mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
917 lines
31 KiB
917 lines
31 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
#include "opencl_kernels_stitching.hpp" |
|
|
|
#ifdef HAVE_CUDA |
|
namespace cv { namespace cuda { namespace device |
|
{ |
|
namespace blend |
|
{ |
|
void addSrcWeightGpu16S(const PtrStep<short> src, const PtrStep<short> src_weight, |
|
PtrStep<short> dst, PtrStep<short> dst_weight, cv::Rect &rc); |
|
void addSrcWeightGpu32F(const PtrStep<short> src, const PtrStepf src_weight, |
|
PtrStep<short> dst, PtrStepf dst_weight, cv::Rect &rc); |
|
void normalizeUsingWeightMapGpu16S(const PtrStep<short> weight, PtrStep<short> src, |
|
const int width, const int height); |
|
void normalizeUsingWeightMapGpu32F(const PtrStepf weight, PtrStep<short> src, |
|
const int width, const int height); |
|
} |
|
}}} |
|
#endif |
|
|
|
namespace cv { |
|
namespace detail { |
|
|
|
static const float WEIGHT_EPS = 1e-5f; |
|
|
|
Ptr<Blender> Blender::createDefault(int type, bool try_gpu) |
|
{ |
|
if (type == NO) |
|
return makePtr<Blender>(); |
|
if (type == FEATHER) |
|
return makePtr<FeatherBlender>(); |
|
if (type == MULTI_BAND) |
|
return makePtr<MultiBandBlender>(try_gpu); |
|
CV_Error(Error::StsBadArg, "unsupported blending method"); |
|
} |
|
|
|
|
|
void Blender::prepare(const std::vector<Point> &corners, const std::vector<Size> &sizes) |
|
{ |
|
prepare(resultRoi(corners, sizes)); |
|
} |
|
|
|
|
|
void Blender::prepare(Rect dst_roi) |
|
{ |
|
dst_.create(dst_roi.size(), CV_16SC3); |
|
dst_.setTo(Scalar::all(0)); |
|
dst_mask_.create(dst_roi.size(), CV_8U); |
|
dst_mask_.setTo(Scalar::all(0)); |
|
dst_roi_ = dst_roi; |
|
} |
|
|
|
|
|
void Blender::feed(InputArray _img, InputArray _mask, Point tl) |
|
{ |
|
Mat img = _img.getMat(); |
|
Mat mask = _mask.getMat(); |
|
Mat dst = dst_.getMat(ACCESS_RW); |
|
Mat dst_mask = dst_mask_.getMat(ACCESS_RW); |
|
|
|
CV_Assert(img.type() == CV_16SC3); |
|
CV_Assert(mask.type() == CV_8U); |
|
int dx = tl.x - dst_roi_.x; |
|
int dy = tl.y - dst_roi_.y; |
|
|
|
for (int y = 0; y < img.rows; ++y) |
|
{ |
|
const Point3_<short> *src_row = img.ptr<Point3_<short> >(y); |
|
Point3_<short> *dst_row = dst.ptr<Point3_<short> >(dy + y); |
|
const uchar *mask_row = mask.ptr<uchar>(y); |
|
uchar *dst_mask_row = dst_mask.ptr<uchar>(dy + y); |
|
|
|
for (int x = 0; x < img.cols; ++x) |
|
{ |
|
if (mask_row[x]) |
|
dst_row[dx + x] = src_row[x]; |
|
dst_mask_row[dx + x] |= mask_row[x]; |
|
} |
|
} |
|
} |
|
|
|
|
|
void Blender::blend(InputOutputArray dst, InputOutputArray dst_mask) |
|
{ |
|
UMat mask; |
|
compare(dst_mask_, 0, mask, CMP_EQ); |
|
dst_.setTo(Scalar::all(0), mask); |
|
dst.assign(dst_); |
|
dst_mask.assign(dst_mask_); |
|
dst_.release(); |
|
dst_mask_.release(); |
|
} |
|
|
|
|
|
void FeatherBlender::prepare(Rect dst_roi) |
|
{ |
|
Blender::prepare(dst_roi); |
|
dst_weight_map_.create(dst_roi.size(), CV_32F); |
|
dst_weight_map_.setTo(0); |
|
} |
|
|
|
|
|
void FeatherBlender::feed(InputArray _img, InputArray mask, Point tl) |
|
{ |
|
Mat img = _img.getMat(); |
|
Mat dst = dst_.getMat(ACCESS_RW); |
|
|
|
CV_Assert(img.type() == CV_16SC3); |
|
CV_Assert(mask.type() == CV_8U); |
|
|
|
createWeightMap(mask, sharpness_, weight_map_); |
|
Mat weight_map = weight_map_.getMat(ACCESS_READ); |
|
Mat dst_weight_map = dst_weight_map_.getMat(ACCESS_RW); |
|
|
|
int dx = tl.x - dst_roi_.x; |
|
int dy = tl.y - dst_roi_.y; |
|
|
|
for (int y = 0; y < img.rows; ++y) |
|
{ |
|
const Point3_<short>* src_row = img.ptr<Point3_<short> >(y); |
|
Point3_<short>* dst_row = dst.ptr<Point3_<short> >(dy + y); |
|
const float* weight_row = weight_map.ptr<float>(y); |
|
float* dst_weight_row = dst_weight_map.ptr<float>(dy + y); |
|
|
|
for (int x = 0; x < img.cols; ++x) |
|
{ |
|
dst_row[dx + x].x += static_cast<short>(src_row[x].x * weight_row[x]); |
|
dst_row[dx + x].y += static_cast<short>(src_row[x].y * weight_row[x]); |
|
dst_row[dx + x].z += static_cast<short>(src_row[x].z * weight_row[x]); |
|
dst_weight_row[dx + x] += weight_row[x]; |
|
} |
|
} |
|
} |
|
|
|
|
|
void FeatherBlender::blend(InputOutputArray dst, InputOutputArray dst_mask) |
|
{ |
|
normalizeUsingWeightMap(dst_weight_map_, dst_); |
|
compare(dst_weight_map_, WEIGHT_EPS, dst_mask_, CMP_GT); |
|
Blender::blend(dst, dst_mask); |
|
} |
|
|
|
|
|
Rect FeatherBlender::createWeightMaps(const std::vector<UMat> &masks, const std::vector<Point> &corners, |
|
std::vector<UMat> &weight_maps) |
|
{ |
|
weight_maps.resize(masks.size()); |
|
for (size_t i = 0; i < masks.size(); ++i) |
|
createWeightMap(masks[i], sharpness_, weight_maps[i]); |
|
|
|
Rect dst_roi = resultRoi(corners, masks); |
|
Mat weights_sum(dst_roi.size(), CV_32F); |
|
weights_sum.setTo(0); |
|
|
|
for (size_t i = 0; i < weight_maps.size(); ++i) |
|
{ |
|
Rect roi(corners[i].x - dst_roi.x, corners[i].y - dst_roi.y, |
|
weight_maps[i].cols, weight_maps[i].rows); |
|
add(weights_sum(roi), weight_maps[i], weights_sum(roi)); |
|
} |
|
|
|
for (size_t i = 0; i < weight_maps.size(); ++i) |
|
{ |
|
Rect roi(corners[i].x - dst_roi.x, corners[i].y - dst_roi.y, |
|
weight_maps[i].cols, weight_maps[i].rows); |
|
Mat tmp = weights_sum(roi); |
|
tmp.setTo(1, tmp < std::numeric_limits<float>::epsilon()); |
|
divide(weight_maps[i], tmp, weight_maps[i]); |
|
} |
|
|
|
return dst_roi; |
|
} |
|
|
|
|
|
MultiBandBlender::MultiBandBlender(int try_gpu, int num_bands, int weight_type) |
|
{ |
|
num_bands_ = 0; |
|
setNumBands(num_bands); |
|
|
|
#if defined(HAVE_OPENCV_CUDAARITHM) && defined(HAVE_OPENCV_CUDAWARPING) |
|
can_use_gpu_ = try_gpu && cuda::getCudaEnabledDeviceCount(); |
|
gpu_feed_idx_ = 0; |
|
#else |
|
CV_UNUSED(try_gpu); |
|
can_use_gpu_ = false; |
|
#endif |
|
|
|
CV_Assert(weight_type == CV_32F || weight_type == CV_16S); |
|
weight_type_ = weight_type; |
|
} |
|
|
|
|
|
void MultiBandBlender::prepare(Rect dst_roi) |
|
{ |
|
dst_roi_final_ = dst_roi; |
|
|
|
// Crop unnecessary bands |
|
double max_len = static_cast<double>(std::max(dst_roi.width, dst_roi.height)); |
|
num_bands_ = std::min(actual_num_bands_, static_cast<int>(ceil(std::log(max_len) / std::log(2.0)))); |
|
|
|
// Add border to the final image, to ensure sizes are divided by (1 << num_bands_) |
|
dst_roi.width += ((1 << num_bands_) - dst_roi.width % (1 << num_bands_)) % (1 << num_bands_); |
|
dst_roi.height += ((1 << num_bands_) - dst_roi.height % (1 << num_bands_)) % (1 << num_bands_); |
|
|
|
Blender::prepare(dst_roi); |
|
|
|
#if defined(HAVE_OPENCV_CUDAARITHM) && defined(HAVE_OPENCV_CUDAWARPING) |
|
if (can_use_gpu_) |
|
{ |
|
gpu_initialized_ = false; |
|
gpu_feed_idx_ = 0; |
|
|
|
gpu_tl_points_.clear(); |
|
gpu_weight_pyr_gauss_vec_.clear(); |
|
gpu_src_pyr_laplace_vec_.clear(); |
|
gpu_ups_.clear(); |
|
gpu_imgs_with_border_.clear(); |
|
|
|
gpu_dst_pyr_laplace_.resize(num_bands_ + 1); |
|
gpu_dst_pyr_laplace_[0].create(dst_roi.size(), CV_16SC3); |
|
gpu_dst_pyr_laplace_[0].setTo(Scalar::all(0)); |
|
|
|
gpu_dst_band_weights_.resize(num_bands_ + 1); |
|
gpu_dst_band_weights_[0].create(dst_roi.size(), weight_type_); |
|
gpu_dst_band_weights_[0].setTo(0); |
|
|
|
for (int i = 1; i <= num_bands_; ++i) |
|
{ |
|
gpu_dst_pyr_laplace_[i].create((gpu_dst_pyr_laplace_[i - 1].rows + 1) / 2, |
|
(gpu_dst_pyr_laplace_[i - 1].cols + 1) / 2, CV_16SC3); |
|
gpu_dst_band_weights_[i].create((gpu_dst_band_weights_[i - 1].rows + 1) / 2, |
|
(gpu_dst_band_weights_[i - 1].cols + 1) / 2, weight_type_); |
|
gpu_dst_pyr_laplace_[i].setTo(Scalar::all(0)); |
|
gpu_dst_band_weights_[i].setTo(0); |
|
} |
|
} |
|
else |
|
#endif |
|
{ |
|
dst_pyr_laplace_.resize(num_bands_ + 1); |
|
dst_pyr_laplace_[0] = dst_; |
|
|
|
dst_band_weights_.resize(num_bands_ + 1); |
|
dst_band_weights_[0].create(dst_roi.size(), weight_type_); |
|
dst_band_weights_[0].setTo(0); |
|
|
|
for (int i = 1; i <= num_bands_; ++i) |
|
{ |
|
dst_pyr_laplace_[i].create((dst_pyr_laplace_[i - 1].rows + 1) / 2, |
|
(dst_pyr_laplace_[i - 1].cols + 1) / 2, CV_16SC3); |
|
dst_band_weights_[i].create((dst_band_weights_[i - 1].rows + 1) / 2, |
|
(dst_band_weights_[i - 1].cols + 1) / 2, weight_type_); |
|
dst_pyr_laplace_[i].setTo(Scalar::all(0)); |
|
dst_band_weights_[i].setTo(0); |
|
} |
|
} |
|
} |
|
|
|
#ifdef HAVE_OPENCL |
|
static bool ocl_MultiBandBlender_feed(InputArray _src, InputArray _weight, |
|
InputOutputArray _dst, InputOutputArray _dst_weight) |
|
{ |
|
String buildOptions = "-D DEFINE_feed"; |
|
ocl::buildOptionsAddMatrixDescription(buildOptions, "src", _src); |
|
ocl::buildOptionsAddMatrixDescription(buildOptions, "weight", _weight); |
|
ocl::buildOptionsAddMatrixDescription(buildOptions, "dst", _dst); |
|
ocl::buildOptionsAddMatrixDescription(buildOptions, "dstWeight", _dst_weight); |
|
ocl::Kernel k("feed", ocl::stitching::multibandblend_oclsrc, buildOptions); |
|
if (k.empty()) |
|
return false; |
|
|
|
UMat src = _src.getUMat(); |
|
|
|
k.args(ocl::KernelArg::ReadOnly(src), |
|
ocl::KernelArg::ReadOnly(_weight.getUMat()), |
|
ocl::KernelArg::ReadWrite(_dst.getUMat()), |
|
ocl::KernelArg::ReadWrite(_dst_weight.getUMat()) |
|
); |
|
|
|
size_t globalsize[2] = {(size_t)src.cols, (size_t)src.rows }; |
|
return k.run(2, globalsize, NULL, false); |
|
} |
|
#endif |
|
|
|
void MultiBandBlender::feed(InputArray _img, InputArray mask, Point tl) |
|
{ |
|
#if ENABLE_LOG |
|
int64 t = getTickCount(); |
|
#endif |
|
|
|
UMat img; |
|
|
|
#if defined(HAVE_OPENCV_CUDAARITHM) && defined(HAVE_OPENCV_CUDAWARPING) |
|
// If using gpu save the top left coordinate when running first time after prepare |
|
if (can_use_gpu_) |
|
{ |
|
if (!gpu_initialized_) |
|
{ |
|
gpu_tl_points_.push_back(tl); |
|
} |
|
else |
|
{ |
|
tl = gpu_tl_points_[gpu_feed_idx_]; |
|
} |
|
} |
|
// If _img is not a GpuMat get it as UMat from the InputArray object. |
|
// If it is GpuMat make a dummy object with right dimensions but no data and |
|
// get _img as a GpuMat |
|
if (!_img.isGpuMat()) |
|
#endif |
|
{ |
|
img = _img.getUMat(); |
|
} |
|
#if defined(HAVE_OPENCV_CUDAARITHM) && defined(HAVE_OPENCV_CUDAWARPING) |
|
else |
|
{ |
|
gpu_img_ = _img.getGpuMat(); |
|
img = UMat(gpu_img_.rows, gpu_img_.cols, gpu_img_.type()); |
|
} |
|
#endif |
|
|
|
CV_Assert(img.type() == CV_16SC3 || img.type() == CV_8UC3); |
|
CV_Assert(mask.type() == CV_8U); |
|
|
|
// Keep source image in memory with small border |
|
int gap = 3 * (1 << num_bands_); |
|
Point tl_new(std::max(dst_roi_.x, tl.x - gap), |
|
std::max(dst_roi_.y, tl.y - gap)); |
|
Point br_new(std::min(dst_roi_.br().x, tl.x + img.cols + gap), |
|
std::min(dst_roi_.br().y, tl.y + img.rows + gap)); |
|
|
|
// Ensure coordinates of top-left, bottom-right corners are divided by (1 << num_bands_). |
|
// After that scale between layers is exactly 2. |
|
// |
|
// We do it to avoid interpolation problems when keeping sub-images only. There is no such problem when |
|
// image is bordered to have size equal to the final image size, but this is too memory hungry approach. |
|
tl_new.x = dst_roi_.x + (((tl_new.x - dst_roi_.x) >> num_bands_) << num_bands_); |
|
tl_new.y = dst_roi_.y + (((tl_new.y - dst_roi_.y) >> num_bands_) << num_bands_); |
|
int width = br_new.x - tl_new.x; |
|
int height = br_new.y - tl_new.y; |
|
width += ((1 << num_bands_) - width % (1 << num_bands_)) % (1 << num_bands_); |
|
height += ((1 << num_bands_) - height % (1 << num_bands_)) % (1 << num_bands_); |
|
br_new.x = tl_new.x + width; |
|
br_new.y = tl_new.y + height; |
|
int dy = std::max(br_new.y - dst_roi_.br().y, 0); |
|
int dx = std::max(br_new.x - dst_roi_.br().x, 0); |
|
tl_new.x -= dx; br_new.x -= dx; |
|
tl_new.y -= dy; br_new.y -= dy; |
|
|
|
int top = tl.y - tl_new.y; |
|
int left = tl.x - tl_new.x; |
|
int bottom = br_new.y - tl.y - img.rows; |
|
int right = br_new.x - tl.x - img.cols; |
|
|
|
#if defined(HAVE_OPENCV_CUDAARITHM) && defined(HAVE_OPENCV_CUDAWARPING) |
|
if (can_use_gpu_) |
|
{ |
|
if (!gpu_initialized_) |
|
{ |
|
gpu_imgs_with_border_.push_back(cuda::GpuMat()); |
|
gpu_weight_pyr_gauss_vec_.push_back(std::vector<cuda::GpuMat>(num_bands_+1)); |
|
gpu_src_pyr_laplace_vec_.push_back(std::vector<cuda::GpuMat>(num_bands_+1)); |
|
gpu_ups_.push_back(std::vector<cuda::GpuMat>(num_bands_)); |
|
} |
|
|
|
// If _img is not GpuMat upload it to gpu else gpu_img_ was set already |
|
if (!_img.isGpuMat()) |
|
{ |
|
gpu_img_.upload(img); |
|
} |
|
|
|
// Create the source image Laplacian pyramid |
|
cuda::copyMakeBorder(gpu_img_, gpu_imgs_with_border_[gpu_feed_idx_], top, bottom, |
|
left, right, BORDER_REFLECT); |
|
gpu_imgs_with_border_[gpu_feed_idx_].convertTo(gpu_src_pyr_laplace_vec_[gpu_feed_idx_][0], CV_16S); |
|
for (int i = 0; i < num_bands_; ++i) |
|
cuda::pyrDown(gpu_src_pyr_laplace_vec_[gpu_feed_idx_][i], |
|
gpu_src_pyr_laplace_vec_[gpu_feed_idx_][i + 1]); |
|
for (int i = 0; i < num_bands_; ++i) |
|
{ |
|
cuda::pyrUp(gpu_src_pyr_laplace_vec_[gpu_feed_idx_][i + 1], gpu_ups_[gpu_feed_idx_][i]); |
|
cuda::subtract(gpu_src_pyr_laplace_vec_[gpu_feed_idx_][i], |
|
gpu_ups_[gpu_feed_idx_][i], |
|
gpu_src_pyr_laplace_vec_[gpu_feed_idx_][i]); |
|
} |
|
|
|
// Create the weight map Gaussian pyramid only if not yet initialized |
|
if (!gpu_initialized_) |
|
{ |
|
if (mask.isGpuMat()) |
|
{ |
|
gpu_mask_ = mask.getGpuMat(); |
|
} |
|
else |
|
{ |
|
gpu_mask_.upload(mask); |
|
} |
|
|
|
if (weight_type_ == CV_32F) |
|
{ |
|
gpu_mask_.convertTo(gpu_weight_map_, CV_32F, 1. / 255.); |
|
} |
|
else // weight_type_ == CV_16S |
|
{ |
|
gpu_mask_.convertTo(gpu_weight_map_, CV_16S); |
|
cuda::compare(gpu_mask_, 0, gpu_add_mask_, CMP_NE); |
|
cuda::add(gpu_weight_map_, Scalar::all(1), gpu_weight_map_, gpu_add_mask_); |
|
} |
|
cuda::copyMakeBorder(gpu_weight_map_, gpu_weight_pyr_gauss_vec_[gpu_feed_idx_][0], top, |
|
bottom, left, right, BORDER_CONSTANT); |
|
for (int i = 0; i < num_bands_; ++i) |
|
cuda::pyrDown(gpu_weight_pyr_gauss_vec_[gpu_feed_idx_][i], |
|
gpu_weight_pyr_gauss_vec_[gpu_feed_idx_][i + 1]); |
|
} |
|
|
|
int y_tl = tl_new.y - dst_roi_.y; |
|
int y_br = br_new.y - dst_roi_.y; |
|
int x_tl = tl_new.x - dst_roi_.x; |
|
int x_br = br_new.x - dst_roi_.x; |
|
|
|
// Add weighted layer of the source image to the final Laplacian pyramid layer |
|
for (int i = 0; i <= num_bands_; ++i) |
|
{ |
|
Rect rc(x_tl, y_tl, x_br - x_tl, y_br - y_tl); |
|
cuda::GpuMat &_src_pyr_laplace = gpu_src_pyr_laplace_vec_[gpu_feed_idx_][i]; |
|
cuda::GpuMat _dst_pyr_laplace = gpu_dst_pyr_laplace_[i](rc); |
|
cuda::GpuMat &_weight_pyr_gauss = gpu_weight_pyr_gauss_vec_[gpu_feed_idx_][i]; |
|
cuda::GpuMat _dst_band_weights = gpu_dst_band_weights_[i](rc); |
|
|
|
using namespace cv::cuda::device::blend; |
|
if (weight_type_ == CV_32F) |
|
{ |
|
addSrcWeightGpu32F(_src_pyr_laplace, _weight_pyr_gauss, _dst_pyr_laplace, _dst_band_weights, rc); |
|
} |
|
else |
|
{ |
|
addSrcWeightGpu16S(_src_pyr_laplace, _weight_pyr_gauss, _dst_pyr_laplace, _dst_band_weights, rc); |
|
} |
|
x_tl /= 2; y_tl /= 2; |
|
x_br /= 2; y_br /= 2; |
|
} |
|
++gpu_feed_idx_; |
|
return; |
|
} |
|
#endif |
|
|
|
// Create the source image Laplacian pyramid |
|
UMat img_with_border; |
|
copyMakeBorder(_img, img_with_border, top, bottom, left, right, |
|
BORDER_REFLECT); |
|
LOGLN(" Add border to the source image, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec"); |
|
#if ENABLE_LOG |
|
t = getTickCount(); |
|
#endif |
|
|
|
std::vector<UMat> src_pyr_laplace; |
|
createLaplacePyr(img_with_border, num_bands_, src_pyr_laplace); |
|
|
|
LOGLN(" Create the source image Laplacian pyramid, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec"); |
|
#if ENABLE_LOG |
|
t = getTickCount(); |
|
#endif |
|
|
|
// Create the weight map Gaussian pyramid |
|
UMat weight_map; |
|
std::vector<UMat> weight_pyr_gauss(num_bands_ + 1); |
|
|
|
if (weight_type_ == CV_32F) |
|
{ |
|
mask.getUMat().convertTo(weight_map, CV_32F, 1./255.); |
|
} |
|
else // weight_type_ == CV_16S |
|
{ |
|
mask.getUMat().convertTo(weight_map, CV_16S); |
|
UMat add_mask; |
|
compare(mask, 0, add_mask, CMP_NE); |
|
add(weight_map, Scalar::all(1), weight_map, add_mask); |
|
} |
|
|
|
copyMakeBorder(weight_map, weight_pyr_gauss[0], top, bottom, left, right, BORDER_CONSTANT); |
|
|
|
for (int i = 0; i < num_bands_; ++i) |
|
pyrDown(weight_pyr_gauss[i], weight_pyr_gauss[i + 1]); |
|
|
|
LOGLN(" Create the weight map Gaussian pyramid, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec"); |
|
#if ENABLE_LOG |
|
t = getTickCount(); |
|
#endif |
|
|
|
int y_tl = tl_new.y - dst_roi_.y; |
|
int y_br = br_new.y - dst_roi_.y; |
|
int x_tl = tl_new.x - dst_roi_.x; |
|
int x_br = br_new.x - dst_roi_.x; |
|
|
|
// Add weighted layer of the source image to the final Laplacian pyramid layer |
|
for (int i = 0; i <= num_bands_; ++i) |
|
{ |
|
Rect rc(x_tl, y_tl, x_br - x_tl, y_br - y_tl); |
|
#ifdef HAVE_OPENCL |
|
if ( !cv::ocl::isOpenCLActivated() || |
|
!ocl_MultiBandBlender_feed(src_pyr_laplace[i], weight_pyr_gauss[i], |
|
dst_pyr_laplace_[i](rc), dst_band_weights_[i](rc)) ) |
|
#endif |
|
{ |
|
Mat _src_pyr_laplace = src_pyr_laplace[i].getMat(ACCESS_READ); |
|
Mat _dst_pyr_laplace = dst_pyr_laplace_[i](rc).getMat(ACCESS_RW); |
|
Mat _weight_pyr_gauss = weight_pyr_gauss[i].getMat(ACCESS_READ); |
|
Mat _dst_band_weights = dst_band_weights_[i](rc).getMat(ACCESS_RW); |
|
if (weight_type_ == CV_32F) |
|
{ |
|
for (int y = 0; y < rc.height; ++y) |
|
{ |
|
const Point3_<short>* src_row = _src_pyr_laplace.ptr<Point3_<short> >(y); |
|
Point3_<short>* dst_row = _dst_pyr_laplace.ptr<Point3_<short> >(y); |
|
const float* weight_row = _weight_pyr_gauss.ptr<float>(y); |
|
float* dst_weight_row = _dst_band_weights.ptr<float>(y); |
|
|
|
for (int x = 0; x < rc.width; ++x) |
|
{ |
|
dst_row[x].x += static_cast<short>(src_row[x].x * weight_row[x]); |
|
dst_row[x].y += static_cast<short>(src_row[x].y * weight_row[x]); |
|
dst_row[x].z += static_cast<short>(src_row[x].z * weight_row[x]); |
|
dst_weight_row[x] += weight_row[x]; |
|
} |
|
} |
|
} |
|
else // weight_type_ == CV_16S |
|
{ |
|
for (int y = 0; y < y_br - y_tl; ++y) |
|
{ |
|
const Point3_<short>* src_row = _src_pyr_laplace.ptr<Point3_<short> >(y); |
|
Point3_<short>* dst_row = _dst_pyr_laplace.ptr<Point3_<short> >(y); |
|
const short* weight_row = _weight_pyr_gauss.ptr<short>(y); |
|
short* dst_weight_row = _dst_band_weights.ptr<short>(y); |
|
|
|
for (int x = 0; x < x_br - x_tl; ++x) |
|
{ |
|
dst_row[x].x += short((src_row[x].x * weight_row[x]) >> 8); |
|
dst_row[x].y += short((src_row[x].y * weight_row[x]) >> 8); |
|
dst_row[x].z += short((src_row[x].z * weight_row[x]) >> 8); |
|
dst_weight_row[x] += weight_row[x]; |
|
} |
|
} |
|
} |
|
} |
|
#ifdef HAVE_OPENCL |
|
else |
|
{ |
|
CV_IMPL_ADD(CV_IMPL_OCL); |
|
} |
|
#endif |
|
|
|
x_tl /= 2; y_tl /= 2; |
|
x_br /= 2; y_br /= 2; |
|
} |
|
|
|
LOGLN(" Add weighted layer of the source image to the final Laplacian pyramid layer, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec"); |
|
} |
|
|
|
|
|
void MultiBandBlender::blend(InputOutputArray dst, InputOutputArray dst_mask) |
|
{ |
|
Rect dst_rc(0, 0, dst_roi_final_.width, dst_roi_final_.height); |
|
#if defined(HAVE_OPENCV_CUDAARITHM) && defined(HAVE_OPENCV_CUDAWARPING) |
|
if (can_use_gpu_) |
|
{ |
|
if (!gpu_initialized_) |
|
{ |
|
gpu_ups_.push_back(std::vector<cuda::GpuMat>(num_bands_+1)); |
|
} |
|
|
|
for (int i = 0; i <= num_bands_; ++i) |
|
{ |
|
cuda::GpuMat dst_i = gpu_dst_pyr_laplace_[i]; |
|
cuda::GpuMat weight_i = gpu_dst_band_weights_[i]; |
|
|
|
using namespace ::cv::cuda::device::blend; |
|
if (weight_type_ == CV_32F) |
|
{ |
|
normalizeUsingWeightMapGpu32F(weight_i, dst_i, weight_i.cols, weight_i.rows); |
|
} |
|
else |
|
{ |
|
normalizeUsingWeightMapGpu16S(weight_i, dst_i, weight_i.cols, weight_i.rows); |
|
} |
|
} |
|
|
|
// Restore image from Laplacian pyramid |
|
for (size_t i = num_bands_; i > 0; --i) |
|
{ |
|
cuda::pyrUp(gpu_dst_pyr_laplace_[i], gpu_ups_[gpu_ups_.size()-1][num_bands_-i]); |
|
cuda::add(gpu_ups_[gpu_ups_.size()-1][num_bands_-i], |
|
gpu_dst_pyr_laplace_[i - 1], |
|
gpu_dst_pyr_laplace_[i - 1]); |
|
} |
|
|
|
// If dst is GpuMat do masking on gpu and return dst as a GpuMat |
|
// else download the image to cpu and return it as an ordinary Mat |
|
if (dst.isGpuMat()) |
|
{ |
|
cuda::GpuMat &gpu_dst = dst.getGpuMatRef(); |
|
|
|
cuda::compare(gpu_dst_band_weights_[0](dst_rc), WEIGHT_EPS, gpu_dst_mask_, CMP_GT); |
|
|
|
cuda::compare(gpu_dst_mask_, 0, gpu_mask_, CMP_EQ); |
|
|
|
gpu_dst_pyr_laplace_[0](dst_rc).setTo(Scalar::all(0), gpu_mask_); |
|
gpu_dst_pyr_laplace_[0](dst_rc).convertTo(gpu_dst, CV_16S); |
|
|
|
} |
|
else |
|
{ |
|
gpu_dst_pyr_laplace_[0](dst_rc).download(dst_); |
|
Mat dst_band_weights_0; |
|
gpu_dst_band_weights_[0].download(dst_band_weights_0); |
|
|
|
compare(dst_band_weights_0(dst_rc), WEIGHT_EPS, dst_mask_, CMP_GT); |
|
Blender::blend(dst, dst_mask); |
|
} |
|
|
|
// Set destination Mats to 0 so new image can be blended |
|
for (size_t i = 0; i < (size_t)(num_bands_ + 1); ++i) |
|
{ |
|
gpu_dst_band_weights_[i].setTo(0); |
|
gpu_dst_pyr_laplace_[i].setTo(Scalar::all(0)); |
|
} |
|
gpu_feed_idx_ = 0; |
|
gpu_initialized_ = true; |
|
} |
|
else |
|
#endif |
|
{ |
|
cv::UMat dst_band_weights_0; |
|
|
|
for (int i = 0; i <= num_bands_; ++i) |
|
normalizeUsingWeightMap(dst_band_weights_[i], dst_pyr_laplace_[i]); |
|
|
|
restoreImageFromLaplacePyr(dst_pyr_laplace_); |
|
|
|
dst_ = dst_pyr_laplace_[0](dst_rc); |
|
dst_band_weights_0 = dst_band_weights_[0]; |
|
|
|
dst_pyr_laplace_.clear(); |
|
dst_band_weights_.clear(); |
|
|
|
compare(dst_band_weights_0(dst_rc), WEIGHT_EPS, dst_mask_, CMP_GT); |
|
|
|
Blender::blend(dst, dst_mask); |
|
} |
|
} |
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////// |
|
// Auxiliary functions |
|
|
|
#ifdef HAVE_OPENCL |
|
static bool ocl_normalizeUsingWeightMap(InputArray _weight, InputOutputArray _mat) |
|
{ |
|
String buildOptions = "-D DEFINE_normalizeUsingWeightMap"; |
|
ocl::buildOptionsAddMatrixDescription(buildOptions, "mat", _mat); |
|
ocl::buildOptionsAddMatrixDescription(buildOptions, "weight", _weight); |
|
ocl::Kernel k("normalizeUsingWeightMap", ocl::stitching::multibandblend_oclsrc, buildOptions); |
|
if (k.empty()) |
|
return false; |
|
|
|
UMat mat = _mat.getUMat(); |
|
|
|
k.args(ocl::KernelArg::ReadWrite(mat), |
|
ocl::KernelArg::ReadOnly(_weight.getUMat()) |
|
); |
|
|
|
size_t globalsize[2] = {(size_t)mat.cols, (size_t)mat.rows }; |
|
return k.run(2, globalsize, NULL, false); |
|
} |
|
#endif |
|
|
|
void normalizeUsingWeightMap(InputArray _weight, InputOutputArray _src) |
|
{ |
|
Mat src; |
|
Mat weight; |
|
#ifdef HAVE_TEGRA_OPTIMIZATION |
|
src = _src.getMat(); |
|
weight = _weight.getMat(); |
|
if(tegra::useTegra() && tegra::normalizeUsingWeightMap(weight, src)) |
|
return; |
|
#endif |
|
|
|
#ifdef HAVE_OPENCL |
|
if ( !cv::ocl::isOpenCLActivated() || |
|
!ocl_normalizeUsingWeightMap(_weight, _src) ) |
|
#endif |
|
{ |
|
src = _src.getMat(); |
|
weight = _weight.getMat(); |
|
|
|
CV_Assert(src.type() == CV_16SC3); |
|
|
|
if (weight.type() == CV_32FC1) |
|
{ |
|
for (int y = 0; y < src.rows; ++y) |
|
{ |
|
Point3_<short> *row = src.ptr<Point3_<short> >(y); |
|
const float *weight_row = weight.ptr<float>(y); |
|
|
|
for (int x = 0; x < src.cols; ++x) |
|
{ |
|
row[x].x = static_cast<short>(row[x].x / (weight_row[x] + WEIGHT_EPS)); |
|
row[x].y = static_cast<short>(row[x].y / (weight_row[x] + WEIGHT_EPS)); |
|
row[x].z = static_cast<short>(row[x].z / (weight_row[x] + WEIGHT_EPS)); |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
CV_Assert(weight.type() == CV_16SC1); |
|
|
|
for (int y = 0; y < src.rows; ++y) |
|
{ |
|
const short *weight_row = weight.ptr<short>(y); |
|
Point3_<short> *row = src.ptr<Point3_<short> >(y); |
|
|
|
for (int x = 0; x < src.cols; ++x) |
|
{ |
|
int w = weight_row[x] + 1; |
|
row[x].x = static_cast<short>((row[x].x << 8) / w); |
|
row[x].y = static_cast<short>((row[x].y << 8) / w); |
|
row[x].z = static_cast<short>((row[x].z << 8) / w); |
|
} |
|
} |
|
} |
|
} |
|
#ifdef HAVE_OPENCL |
|
else |
|
{ |
|
CV_IMPL_ADD(CV_IMPL_OCL); |
|
} |
|
#endif |
|
} |
|
|
|
|
|
void createWeightMap(InputArray mask, float sharpness, InputOutputArray weight) |
|
{ |
|
CV_Assert(mask.type() == CV_8U); |
|
distanceTransform(mask, weight, DIST_L1, 3); |
|
UMat tmp; |
|
multiply(weight, sharpness, tmp); |
|
threshold(tmp, weight, 1.f, 1.f, THRESH_TRUNC); |
|
} |
|
|
|
|
|
void createLaplacePyr(InputArray img, int num_levels, std::vector<UMat> &pyr) |
|
{ |
|
#ifdef HAVE_TEGRA_OPTIMIZATION |
|
cv::Mat imgMat = img.getMat(); |
|
if(tegra::useTegra() && tegra::createLaplacePyr(imgMat, num_levels, pyr)) |
|
return; |
|
#endif |
|
|
|
pyr.resize(num_levels + 1); |
|
|
|
if(img.depth() == CV_8U) |
|
{ |
|
if(num_levels == 0) |
|
{ |
|
img.getUMat().convertTo(pyr[0], CV_16S); |
|
return; |
|
} |
|
|
|
UMat downNext; |
|
UMat current = img.getUMat(); |
|
pyrDown(img, downNext); |
|
|
|
for(int i = 1; i < num_levels; ++i) |
|
{ |
|
UMat lvl_up; |
|
UMat lvl_down; |
|
|
|
pyrDown(downNext, lvl_down); |
|
pyrUp(downNext, lvl_up, current.size()); |
|
subtract(current, lvl_up, pyr[i-1], noArray(), CV_16S); |
|
|
|
current = downNext; |
|
downNext = lvl_down; |
|
} |
|
|
|
{ |
|
UMat lvl_up; |
|
pyrUp(downNext, lvl_up, current.size()); |
|
subtract(current, lvl_up, pyr[num_levels-1], noArray(), CV_16S); |
|
|
|
downNext.convertTo(pyr[num_levels], CV_16S); |
|
} |
|
} |
|
else |
|
{ |
|
pyr[0] = img.getUMat(); |
|
for (int i = 0; i < num_levels; ++i) |
|
pyrDown(pyr[i], pyr[i + 1]); |
|
UMat tmp; |
|
for (int i = 0; i < num_levels; ++i) |
|
{ |
|
pyrUp(pyr[i + 1], tmp, pyr[i].size()); |
|
subtract(pyr[i], tmp, pyr[i]); |
|
} |
|
} |
|
} |
|
|
|
|
|
void createLaplacePyrGpu(InputArray img, int num_levels, std::vector<UMat> &pyr) |
|
{ |
|
#if defined(HAVE_OPENCV_CUDAARITHM) && defined(HAVE_OPENCV_CUDAWARPING) |
|
pyr.resize(num_levels + 1); |
|
|
|
std::vector<cuda::GpuMat> gpu_pyr(num_levels + 1); |
|
gpu_pyr[0].upload(img); |
|
for (int i = 0; i < num_levels; ++i) |
|
cuda::pyrDown(gpu_pyr[i], gpu_pyr[i + 1]); |
|
|
|
cuda::GpuMat tmp; |
|
for (int i = 0; i < num_levels; ++i) |
|
{ |
|
cuda::pyrUp(gpu_pyr[i + 1], tmp); |
|
cuda::subtract(gpu_pyr[i], tmp, gpu_pyr[i]); |
|
gpu_pyr[i].download(pyr[i]); |
|
} |
|
|
|
gpu_pyr[num_levels].download(pyr[num_levels]); |
|
#else |
|
CV_UNUSED(img); |
|
CV_UNUSED(num_levels); |
|
CV_UNUSED(pyr); |
|
CV_Error(Error::StsNotImplemented, "CUDA optimization is unavailable"); |
|
#endif |
|
} |
|
|
|
|
|
void restoreImageFromLaplacePyr(std::vector<UMat> &pyr) |
|
{ |
|
if (pyr.empty()) |
|
return; |
|
UMat tmp; |
|
for (size_t i = pyr.size() - 1; i > 0; --i) |
|
{ |
|
pyrUp(pyr[i], tmp, pyr[i - 1].size()); |
|
add(tmp, pyr[i - 1], pyr[i - 1]); |
|
} |
|
} |
|
|
|
|
|
void restoreImageFromLaplacePyrGpu(std::vector<UMat> &pyr) |
|
{ |
|
#if defined(HAVE_OPENCV_CUDAARITHM) && defined(HAVE_OPENCV_CUDAWARPING) |
|
if (pyr.empty()) |
|
return; |
|
|
|
std::vector<cuda::GpuMat> gpu_pyr(pyr.size()); |
|
for (size_t i = 0; i < pyr.size(); ++i) |
|
gpu_pyr[i].upload(pyr[i]); |
|
|
|
cuda::GpuMat tmp; |
|
for (size_t i = pyr.size() - 1; i > 0; --i) |
|
{ |
|
cuda::pyrUp(gpu_pyr[i], tmp); |
|
cuda::add(tmp, gpu_pyr[i - 1], gpu_pyr[i - 1]); |
|
} |
|
|
|
gpu_pyr[0].download(pyr[0]); |
|
#else |
|
CV_UNUSED(pyr); |
|
CV_Error(Error::StsNotImplemented, "CUDA optimization is unavailable"); |
|
#endif |
|
} |
|
|
|
} // namespace detail |
|
} // namespace cv
|
|
|