mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
382 lines
13 KiB
382 lines
13 KiB
/** |
|
* @file yolo_detector.cpp |
|
* @brief Yolo Object Detection Sample |
|
* @author OpenCV team |
|
*/ |
|
|
|
//![includes] |
|
#include <opencv2/dnn.hpp> |
|
#include <opencv2/imgproc.hpp> |
|
#include <opencv2/imgcodecs.hpp> |
|
#include <fstream> |
|
#include <sstream> |
|
#include "iostream" |
|
#include "common.hpp" |
|
#include <opencv2/highgui.hpp> |
|
//![includes] |
|
|
|
using namespace cv; |
|
using namespace cv::dnn; |
|
|
|
void getClasses(std::string classesFile); |
|
void drawPrediction(int classId, float conf, int left, int top, int right, int bottom, Mat& frame); |
|
void yoloPostProcessing( |
|
std::vector<Mat>& outs, |
|
std::vector<int>& keep_classIds, |
|
std::vector<float>& keep_confidences, |
|
std::vector<Rect2d>& keep_boxes, |
|
float conf_threshold, |
|
float iou_threshold, |
|
const std::string& model_name, |
|
const int nc |
|
); |
|
|
|
std::vector<std::string> classes; |
|
|
|
|
|
std::string keys = |
|
"{ help h | | Print help message. }" |
|
"{ device | 0 | camera device number. }" |
|
"{ model | onnx/models/yolox_s_inf_decoder.onnx | Default model. }" |
|
"{ yolo | yolox | yolo model version. }" |
|
"{ input i | | Path to input image or video file. Skip this argument to capture frames from a camera. }" |
|
"{ classes | | Optional path to a text file with names of classes to label detected objects. }" |
|
"{ nc | 80 | Number of classes. Default is 80 (coming from COCO dataset). }" |
|
"{ thr | .5 | Confidence threshold. }" |
|
"{ nms | .4 | Non-maximum suppression threshold. }" |
|
"{ mean | 0.0 | Normalization constant. }" |
|
"{ scale | 1.0 | Preprocess input image by multiplying on a scale factor. }" |
|
"{ width | 640 | Preprocess input image by resizing to a specific width. }" |
|
"{ height | 640 | Preprocess input image by resizing to a specific height. }" |
|
"{ rgb | 1 | Indicate that model works with RGB input images instead BGR ones. }" |
|
"{ padvalue | 114.0 | padding value. }" |
|
"{ paddingmode | 2 | Choose one of computation backends: " |
|
"0: resize to required input size without extra processing, " |
|
"1: Image will be cropped after resize, " |
|
"2: Resize image to the desired size while preserving the aspect ratio of original image }" |
|
"{ backend | 0 | Choose one of computation backends: " |
|
"0: automatically (by default), " |
|
"1: Halide language (http://halide-lang.org/), " |
|
"2: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), " |
|
"3: OpenCV implementation, " |
|
"4: VKCOM, " |
|
"5: CUDA }" |
|
"{ target | 0 | Choose one of target computation devices: " |
|
"0: CPU target (by default), " |
|
"1: OpenCL, " |
|
"2: OpenCL fp16 (half-float precision), " |
|
"3: VPU, " |
|
"4: Vulkan, " |
|
"6: CUDA, " |
|
"7: CUDA fp16 (half-float preprocess) }" |
|
"{ async | 0 | Number of asynchronous forwards at the same time. " |
|
"Choose 0 for synchronous mode }"; |
|
|
|
void getClasses(std::string classesFile) |
|
{ |
|
std::ifstream ifs(classesFile.c_str()); |
|
if (!ifs.is_open()) |
|
CV_Error(Error::StsError, "File " + classesFile + " not found"); |
|
std::string line; |
|
while (std::getline(ifs, line)) |
|
classes.push_back(line); |
|
} |
|
|
|
void drawPrediction(int classId, float conf, int left, int top, int right, int bottom, Mat& frame) |
|
{ |
|
rectangle(frame, Point(left, top), Point(right, bottom), Scalar(0, 255, 0)); |
|
|
|
std::string label = format("%.2f", conf); |
|
if (!classes.empty()) |
|
{ |
|
CV_Assert(classId < (int)classes.size()); |
|
label = classes[classId] + ": " + label; |
|
} |
|
|
|
int baseLine; |
|
Size labelSize = getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine); |
|
|
|
top = max(top, labelSize.height); |
|
rectangle(frame, Point(left, top - labelSize.height), |
|
Point(left + labelSize.width, top + baseLine), Scalar::all(255), FILLED); |
|
putText(frame, label, Point(left, top), FONT_HERSHEY_SIMPLEX, 0.5, Scalar()); |
|
} |
|
|
|
void yoloPostProcessing( |
|
std::vector<Mat>& outs, |
|
std::vector<int>& keep_classIds, |
|
std::vector<float>& keep_confidences, |
|
std::vector<Rect2d>& keep_boxes, |
|
float conf_threshold, |
|
float iou_threshold, |
|
const std::string& model_name, |
|
const int nc=80) |
|
{ |
|
// Retrieve |
|
std::vector<int> classIds; |
|
std::vector<float> confidences; |
|
std::vector<Rect2d> boxes; |
|
|
|
if (model_name == "yolov8" || model_name == "yolov10" || |
|
model_name == "yolov9") |
|
{ |
|
cv::transposeND(outs[0], {0, 2, 1}, outs[0]); |
|
} |
|
|
|
if (model_name == "yolonas") |
|
{ |
|
// outs contains 2 elemets of shape [1, 8400, 80] and [1, 8400, 4]. Concat them to get [1, 8400, 84] |
|
Mat concat_out; |
|
// squeeze the first dimension |
|
outs[0] = outs[0].reshape(1, outs[0].size[1]); |
|
outs[1] = outs[1].reshape(1, outs[1].size[1]); |
|
cv::hconcat(outs[1], outs[0], concat_out); |
|
outs[0] = concat_out; |
|
// remove the second element |
|
outs.pop_back(); |
|
// unsqueeze the first dimension |
|
outs[0] = outs[0].reshape(0, std::vector<int>{1, 8400, nc + 4}); |
|
} |
|
|
|
// assert if last dim is 85 or 84 |
|
CV_CheckEQ(outs[0].dims, 3, "Invalid output shape. The shape should be [1, #anchors, 85 or 84]"); |
|
CV_CheckEQ((outs[0].size[2] == nc + 5 || outs[0].size[2] == 80 + 4), true, "Invalid output shape: "); |
|
|
|
for (auto preds : outs) |
|
{ |
|
preds = preds.reshape(1, preds.size[1]); // [1, 8400, 85] -> [8400, 85] |
|
for (int i = 0; i < preds.rows; ++i) |
|
{ |
|
// filter out non object |
|
float obj_conf = (model_name == "yolov8" || model_name == "yolonas" || |
|
model_name == "yolov9" || model_name == "yolov10") ? 1.0f : preds.at<float>(i, 4) ; |
|
if (obj_conf < conf_threshold) |
|
continue; |
|
|
|
Mat scores = preds.row(i).colRange((model_name == "yolov8" || model_name == "yolonas" || model_name == "yolov9" || model_name == "yolov10") ? 4 : 5, preds.cols); |
|
double conf; |
|
Point maxLoc; |
|
minMaxLoc(scores, 0, &conf, 0, &maxLoc); |
|
|
|
conf = (model_name == "yolov8" || model_name == "yolonas" || model_name == "yolov9" || model_name == "yolov10") ? conf : conf * obj_conf; |
|
if (conf < conf_threshold) |
|
continue; |
|
|
|
// get bbox coords |
|
float* det = preds.ptr<float>(i); |
|
double cx = det[0]; |
|
double cy = det[1]; |
|
double w = det[2]; |
|
double h = det[3]; |
|
|
|
// [x1, y1, x2, y2] |
|
if (model_name == "yolonas" || model_name == "yolov10"){ |
|
boxes.push_back(Rect2d(cx, cy, w, h)); |
|
} else { |
|
boxes.push_back(Rect2d(cx - 0.5 * w, cy - 0.5 * h, |
|
cx + 0.5 * w, cy + 0.5 * h)); |
|
} |
|
classIds.push_back(maxLoc.x); |
|
confidences.push_back(static_cast<float>(conf)); |
|
} |
|
} |
|
|
|
// NMS |
|
std::vector<int> keep_idx; |
|
NMSBoxes(boxes, confidences, conf_threshold, iou_threshold, keep_idx); |
|
|
|
for (auto i : keep_idx) |
|
{ |
|
keep_classIds.push_back(classIds[i]); |
|
keep_confidences.push_back(confidences[i]); |
|
keep_boxes.push_back(boxes[i]); |
|
} |
|
} |
|
|
|
/** |
|
* @function main |
|
* @brief Main function |
|
*/ |
|
int main(int argc, char** argv) |
|
{ |
|
CommandLineParser parser(argc, argv, keys); |
|
parser.about("Use this script to run object detection deep learning networks using OpenCV."); |
|
if (parser.has("help")) |
|
{ |
|
parser.printMessage(); |
|
return 0; |
|
} |
|
|
|
CV_Assert(parser.has("model")); |
|
CV_Assert(parser.has("yolo")); |
|
// if model is default, use findFile to get the full path otherwise use the given path |
|
std::string weightPath = findFile(parser.get<String>("model")); |
|
std::string yolo_model = parser.get<String>("yolo"); |
|
int nc = parser.get<int>("nc"); |
|
|
|
float confThreshold = parser.get<float>("thr"); |
|
float nmsThreshold = parser.get<float>("nms"); |
|
//![preprocess_params] |
|
float paddingValue = parser.get<float>("padvalue"); |
|
bool swapRB = parser.get<bool>("rgb"); |
|
int inpWidth = parser.get<int>("width"); |
|
int inpHeight = parser.get<int>("height"); |
|
Scalar scale = parser.get<float>("scale"); |
|
Scalar mean = parser.get<Scalar>("mean"); |
|
ImagePaddingMode paddingMode = static_cast<ImagePaddingMode>(parser.get<int>("paddingmode")); |
|
//![preprocess_params] |
|
|
|
// check if yolo model is valid |
|
if (yolo_model != "yolov5" && yolo_model != "yolov6" |
|
&& yolo_model != "yolov7" && yolo_model != "yolov8" |
|
&& yolo_model != "yolov10" && yolo_model !="yolov9" |
|
&& yolo_model != "yolox" && yolo_model != "yolonas") |
|
CV_Error(Error::StsError, "Invalid yolo model: " + yolo_model); |
|
|
|
// get classes |
|
if (parser.has("classes")) |
|
{ |
|
getClasses(findFile(parser.get<String>("classes"))); |
|
} |
|
|
|
// load model |
|
//![read_net] |
|
Net net = readNet(weightPath); |
|
int backend = parser.get<int>("backend"); |
|
net.setPreferableBackend(backend); |
|
net.setPreferableTarget(parser.get<int>("target")); |
|
//![read_net] |
|
|
|
VideoCapture cap; |
|
Mat img; |
|
bool isImage = false; |
|
bool isCamera = false; |
|
|
|
// Check if input is given |
|
if (parser.has("input")) |
|
{ |
|
String input = parser.get<String>("input"); |
|
// Check if the input is an image |
|
if (input.find(".jpg") != String::npos || input.find(".png") != String::npos) |
|
{ |
|
img = imread(findFile(input)); |
|
if (img.empty()) |
|
{ |
|
CV_Error(Error::StsError, "Cannot read image file: " + input); |
|
} |
|
isImage = true; |
|
} |
|
else |
|
{ |
|
cap.open(input); |
|
if (!cap.isOpened()) |
|
{ |
|
CV_Error(Error::StsError, "Cannot open video " + input); |
|
} |
|
isCamera = true; |
|
} |
|
} |
|
else |
|
{ |
|
int cameraIndex = parser.get<int>("device"); |
|
cap.open(cameraIndex); |
|
if (!cap.isOpened()) |
|
{ |
|
CV_Error(Error::StsError, cv::format("Cannot open camera #%d", cameraIndex)); |
|
} |
|
isCamera = true; |
|
} |
|
|
|
// image pre-processing |
|
//![preprocess_call] |
|
Size size(inpWidth, inpHeight); |
|
Image2BlobParams imgParams( |
|
scale, |
|
size, |
|
mean, |
|
swapRB, |
|
CV_32F, |
|
DNN_LAYOUT_NCHW, |
|
paddingMode, |
|
paddingValue); |
|
|
|
// rescale boxes back to original image |
|
Image2BlobParams paramNet; |
|
paramNet.scalefactor = scale; |
|
paramNet.size = size; |
|
paramNet.mean = mean; |
|
paramNet.swapRB = swapRB; |
|
paramNet.paddingmode = paddingMode; |
|
//![preprocess_call] |
|
|
|
//![forward_buffers] |
|
std::vector<Mat> outs; |
|
std::vector<int> keep_classIds; |
|
std::vector<float> keep_confidences; |
|
std::vector<Rect2d> keep_boxes; |
|
std::vector<Rect> boxes; |
|
//![forward_buffers] |
|
|
|
Mat inp; |
|
while (waitKey(1) < 0) |
|
{ |
|
|
|
if (isCamera) |
|
cap >> img; |
|
if (img.empty()) |
|
{ |
|
std::cout << "Empty frame" << std::endl; |
|
waitKey(); |
|
break; |
|
} |
|
//![preprocess_call_func] |
|
inp = blobFromImageWithParams(img, imgParams); |
|
//![preprocess_call_func] |
|
|
|
//![forward] |
|
net.setInput(inp); |
|
net.forward(outs, net.getUnconnectedOutLayersNames()); |
|
//![forward] |
|
|
|
//![postprocess] |
|
yoloPostProcessing( |
|
outs, keep_classIds, keep_confidences, keep_boxes, |
|
confThreshold, nmsThreshold, |
|
yolo_model, |
|
nc); |
|
//![postprocess] |
|
|
|
// covert Rect2d to Rect |
|
//![draw_boxes] |
|
for (auto box : keep_boxes) |
|
{ |
|
boxes.push_back(Rect(cvFloor(box.x), cvFloor(box.y), cvFloor(box.width - box.x), cvFloor(box.height - box.y))); |
|
} |
|
|
|
paramNet.blobRectsToImageRects(boxes, boxes, img.size()); |
|
|
|
for (size_t idx = 0; idx < boxes.size(); ++idx) |
|
{ |
|
Rect box = boxes[idx]; |
|
drawPrediction(keep_classIds[idx], keep_confidences[idx], box.x, box.y, |
|
box.width + box.x, box.height + box.y, img); |
|
} |
|
|
|
const std::string kWinName = "Yolo Object Detector"; |
|
namedWindow(kWinName, WINDOW_NORMAL); |
|
imshow(kWinName, img); |
|
//![draw_boxes] |
|
|
|
outs.clear(); |
|
keep_classIds.clear(); |
|
keep_confidences.clear(); |
|
keep_boxes.clear(); |
|
boxes.clear(); |
|
|
|
if (isImage) |
|
{ |
|
waitKey(); |
|
break; |
|
} |
|
} |
|
}
|
|
|