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY); |
|
return; |
|
} |
|
ts->set_failed_test_info(cvtest::TS::OK); |
|
} |
|
} |
|
|
|
TEST(Calib3d_Undistort, accuracy) { CV_UndistortTest test; test.safe_run(); } |