mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
309 lines
10 KiB
309 lines
10 KiB
/* |
|
* stereo_match.cpp |
|
* calibration |
|
* |
|
* Created by Victor Eruhimov on 1/18/10. |
|
* Copyright 2010 Argus Corp. All rights reserved. |
|
* |
|
*/ |
|
|
|
#include "opencv2/calib3d/calib3d.hpp" |
|
#include "opencv2/imgproc/imgproc.hpp" |
|
#include "opencv2/highgui/highgui.hpp" |
|
#include "opencv2/contrib/contrib.hpp" |
|
|
|
#include <stdio.h> |
|
|
|
using namespace cv; |
|
|
|
void print_help() |
|
{ |
|
printf("\nDemo stereo matching converting L and R images into disparity and point clouds\n"); |
|
printf("\nUsage: stereo_match <left_image> <right_image> [--algorithm=bm|sgbm|hh|var] [--blocksize=<block_size>]\n" |
|
"[--max-disparity=<max_disparity>] [--scale=scale_factor>] [-i <intrinsic_filename>] [-e <extrinsic_filename>]\n" |
|
"[--no-display] [-o <disparity_image>] [-p <point_cloud_file>]\n"); |
|
} |
|
|
|
void saveXYZ(const char* filename, const Mat& mat) |
|
{ |
|
const double max_z = 1.0e4; |
|
FILE* fp = fopen(filename, "wt"); |
|
for(int y = 0; y < mat.rows; y++) |
|
{ |
|
for(int x = 0; x < mat.cols; x++) |
|
{ |
|
Vec3f point = mat.at<Vec3f>(y, x); |
|
if(fabs(point[2] - max_z) < FLT_EPSILON || fabs(point[2]) > max_z) continue; |
|
fprintf(fp, "%f %f %f\n", point[0], point[1], point[2]); |
|
} |
|
} |
|
fclose(fp); |
|
} |
|
|
|
int main(int argc, char** argv) |
|
{ |
|
const char* algorithm_opt = "--algorithm="; |
|
const char* maxdisp_opt = "--max-disparity="; |
|
const char* blocksize_opt = "--blocksize="; |
|
const char* nodisplay_opt = "--no-display="; |
|
const char* scale_opt = "--scale="; |
|
|
|
if(argc < 3) |
|
{ |
|
print_help(); |
|
return 0; |
|
} |
|
const char* img1_filename = 0; |
|
const char* img2_filename = 0; |
|
const char* intrinsic_filename = 0; |
|
const char* extrinsic_filename = 0; |
|
const char* disparity_filename = 0; |
|
const char* point_cloud_filename = 0; |
|
|
|
enum { STEREO_BM=0, STEREO_SGBM=1, STEREO_HH=2, STEREO_VAR=3 }; |
|
int alg = STEREO_SGBM; |
|
int SADWindowSize = 0, numberOfDisparities = 0; |
|
bool no_display = false; |
|
float scale = 1.f; |
|
|
|
StereoBM bm; |
|
StereoSGBM sgbm; |
|
StereoVar var; |
|
|
|
for( int i = 1; i < argc; i++ ) |
|
{ |
|
if( argv[i][0] != '-' ) |
|
{ |
|
if( !img1_filename ) |
|
img1_filename = argv[i]; |
|
else |
|
img2_filename = argv[i]; |
|
} |
|
else if( strncmp(argv[i], algorithm_opt, strlen(algorithm_opt)) == 0 ) |
|
{ |
|
char* _alg = argv[i] + strlen(algorithm_opt); |
|
alg = strcmp(_alg, "bm") == 0 ? STEREO_BM : |
|
strcmp(_alg, "sgbm") == 0 ? STEREO_SGBM : |
|
strcmp(_alg, "hh") == 0 ? STEREO_HH : |
|
strcmp(_alg, "var") == 0 ? STEREO_VAR : -1; |
|
if( alg < 0 ) |
|
{ |
|
printf("Command-line parameter error: Unknown stereo algorithm\n\n"); |
|
print_help(); |
|
return -1; |
|
} |
|
} |
|
else if( strncmp(argv[i], maxdisp_opt, strlen(maxdisp_opt)) == 0 ) |
|
{ |
|
if( sscanf( argv[i] + strlen(maxdisp_opt), "%d", &numberOfDisparities ) != 1 || |
|
numberOfDisparities < 1 || numberOfDisparities % 16 != 0 ) |
|
{ |
|
printf("Command-line parameter error: The max disparity (--maxdisparity=<...>) must be a positive integer divisible by 16\n"); |
|
print_help(); |
|
return -1; |
|
} |
|
} |
|
else if( strncmp(argv[i], blocksize_opt, strlen(blocksize_opt)) == 0 ) |
|
{ |
|
if( sscanf( argv[i] + strlen(blocksize_opt), "%d", &SADWindowSize ) != 1 || |
|
SADWindowSize < 1 || SADWindowSize % 2 != 1 ) |
|
{ |
|
printf("Command-line parameter error: The block size (--blocksize=<...>) must be a positive odd number\n"); |
|
return -1; |
|
} |
|
} |
|
else if( strncmp(argv[i], scale_opt, strlen(scale_opt)) == 0 ) |
|
{ |
|
if( sscanf( argv[i] + strlen(scale_opt), "%f", &scale ) != 1 || scale < 0 ) |
|
{ |
|
printf("Command-line parameter error: The scale factor (--scale=<...>) must be a positive floating-point number\n"); |
|
return -1; |
|
} |
|
} |
|
else if( strcmp(argv[i], nodisplay_opt) == 0 ) |
|
no_display = true; |
|
else if( strcmp(argv[i], "-i" ) == 0 ) |
|
intrinsic_filename = argv[++i]; |
|
else if( strcmp(argv[i], "-e" ) == 0 ) |
|
extrinsic_filename = argv[++i]; |
|
else if( strcmp(argv[i], "-o" ) == 0 ) |
|
disparity_filename = argv[++i]; |
|
else if( strcmp(argv[i], "-p" ) == 0 ) |
|
point_cloud_filename = argv[++i]; |
|
else |
|
{ |
|
printf("Command-line parameter error: unknown option %s\n", argv[i]); |
|
return -1; |
|
} |
|
} |
|
|
|
if( !img1_filename || !img2_filename ) |
|
{ |
|
printf("Command-line parameter error: both left and right images must be specified\n"); |
|
return -1; |
|
} |
|
|
|
if( (intrinsic_filename != 0) ^ (extrinsic_filename != 0) ) |
|
{ |
|
printf("Command-line parameter error: either both intrinsic and extrinsic parameters must be specified, or none of them (when the stereo pair is already rectified)\n"); |
|
return -1; |
|
} |
|
|
|
if( extrinsic_filename == 0 && point_cloud_filename ) |
|
{ |
|
printf("Command-line parameter error: extrinsic and intrinsic parameters must be specified to compute the point cloud\n"); |
|
return -1; |
|
} |
|
|
|
int color_mode = alg == STEREO_BM ? 0 : -1; |
|
Mat img1 = imread(img1_filename, color_mode); |
|
Mat img2 = imread(img2_filename, color_mode); |
|
|
|
if( scale != 1.f ) |
|
{ |
|
Mat temp1, temp2; |
|
int method = scale < 1 ? INTER_AREA : INTER_CUBIC; |
|
resize(img1, temp1, Size(), scale, scale, method); |
|
img1 = temp1; |
|
resize(img2, temp2, Size(), scale, scale, method); |
|
img2 = temp2; |
|
} |
|
|
|
Size img_size = img1.size(); |
|
|
|
Rect roi1, roi2; |
|
Mat Q; |
|
|
|
if( intrinsic_filename ) |
|
{ |
|
// reading intrinsic parameters |
|
FileStorage fs(intrinsic_filename, CV_STORAGE_READ); |
|
if(!fs.isOpened()) |
|
{ |
|
printf("Failed to open file %s\n", intrinsic_filename); |
|
return -1; |
|
} |
|
|
|
Mat M1, D1, M2, D2; |
|
fs["M1"] >> M1; |
|
fs["D1"] >> D1; |
|
fs["M2"] >> M2; |
|
fs["D2"] >> D2; |
|
|
|
fs.open(extrinsic_filename, CV_STORAGE_READ); |
|
if(!fs.isOpened()) |
|
{ |
|
printf("Failed to open file %s\n", extrinsic_filename); |
|
return -1; |
|
} |
|
|
|
Mat R, T, R1, P1, R2, P2; |
|
fs["R"] >> R; |
|
fs["T"] >> T; |
|
|
|
stereoRectify( M1, D1, M2, D2, img_size, R, T, R1, R2, P1, P2, Q, CALIB_ZERO_DISPARITY, -1, img_size, &roi1, &roi2 ); |
|
|
|
Mat map11, map12, map21, map22; |
|
initUndistortRectifyMap(M1, D1, R1, P1, img_size, CV_16SC2, map11, map12); |
|
initUndistortRectifyMap(M2, D2, R2, P2, img_size, CV_16SC2, map21, map22); |
|
|
|
Mat img1r, img2r; |
|
remap(img1, img1r, map11, map12, INTER_LINEAR); |
|
remap(img2, img2r, map21, map22, INTER_LINEAR); |
|
|
|
img1 = img1r; |
|
img2 = img2r; |
|
} |
|
|
|
numberOfDisparities = numberOfDisparities > 0 ? numberOfDisparities : ((img_size.width/8) + 15) & -16; |
|
|
|
bm.state->roi1 = roi1; |
|
bm.state->roi2 = roi2; |
|
bm.state->preFilterCap = 31; |
|
bm.state->SADWindowSize = SADWindowSize > 0 ? SADWindowSize : 9; |
|
bm.state->minDisparity = 0; |
|
bm.state->numberOfDisparities = numberOfDisparities; |
|
bm.state->textureThreshold = 10; |
|
bm.state->uniquenessRatio = 15; |
|
bm.state->speckleWindowSize = 100; |
|
bm.state->speckleRange = 32; |
|
bm.state->disp12MaxDiff = 1; |
|
|
|
sgbm.preFilterCap = 63; |
|
sgbm.SADWindowSize = SADWindowSize > 0 ? SADWindowSize : 3; |
|
|
|
int cn = img1.channels(); |
|
|
|
sgbm.P1 = 8*cn*sgbm.SADWindowSize*sgbm.SADWindowSize; |
|
sgbm.P2 = 32*cn*sgbm.SADWindowSize*sgbm.SADWindowSize; |
|
sgbm.minDisparity = 0; |
|
sgbm.numberOfDisparities = numberOfDisparities; |
|
sgbm.uniquenessRatio = 10; |
|
sgbm.speckleWindowSize = bm.state->speckleWindowSize; |
|
sgbm.speckleRange = bm.state->speckleRange; |
|
sgbm.disp12MaxDiff = 1; |
|
sgbm.fullDP = alg == STEREO_HH; |
|
|
|
var.levels = 3; // ignored with USE_AUTO_PARAMS |
|
var.pyrScale = 0.5; // ignored with USE_AUTO_PARAMS |
|
var.nIt = 25; |
|
var.minDisp = -numberOfDisparities; |
|
var.maxDisp = 0; |
|
var.poly_n = 3; |
|
var.poly_sigma = 0.0; |
|
var.fi = 15.0f; |
|
var.lambda = 0.03f; |
|
var.penalization = var.PENALIZATION_TICHONOV; // ignored with USE_AUTO_PARAMS |
|
var.cycle = var.CYCLE_V; // ignored with USE_AUTO_PARAMS |
|
var.flags = var.USE_SMART_ID | var.USE_AUTO_PARAMS | var.USE_INITIAL_DISPARITY | var.USE_MEDIAN_FILTERING ; |
|
|
|
Mat disp, disp8; |
|
//Mat img1p, img2p, dispp; |
|
//copyMakeBorder(img1, img1p, 0, 0, numberOfDisparities, 0, IPL_BORDER_REPLICATE); |
|
//copyMakeBorder(img2, img2p, 0, 0, numberOfDisparities, 0, IPL_BORDER_REPLICATE); |
|
|
|
int64 t = getTickCount(); |
|
if( alg == STEREO_BM ) |
|
bm(img1, img2, disp); |
|
else if( alg == STEREO_VAR ) { |
|
var(img1, img2, disp); |
|
} |
|
else if( alg == STEREO_SGBM || alg == STEREO_HH ) |
|
sgbm(img1, img2, disp); |
|
t = getTickCount() - t; |
|
printf("Time elapsed: %fms\n", t*1000/getTickFrequency()); |
|
|
|
//disp = dispp.colRange(numberOfDisparities, img1p.cols); |
|
if( alg != STEREO_VAR ) |
|
disp.convertTo(disp8, CV_8U, 255/(numberOfDisparities*16.)); |
|
else |
|
disp.convertTo(disp8, CV_8U); |
|
if( !no_display ) |
|
{ |
|
namedWindow("left", 1); |
|
imshow("left", img1); |
|
namedWindow("right", 1); |
|
imshow("right", img2); |
|
namedWindow("disparity", 0); |
|
imshow("disparity", disp8); |
|
printf("press any key to continue..."); |
|
fflush(stdout); |
|
waitKey(); |
|
printf("\n"); |
|
} |
|
|
|
if(disparity_filename) |
|
imwrite(disparity_filename, disp8); |
|
|
|
if(point_cloud_filename) |
|
{ |
|
printf("storing the point cloud..."); |
|
fflush(stdout); |
|
Mat xyz; |
|
reprojectImageTo3D(disp, xyz, Q, true); |
|
saveXYZ(point_cloud_filename, xyz); |
|
printf("\n"); |
|
} |
|
|
|
return 0; |
|
}
|
|
|