Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
379 lines
16 KiB
379 lines
16 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
|
|
using namespace cv; |
|
using namespace cv::cuda; |
|
|
|
#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER) |
|
|
|
Ptr<SparsePyrLKOpticalFlow> cv::cuda::SparsePyrLKOpticalFlow::create(Size, int, int, bool) { throw_no_cuda(); return Ptr<SparsePyrLKOpticalFlow>(); } |
|
|
|
Ptr<DensePyrLKOpticalFlow> cv::cuda::DensePyrLKOpticalFlow::create(Size, int, int, bool) { throw_no_cuda(); return Ptr<DensePyrLKOpticalFlow>(); } |
|
|
|
#else /* !defined (HAVE_CUDA) */ |
|
|
|
namespace pyrlk |
|
{ |
|
void loadConstants(int2 winSize, int iters, cudaStream_t stream); |
|
template<typename T, int cn> struct pyrLK_caller |
|
{ |
|
static void sparse(PtrStepSz<typename device::TypeVec<T, cn>::vec_type> I, PtrStepSz<typename device::TypeVec<T, cn>::vec_type> J, const float2* prevPts, float2* nextPts, uchar* status, float* err, int ptcount, |
|
int level, dim3 block, dim3 patch, cudaStream_t stream); |
|
|
|
static void dense(PtrStepSzb I, PtrStepSzf J, PtrStepSzf u, PtrStepSzf v, PtrStepSzf prevU, PtrStepSzf prevV, |
|
PtrStepSzf err, int2 winSize, cudaStream_t stream); |
|
}; |
|
|
|
template<typename T, int cn> void dispatcher(GpuMat I, GpuMat J, const float2* prevPts, float2* nextPts, uchar* status, float* err, int ptcount, |
|
int level, dim3 block, dim3 patch, cudaStream_t stream) |
|
{ |
|
pyrLK_caller<T, cn>::sparse(I, J, prevPts, nextPts, status, err, ptcount, level, block, patch, stream); |
|
} |
|
} |
|
|
|
namespace |
|
{ |
|
class PyrLKOpticalFlowBase |
|
{ |
|
public: |
|
PyrLKOpticalFlowBase(Size winSize, int maxLevel, int iters, bool useInitialFlow); |
|
|
|
void sparse(const GpuMat& prevImg, const GpuMat& nextImg, const GpuMat& prevPts, GpuMat& nextPts, |
|
GpuMat& status, GpuMat* err, Stream& stream); |
|
|
|
void sparse(std::vector<GpuMat>& prevPyr, std::vector<GpuMat>& nextPyr, const GpuMat& prevPts, GpuMat& nextPts, |
|
GpuMat& status, GpuMat* err, Stream& stream); |
|
|
|
void dense(const GpuMat& prevImg, const GpuMat& nextImg, GpuMat& u, GpuMat& v, Stream& stream); |
|
|
|
protected: |
|
Size winSize_; |
|
int maxLevel_; |
|
int iters_; |
|
bool useInitialFlow_; |
|
void buildImagePyramid(const GpuMat& prevImg, std::vector<GpuMat>& prevPyr, const GpuMat& nextImg, std::vector<GpuMat>& nextPyr, Stream stream); |
|
private: |
|
friend class SparsePyrLKOpticalFlowImpl; |
|
std::vector<GpuMat> prevPyr_; |
|
std::vector<GpuMat> nextPyr_; |
|
}; |
|
|
|
PyrLKOpticalFlowBase::PyrLKOpticalFlowBase(Size winSize, int maxLevel, int iters, bool useInitialFlow) : |
|
winSize_(winSize), maxLevel_(maxLevel), iters_(iters), useInitialFlow_(useInitialFlow) |
|
{ |
|
} |
|
|
|
void calcPatchSize(Size winSize, dim3& block, dim3& patch) |
|
{ |
|
if (winSize.width > 32 && winSize.width > 2 * winSize.height) |
|
{ |
|
block.x = deviceSupports(FEATURE_SET_COMPUTE_12) ? 32 : 16; |
|
block.y = 8; |
|
} |
|
else |
|
{ |
|
block.x = 16; |
|
block.y = deviceSupports(FEATURE_SET_COMPUTE_12) ? 16 : 8; |
|
} |
|
|
|
patch.x = (winSize.width + block.x - 1) / block.x; |
|
patch.y = (winSize.height + block.y - 1) / block.y; |
|
|
|
block.z = patch.z = 1; |
|
} |
|
|
|
void PyrLKOpticalFlowBase::buildImagePyramid(const GpuMat& prevImg, std::vector<GpuMat>& prevPyr, const GpuMat& nextImg, std::vector<GpuMat>& nextPyr, Stream stream) |
|
{ |
|
prevPyr.resize(maxLevel_ + 1); |
|
nextPyr.resize(maxLevel_ + 1); |
|
|
|
int cn = prevImg.channels(); |
|
|
|
CV_Assert(cn == 1 || cn == 3 || cn == 4); |
|
|
|
prevPyr[0] = prevImg; |
|
nextPyr[0] = nextImg; |
|
|
|
for (int level = 1; level <= maxLevel_; ++level) |
|
{ |
|
cuda::pyrDown(prevPyr[level - 1], prevPyr[level], stream); |
|
cuda::pyrDown(nextPyr[level - 1], nextPyr[level], stream); |
|
} |
|
} |
|
void PyrLKOpticalFlowBase::sparse(std::vector<GpuMat>& prevPyr, std::vector<GpuMat>& nextPyr, const GpuMat& prevPts, GpuMat& nextPts, |
|
GpuMat& status, GpuMat* err, Stream& stream) |
|
{ |
|
CV_Assert(prevPyr.size() && nextPyr.size() && "Pyramid needs to at least contain the original matrix as the first element"); |
|
CV_Assert(prevPyr[0].size() == nextPyr[0].size()); |
|
CV_Assert(prevPts.rows == 1 && prevPts.type() == CV_32FC2); |
|
CV_Assert(maxLevel_ >= 0); |
|
CV_Assert(winSize_.width > 2 && winSize_.height > 2); |
|
if (useInitialFlow_) |
|
CV_Assert(nextPts.size() == prevPts.size() && nextPts.type() == prevPts.type()); |
|
else |
|
ensureSizeIsEnough(1, prevPts.cols, prevPts.type(), nextPts); |
|
|
|
GpuMat temp1 = (useInitialFlow_ ? nextPts : prevPts).reshape(1); |
|
GpuMat temp2 = nextPts.reshape(1); |
|
cuda::multiply(temp1, Scalar::all(1.0 / (1 << maxLevel_) / 2.0), temp2, 1, -1, stream); |
|
|
|
|
|
ensureSizeIsEnough(1, prevPts.cols, CV_8UC1, status); |
|
status.setTo(Scalar::all(1), stream); |
|
|
|
if (err) |
|
ensureSizeIsEnough(1, prevPts.cols, CV_32FC1, *err); |
|
|
|
if (prevPyr.size() != size_t(maxLevel_ + 1) || nextPyr.size() != size_t(maxLevel_ + 1)) |
|
{ |
|
buildImagePyramid(prevPyr[0], prevPyr, nextPyr[0], nextPyr, stream); |
|
} |
|
|
|
dim3 block, patch; |
|
calcPatchSize(winSize_, block, patch); |
|
CV_Assert(patch.x > 0 && patch.x < 6 && patch.y > 0 && patch.y < 6); |
|
pyrlk::loadConstants(make_int2(winSize_.width, winSize_.height), iters_, StreamAccessor::getStream(stream)); |
|
|
|
const int cn = prevPyr[0].channels(); |
|
const int type = prevPyr[0].depth(); |
|
|
|
typedef void(*func_t)(GpuMat I, GpuMat J, const float2* prevPts, float2* nextPts, uchar* status, float* err, int ptcount, |
|
int level, dim3 block, dim3 patch, cudaStream_t stream); |
|
|
|
// Current int datatype is disabled due to pyrDown not implementing it |
|
// while ushort does work, it has significantly worse performance, and thus doesn't pass accuracy tests. |
|
static const func_t funcs[6][4] = |
|
{ |
|
{ pyrlk::dispatcher<uchar, 1> , /*pyrlk::dispatcher<uchar, 2>*/ 0, pyrlk::dispatcher<uchar, 3> , pyrlk::dispatcher<uchar, 4> }, |
|
{ /*pyrlk::dispatcher<char, 1>*/ 0, /*pyrlk::dispatcher<char, 2>*/ 0, /*pyrlk::dispatcher<char, 3>*/ 0, /*pyrlk::dispatcher<char, 4>*/ 0 }, |
|
{ pyrlk::dispatcher<ushort, 1> , /*pyrlk::dispatcher<ushort, 2>*/0, pyrlk::dispatcher<ushort, 3> , pyrlk::dispatcher<ushort, 4> }, |
|
{ /*pyrlk::dispatcher<short, 1>*/ 0, /*pyrlk::dispatcher<short, 2>*/ 0, /*pyrlk::dispatcher<short, 3>*/ 0, /*pyrlk::dispatcher<short, 4>*/0 }, |
|
{ pyrlk::dispatcher<int, 1> , /*pyrlk::dispatcher<int, 2>*/ 0, pyrlk::dispatcher<int, 3> , pyrlk::dispatcher<int, 4> }, |
|
{ pyrlk::dispatcher<float, 1> , /*pyrlk::dispatcher<float, 2>*/ 0, pyrlk::dispatcher<float, 3> , pyrlk::dispatcher<float, 4> } |
|
}; |
|
|
|
func_t func = funcs[type][cn-1]; |
|
CV_Assert(func != NULL && "Datatype not implemented"); |
|
for (int level = maxLevel_; level >= 0; level--) |
|
{ |
|
func(prevPyr[level], nextPyr[level], |
|
prevPts.ptr<float2>(), nextPts.ptr<float2>(), |
|
status.ptr(), level == 0 && err ? err->ptr<float>() : 0, |
|
prevPts.cols, level, block, patch, |
|
StreamAccessor::getStream(stream)); |
|
} |
|
} |
|
|
|
void PyrLKOpticalFlowBase::sparse(const GpuMat& prevImg, const GpuMat& nextImg, const GpuMat& prevPts, GpuMat& nextPts, GpuMat& status, GpuMat* err, Stream& stream) |
|
{ |
|
if (prevPts.empty()) |
|
{ |
|
nextPts.release(); |
|
status.release(); |
|
if (err) err->release(); |
|
return; |
|
} |
|
CV_Assert( prevImg.channels() == 1 || prevImg.channels() == 3 || prevImg.channels() == 4 ); |
|
CV_Assert( prevImg.size() == nextImg.size() && prevImg.type() == nextImg.type() ); |
|
|
|
// build the image pyramids. |
|
buildImagePyramid(prevImg, prevPyr_, nextImg, nextPyr_, stream); |
|
|
|
sparse(prevPyr_, nextPyr_, prevPts, nextPts, status, err, stream); |
|
|
|
} |
|
|
|
void PyrLKOpticalFlowBase::dense(const GpuMat& prevImg, const GpuMat& nextImg, GpuMat& u, GpuMat& v, Stream& stream) |
|
{ |
|
CV_Assert( prevImg.type() == CV_8UC1 ); |
|
CV_Assert( prevImg.size() == nextImg.size() && prevImg.type() == nextImg.type() ); |
|
CV_Assert( maxLevel_ >= 0 ); |
|
CV_Assert( winSize_.width > 2 && winSize_.height > 2 ); |
|
|
|
// build the image pyramids. |
|
|
|
prevPyr_.resize(maxLevel_ + 1); |
|
nextPyr_.resize(maxLevel_ + 1); |
|
|
|
prevPyr_[0] = prevImg; |
|
nextImg.convertTo(nextPyr_[0], CV_32F, stream); |
|
|
|
for (int level = 1; level <= maxLevel_; ++level) |
|
{ |
|
cuda::pyrDown(prevPyr_[level - 1], prevPyr_[level], stream); |
|
cuda::pyrDown(nextPyr_[level - 1], nextPyr_[level], stream); |
|
} |
|
|
|
BufferPool pool(stream); |
|
|
|
GpuMat uPyr[] = { |
|
pool.getBuffer(prevImg.size(), CV_32FC1), |
|
pool.getBuffer(prevImg.size(), CV_32FC1), |
|
}; |
|
GpuMat vPyr[] = { |
|
pool.getBuffer(prevImg.size(), CV_32FC1), |
|
pool.getBuffer(prevImg.size(), CV_32FC1), |
|
}; |
|
|
|
uPyr[0].setTo(Scalar::all(0), stream); |
|
vPyr[0].setTo(Scalar::all(0), stream); |
|
uPyr[1].setTo(Scalar::all(0), stream); |
|
vPyr[1].setTo(Scalar::all(0), stream); |
|
|
|
int2 winSize2i = make_int2(winSize_.width, winSize_.height); |
|
pyrlk::loadConstants(winSize2i, iters_, StreamAccessor::getStream(stream)); |
|
|
|
int idx = 0; |
|
|
|
for (int level = maxLevel_; level >= 0; level--) |
|
{ |
|
int idx2 = (idx + 1) & 1; |
|
|
|
pyrlk::pyrLK_caller<float,1>::dense(prevPyr_[level], nextPyr_[level], |
|
uPyr[idx], vPyr[idx], uPyr[idx2], vPyr[idx2], |
|
PtrStepSzf(), winSize2i, |
|
StreamAccessor::getStream(stream)); |
|
|
|
if (level > 0) |
|
idx = idx2; |
|
} |
|
|
|
uPyr[idx].copyTo(u, stream); |
|
vPyr[idx].copyTo(v, stream); |
|
} |
|
|
|
class SparsePyrLKOpticalFlowImpl : public SparsePyrLKOpticalFlow, private PyrLKOpticalFlowBase |
|
{ |
|
public: |
|
SparsePyrLKOpticalFlowImpl(Size winSize, int maxLevel, int iters, bool useInitialFlow) : |
|
PyrLKOpticalFlowBase(winSize, maxLevel, iters, useInitialFlow) |
|
{ |
|
} |
|
|
|
virtual Size getWinSize() const { return winSize_; } |
|
virtual void setWinSize(Size winSize) { winSize_ = winSize; } |
|
|
|
virtual int getMaxLevel() const { return maxLevel_; } |
|
virtual void setMaxLevel(int maxLevel) { maxLevel_ = maxLevel; } |
|
|
|
virtual int getNumIters() const { return iters_; } |
|
virtual void setNumIters(int iters) { iters_ = iters; } |
|
|
|
virtual bool getUseInitialFlow() const { return useInitialFlow_; } |
|
virtual void setUseInitialFlow(bool useInitialFlow) { useInitialFlow_ = useInitialFlow; } |
|
|
|
virtual void calc(InputArray _prevImg, InputArray _nextImg, |
|
InputArray _prevPts, InputOutputArray _nextPts, |
|
OutputArray _status, |
|
OutputArray _err, |
|
Stream& stream) |
|
{ |
|
const GpuMat prevPts = _prevPts.getGpuMat(); |
|
GpuMat& nextPts = _nextPts.getGpuMatRef(); |
|
GpuMat& status = _status.getGpuMatRef(); |
|
GpuMat* err = _err.needed() ? &(_err.getGpuMatRef()) : NULL; |
|
if (_prevImg.kind() == _InputArray::STD_VECTOR_CUDA_GPU_MAT && _prevImg.kind() == _InputArray::STD_VECTOR_CUDA_GPU_MAT) |
|
{ |
|
std::vector<GpuMat> prevPyr, nextPyr; |
|
_prevImg.getGpuMatVector(prevPyr); |
|
_nextImg.getGpuMatVector(nextPyr); |
|
sparse(prevPyr, nextPyr, prevPts, nextPts, status, err, stream); |
|
} |
|
else |
|
{ |
|
const GpuMat prevImg = _prevImg.getGpuMat(); |
|
const GpuMat nextImg = _nextImg.getGpuMat(); |
|
sparse(prevImg, nextImg, prevPts, nextPts, status, err, stream); |
|
} |
|
} |
|
}; |
|
|
|
class DensePyrLKOpticalFlowImpl : public DensePyrLKOpticalFlow, private PyrLKOpticalFlowBase |
|
{ |
|
public: |
|
DensePyrLKOpticalFlowImpl(Size winSize, int maxLevel, int iters, bool useInitialFlow) : |
|
PyrLKOpticalFlowBase(winSize, maxLevel, iters, useInitialFlow) |
|
{ |
|
} |
|
|
|
virtual Size getWinSize() const { return winSize_; } |
|
virtual void setWinSize(Size winSize) { winSize_ = winSize; } |
|
|
|
virtual int getMaxLevel() const { return maxLevel_; } |
|
virtual void setMaxLevel(int maxLevel) { maxLevel_ = maxLevel; } |
|
|
|
virtual int getNumIters() const { return iters_; } |
|
virtual void setNumIters(int iters) { iters_ = iters; } |
|
|
|
virtual bool getUseInitialFlow() const { return useInitialFlow_; } |
|
virtual void setUseInitialFlow(bool useInitialFlow) { useInitialFlow_ = useInitialFlow; } |
|
|
|
virtual void calc(InputArray _prevImg, InputArray _nextImg, InputOutputArray _flow, Stream& stream) |
|
{ |
|
const GpuMat prevImg = _prevImg.getGpuMat(); |
|
const GpuMat nextImg = _nextImg.getGpuMat(); |
|
|
|
BufferPool pool(stream); |
|
GpuMat u = pool.getBuffer(prevImg.size(), CV_32FC1); |
|
GpuMat v = pool.getBuffer(prevImg.size(), CV_32FC1); |
|
|
|
dense(prevImg, nextImg, u, v, stream); |
|
|
|
GpuMat flows[] = {u, v}; |
|
cuda::merge(flows, 2, _flow, stream); |
|
} |
|
}; |
|
} |
|
|
|
Ptr<SparsePyrLKOpticalFlow> cv::cuda::SparsePyrLKOpticalFlow::create(Size winSize, int maxLevel, int iters, bool useInitialFlow) |
|
{ |
|
return makePtr<SparsePyrLKOpticalFlowImpl>(winSize, maxLevel, iters, useInitialFlow); |
|
} |
|
|
|
Ptr<DensePyrLKOpticalFlow> cv::cuda::DensePyrLKOpticalFlow::create(Size winSize, int maxLevel, int iters, bool useInitialFlow) |
|
{ |
|
return makePtr<DensePyrLKOpticalFlowImpl>(winSize, maxLevel, iters, useInitialFlow); |
|
} |
|
|
|
#endif /* !defined (HAVE_CUDA) */ |