mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1373 lines
40 KiB
1373 lines
40 KiB
|
|
#include "precomp.hpp" |
|
#include <time.h> |
|
|
|
#if 0 |
|
|
|
#define pCvSeq CvSeq* |
|
#define pCvDTreeNode CvDTreeNode* |
|
|
|
//=========================================================================== |
|
//----------------------------- CvGBTreesParams ----------------------------- |
|
//=========================================================================== |
|
|
|
CvGBTreesParams::CvGBTreesParams() |
|
: CvDTreeParams( 3, 10, 0, false, 10, 0, false, false, 0 ) |
|
{ |
|
weak_count = 200; |
|
loss_function_type = CvGBTrees::SQUARED_LOSS; |
|
subsample_portion = 0.8f; |
|
shrinkage = 0.01f; |
|
} |
|
|
|
//=========================================================================== |
|
|
|
CvGBTreesParams::CvGBTreesParams( int _loss_function_type, int _weak_count, |
|
float _shrinkage, float _subsample_portion, |
|
int _max_depth, bool _use_surrogates ) |
|
: CvDTreeParams( 3, 10, 0, false, 10, 0, false, false, 0 ) |
|
{ |
|
loss_function_type = _loss_function_type; |
|
weak_count = _weak_count; |
|
shrinkage = _shrinkage; |
|
subsample_portion = _subsample_portion; |
|
max_depth = _max_depth; |
|
use_surrogates = _use_surrogates; |
|
} |
|
|
|
//=========================================================================== |
|
//------------------------------- CvGBTrees --------------------------------- |
|
//=========================================================================== |
|
|
|
CvGBTrees::CvGBTrees() |
|
{ |
|
data = 0; |
|
weak = 0; |
|
default_model_name = "my_boost_tree"; |
|
orig_response = sum_response = sum_response_tmp = 0; |
|
subsample_train = subsample_test = 0; |
|
missing = sample_idx = 0; |
|
class_labels = 0; |
|
class_count = 1; |
|
delta = 0.0f; |
|
|
|
clear(); |
|
} |
|
|
|
//=========================================================================== |
|
|
|
int CvGBTrees::get_len(const CvMat* mat) const |
|
{ |
|
return (mat->cols > mat->rows) ? mat->cols : mat->rows; |
|
} |
|
|
|
//=========================================================================== |
|
|
|
void CvGBTrees::clear() |
|
{ |
|
if( weak ) |
|
{ |
|
CvSeqReader reader; |
|
CvSlice slice = CV_WHOLE_SEQ; |
|
CvDTree* tree; |
|
|
|
//data->shared = false; |
|
for (int i=0; i<class_count; ++i) |
|
{ |
|
int weak_count = cvSliceLength( slice, weak[i] ); |
|
if ((weak[i]) && (weak_count)) |
|
{ |
|
cvStartReadSeq( weak[i], &reader ); |
|
cvSetSeqReaderPos( &reader, slice.start_index ); |
|
for (int j=0; j<weak_count; ++j) |
|
{ |
|
CV_READ_SEQ_ELEM( tree, reader ); |
|
//tree->clear(); |
|
delete tree; |
|
tree = 0; |
|
} |
|
} |
|
} |
|
for (int i=0; i<class_count; ++i) |
|
if (weak[i]) cvReleaseMemStorage( &(weak[i]->storage) ); |
|
delete[] weak; |
|
} |
|
if (data) |
|
{ |
|
data->shared = false; |
|
delete data; |
|
} |
|
weak = 0; |
|
data = 0; |
|
delta = 0.0f; |
|
cvReleaseMat( &orig_response ); |
|
cvReleaseMat( &sum_response ); |
|
cvReleaseMat( &sum_response_tmp ); |
|
cvReleaseMat( &subsample_train ); |
|
cvReleaseMat( &subsample_test ); |
|
cvReleaseMat( &sample_idx ); |
|
cvReleaseMat( &missing ); |
|
cvReleaseMat( &class_labels ); |
|
} |
|
|
|
//=========================================================================== |
|
|
|
CvGBTrees::~CvGBTrees() |
|
{ |
|
clear(); |
|
} |
|
|
|
//=========================================================================== |
|
|
|
CvGBTrees::CvGBTrees( const CvMat* _train_data, int _tflag, |
|
const CvMat* _responses, const CvMat* _var_idx, |
|
const CvMat* _sample_idx, const CvMat* _var_type, |
|
const CvMat* _missing_mask, CvGBTreesParams _params ) |
|
{ |
|
weak = 0; |
|
data = 0; |
|
default_model_name = "my_boost_tree"; |
|
orig_response = sum_response = sum_response_tmp = 0; |
|
subsample_train = subsample_test = 0; |
|
missing = sample_idx = 0; |
|
class_labels = 0; |
|
class_count = 1; |
|
delta = 0.0f; |
|
|
|
train( _train_data, _tflag, _responses, _var_idx, _sample_idx, |
|
_var_type, _missing_mask, _params ); |
|
} |
|
|
|
//=========================================================================== |
|
|
|
bool CvGBTrees::problem_type() const |
|
{ |
|
switch (params.loss_function_type) |
|
{ |
|
case DEVIANCE_LOSS: return false; |
|
default: return true; |
|
} |
|
} |
|
|
|
//=========================================================================== |
|
|
|
bool |
|
CvGBTrees::train( CvMLData* _data, CvGBTreesParams _params, bool update ) |
|
{ |
|
bool result; |
|
result = train ( _data->get_values(), CV_ROW_SAMPLE, |
|
_data->get_responses(), _data->get_var_idx(), |
|
_data->get_train_sample_idx(), _data->get_var_types(), |
|
_data->get_missing(), _params, update); |
|
//update is not supported |
|
return result; |
|
} |
|
|
|
//=========================================================================== |
|
|
|
|
|
bool |
|
CvGBTrees::train( const CvMat* _train_data, int _tflag, |
|
const CvMat* _responses, const CvMat* _var_idx, |
|
const CvMat* _sample_idx, const CvMat* _var_type, |
|
const CvMat* _missing_mask, |
|
CvGBTreesParams _params, bool /*_update*/ ) //update is not supported |
|
{ |
|
CvMemStorage* storage = 0; |
|
|
|
params = _params; |
|
bool is_regression = problem_type(); |
|
|
|
clear(); |
|
/* |
|
n - count of samples |
|
m - count of variables |
|
*/ |
|
int n = _train_data->rows; |
|
int m = _train_data->cols; |
|
if (_tflag != CV_ROW_SAMPLE) |
|
{ |
|
int tmp; |
|
CV_SWAP(n,m,tmp); |
|
} |
|
|
|
CvMat* new_responses = cvCreateMat( n, 1, CV_32F); |
|
cvZero(new_responses); |
|
|
|
data = new CvDTreeTrainData( _train_data, _tflag, new_responses, _var_idx, |
|
_sample_idx, _var_type, _missing_mask, _params, true, true ); |
|
if (_missing_mask) |
|
{ |
|
missing = cvCreateMat(_missing_mask->rows, _missing_mask->cols, |
|
_missing_mask->type); |
|
cvCopy( _missing_mask, missing); |
|
} |
|
|
|
orig_response = cvCreateMat( 1, n, CV_32F ); |
|
int step = (_responses->cols > _responses->rows) ? 1 : _responses->step / CV_ELEM_SIZE(_responses->type); |
|
switch (CV_MAT_TYPE(_responses->type)) |
|
{ |
|
case CV_32FC1: |
|
{ |
|
for (int i=0; i<n; ++i) |
|
orig_response->data.fl[i] = _responses->data.fl[i*step]; |
|
}; break; |
|
case CV_32SC1: |
|
{ |
|
for (int i=0; i<n; ++i) |
|
orig_response->data.fl[i] = (float) _responses->data.i[i*step]; |
|
}; break; |
|
default: |
|
CV_Error(CV_StsUnmatchedFormats, "Response should be a 32fC1 or 32sC1 vector."); |
|
} |
|
|
|
if (!is_regression) |
|
{ |
|
class_count = 0; |
|
unsigned char * mask = new unsigned char[n]; |
|
memset(mask, 0, n); |
|
// compute the count of different output classes |
|
for (int i=0; i<n; ++i) |
|
if (!mask[i]) |
|
{ |
|
class_count++; |
|
for (int j=i; j<n; ++j) |
|
if (int(orig_response->data.fl[j]) == int(orig_response->data.fl[i])) |
|
mask[j] = 1; |
|
} |
|
delete[] mask; |
|
|
|
class_labels = cvCreateMat(1, class_count, CV_32S); |
|
class_labels->data.i[0] = int(orig_response->data.fl[0]); |
|
int j = 1; |
|
for (int i=1; i<n; ++i) |
|
{ |
|
int k = 0; |
|
while ((k<j) && (int(orig_response->data.fl[i]) - class_labels->data.i[k])) |
|
k++; |
|
if (k == j) |
|
{ |
|
class_labels->data.i[k] = int(orig_response->data.fl[i]); |
|
j++; |
|
} |
|
} |
|
} |
|
|
|
// inside gbt learning process only regression decision trees are built |
|
data->is_classifier = false; |
|
|
|
// preproccessing sample indices |
|
if (_sample_idx) |
|
{ |
|
int sample_idx_len = get_len(_sample_idx); |
|
|
|
switch (CV_MAT_TYPE(_sample_idx->type)) |
|
{ |
|
case CV_32SC1: |
|
{ |
|
sample_idx = cvCreateMat( 1, sample_idx_len, CV_32S ); |
|
for (int i=0; i<sample_idx_len; ++i) |
|
sample_idx->data.i[i] = _sample_idx->data.i[i]; |
|
std::sort(sample_idx->data.i, sample_idx->data.i + sample_idx_len); |
|
} break; |
|
case CV_8S: |
|
case CV_8U: |
|
{ |
|
int active_samples_count = 0; |
|
for (int i=0; i<sample_idx_len; ++i) |
|
active_samples_count += int( _sample_idx->data.ptr[i] ); |
|
sample_idx = cvCreateMat( 1, active_samples_count, CV_32S ); |
|
active_samples_count = 0; |
|
for (int i=0; i<sample_idx_len; ++i) |
|
if (int( _sample_idx->data.ptr[i] )) |
|
sample_idx->data.i[active_samples_count++] = i; |
|
|
|
} break; |
|
default: CV_Error(CV_StsUnmatchedFormats, "_sample_idx should be a 32sC1, 8sC1 or 8uC1 vector."); |
|
} |
|
} |
|
else |
|
{ |
|
sample_idx = cvCreateMat( 1, n, CV_32S ); |
|
for (int i=0; i<n; ++i) |
|
sample_idx->data.i[i] = i; |
|
} |
|
|
|
sum_response = cvCreateMat(class_count, n, CV_32F); |
|
sum_response_tmp = cvCreateMat(class_count, n, CV_32F); |
|
cvZero(sum_response); |
|
|
|
delta = 0.0f; |
|
/* |
|
in the case of a regression problem the initial guess (the zero term |
|
in the sum) is set to the mean of all the training responses, that is |
|
the best constant model |
|
*/ |
|
if (is_regression) base_value = find_optimal_value(sample_idx); |
|
/* |
|
in the case of a classification problem the initial guess (the zero term |
|
in the sum) is set to zero for all the trees sequences |
|
*/ |
|
else base_value = 0.0f; |
|
/* |
|
current predicition on all training samples is set to be |
|
equal to the base_value |
|
*/ |
|
cvSet( sum_response, cvScalar(base_value) ); |
|
|
|
weak = new pCvSeq[class_count]; |
|
for (int i=0; i<class_count; ++i) |
|
{ |
|
storage = cvCreateMemStorage(); |
|
weak[i] = cvCreateSeq( 0, sizeof(CvSeq), sizeof(CvDTree*), storage ); |
|
storage = 0; |
|
} |
|
|
|
// subsample params and data |
|
rng = &cv::theRNG(); |
|
|
|
int samples_count = get_len(sample_idx); |
|
|
|
params.subsample_portion = params.subsample_portion <= FLT_EPSILON || |
|
1 - params.subsample_portion <= FLT_EPSILON |
|
? 1 : params.subsample_portion; |
|
int train_sample_count = cvFloor(params.subsample_portion * samples_count); |
|
if (train_sample_count == 0) |
|
train_sample_count = samples_count; |
|
int test_sample_count = samples_count - train_sample_count; |
|
int* idx_data = new int[samples_count]; |
|
subsample_train = cvCreateMatHeader( 1, train_sample_count, CV_32SC1 ); |
|
*subsample_train = cvMat( 1, train_sample_count, CV_32SC1, idx_data ); |
|
if (test_sample_count) |
|
{ |
|
subsample_test = cvCreateMatHeader( 1, test_sample_count, CV_32SC1 ); |
|
*subsample_test = cvMat( 1, test_sample_count, CV_32SC1, |
|
idx_data + train_sample_count ); |
|
} |
|
|
|
// training procedure |
|
|
|
for ( int i=0; i < params.weak_count; ++i ) |
|
{ |
|
do_subsample(); |
|
for ( int k=0; k < class_count; ++k ) |
|
{ |
|
find_gradient(k); |
|
CvDTree* tree = new CvDTree; |
|
tree->train( data, subsample_train ); |
|
change_values(tree, k); |
|
|
|
if (subsample_test) |
|
{ |
|
CvMat x; |
|
CvMat x_miss; |
|
int* sample_data = sample_idx->data.i; |
|
int* subsample_data = subsample_test->data.i; |
|
int s_step = (sample_idx->cols > sample_idx->rows) ? 1 |
|
: sample_idx->step/CV_ELEM_SIZE(sample_idx->type); |
|
for (int j=0; j<get_len(subsample_test); ++j) |
|
{ |
|
int idx = *(sample_data + subsample_data[j]*s_step); |
|
float res = 0.0f; |
|
if (_tflag == CV_ROW_SAMPLE) |
|
cvGetRow( data->train_data, &x, idx); |
|
else |
|
cvGetCol( data->train_data, &x, idx); |
|
|
|
if (missing) |
|
{ |
|
if (_tflag == CV_ROW_SAMPLE) |
|
cvGetRow( missing, &x_miss, idx); |
|
else |
|
cvGetCol( missing, &x_miss, idx); |
|
|
|
res = (float)tree->predict(&x, &x_miss)->value; |
|
} |
|
else |
|
{ |
|
res = (float)tree->predict(&x)->value; |
|
} |
|
sum_response_tmp->data.fl[idx + k*n] = |
|
sum_response->data.fl[idx + k*n] + |
|
params.shrinkage * res; |
|
} |
|
} |
|
|
|
cvSeqPush( weak[k], &tree ); |
|
tree = 0; |
|
} // k=0..class_count |
|
CvMat* tmp; |
|
tmp = sum_response_tmp; |
|
sum_response_tmp = sum_response; |
|
sum_response = tmp; |
|
tmp = 0; |
|
} // i=0..params.weak_count |
|
|
|
delete[] idx_data; |
|
cvReleaseMat(&new_responses); |
|
data->free_train_data(); |
|
|
|
return true; |
|
|
|
} // CvGBTrees::train(...) |
|
|
|
//=========================================================================== |
|
|
|
inline float Sign(float x) |
|
{ |
|
if (x<0.0f) return -1.0f; |
|
else if (x>0.0f) return 1.0f; |
|
return 0.0f; |
|
} |
|
|
|
//=========================================================================== |
|
|
|
void CvGBTrees::find_gradient(const int k) |
|
{ |
|
int* sample_data = sample_idx->data.i; |
|
int* subsample_data = subsample_train->data.i; |
|
float* grad_data = data->responses->data.fl; |
|
float* resp_data = orig_response->data.fl; |
|
float* current_data = sum_response->data.fl; |
|
|
|
switch (params.loss_function_type) |
|
// loss_function_type in |
|
// {SQUARED_LOSS, ABSOLUTE_LOSS, HUBER_LOSS, DEVIANCE_LOSS} |
|
{ |
|
case SQUARED_LOSS: |
|
{ |
|
for (int i=0; i<get_len(subsample_train); ++i) |
|
{ |
|
int s_step = (sample_idx->cols > sample_idx->rows) ? 1 |
|
: sample_idx->step/CV_ELEM_SIZE(sample_idx->type); |
|
int idx = *(sample_data + subsample_data[i]*s_step); |
|
grad_data[idx] = resp_data[idx] - current_data[idx]; |
|
} |
|
}; break; |
|
|
|
case ABSOLUTE_LOSS: |
|
{ |
|
for (int i=0; i<get_len(subsample_train); ++i) |
|
{ |
|
int s_step = (sample_idx->cols > sample_idx->rows) ? 1 |
|
: sample_idx->step/CV_ELEM_SIZE(sample_idx->type); |
|
int idx = *(sample_data + subsample_data[i]*s_step); |
|
grad_data[idx] = Sign(resp_data[idx] - current_data[idx]); |
|
} |
|
}; break; |
|
|
|
case HUBER_LOSS: |
|
{ |
|
float alpha = 0.2f; |
|
int n = get_len(subsample_train); |
|
int s_step = (sample_idx->cols > sample_idx->rows) ? 1 |
|
: sample_idx->step/CV_ELEM_SIZE(sample_idx->type); |
|
|
|
float* residuals = new float[n]; |
|
for (int i=0; i<n; ++i) |
|
{ |
|
int idx = *(sample_data + subsample_data[i]*s_step); |
|
residuals[i] = fabs(resp_data[idx] - current_data[idx]); |
|
} |
|
std::sort(residuals, residuals + n); |
|
|
|
delta = residuals[int(ceil(n*alpha))]; |
|
|
|
for (int i=0; i<n; ++i) |
|
{ |
|
int idx = *(sample_data + subsample_data[i]*s_step); |
|
float r = resp_data[idx] - current_data[idx]; |
|
grad_data[idx] = (fabs(r) > delta) ? delta*Sign(r) : r; |
|
} |
|
delete[] residuals; |
|
|
|
}; break; |
|
|
|
case DEVIANCE_LOSS: |
|
{ |
|
for (int i=0; i<get_len(subsample_train); ++i) |
|
{ |
|
double exp_fk = 0; |
|
double exp_sfi = 0; |
|
int s_step = (sample_idx->cols > sample_idx->rows) ? 1 |
|
: sample_idx->step/CV_ELEM_SIZE(sample_idx->type); |
|
int idx = *(sample_data + subsample_data[i]*s_step); |
|
|
|
for (int j=0; j<class_count; ++j) |
|
{ |
|
double res; |
|
res = current_data[idx + j*sum_response->cols]; |
|
res = exp(res); |
|
if (j == k) exp_fk = res; |
|
exp_sfi += res; |
|
} |
|
int orig_label = int(resp_data[idx]); |
|
/* |
|
grad_data[idx] = (float)(!(k-class_labels->data.i[orig_label]+1)) - |
|
(float)(exp_fk / exp_sfi); |
|
*/ |
|
int ensemble_label = 0; |
|
while (class_labels->data.i[ensemble_label] - orig_label) |
|
ensemble_label++; |
|
|
|
grad_data[idx] = (float)(!(k-ensemble_label)) - |
|
(float)(exp_fk / exp_sfi); |
|
} |
|
}; break; |
|
|
|
default: break; |
|
} |
|
|
|
} // CvGBTrees::find_gradient(...) |
|
|
|
//=========================================================================== |
|
|
|
void CvGBTrees::change_values(CvDTree* tree, const int _k) |
|
{ |
|
CvDTreeNode** predictions = new pCvDTreeNode[get_len(subsample_train)]; |
|
|
|
int* sample_data = sample_idx->data.i; |
|
int* subsample_data = subsample_train->data.i; |
|
int s_step = (sample_idx->cols > sample_idx->rows) ? 1 |
|
: sample_idx->step/CV_ELEM_SIZE(sample_idx->type); |
|
|
|
CvMat x; |
|
CvMat miss_x; |
|
|
|
for (int i=0; i<get_len(subsample_train); ++i) |
|
{ |
|
int idx = *(sample_data + subsample_data[i]*s_step); |
|
if (data->tflag == CV_ROW_SAMPLE) |
|
cvGetRow( data->train_data, &x, idx); |
|
else |
|
cvGetCol( data->train_data, &x, idx); |
|
|
|
if (missing) |
|
{ |
|
if (data->tflag == CV_ROW_SAMPLE) |
|
cvGetRow( missing, &miss_x, idx); |
|
else |
|
cvGetCol( missing, &miss_x, idx); |
|
|
|
predictions[i] = tree->predict(&x, &miss_x); |
|
} |
|
else |
|
predictions[i] = tree->predict(&x); |
|
} |
|
|
|
|
|
CvDTreeNode** leaves; |
|
int leaves_count = 0; |
|
leaves = GetLeaves( tree, leaves_count); |
|
|
|
for (int i=0; i<leaves_count; ++i) |
|
{ |
|
int samples_in_leaf = 0; |
|
for (int j=0; j<get_len(subsample_train); ++j) |
|
{ |
|
if (leaves[i] == predictions[j]) samples_in_leaf++; |
|
} |
|
|
|
if (!samples_in_leaf) // It should not be done anyways! but... |
|
{ |
|
leaves[i]->value = 0.0; |
|
continue; |
|
} |
|
|
|
CvMat* leaf_idx = cvCreateMat(1, samples_in_leaf, CV_32S); |
|
int* leaf_idx_data = leaf_idx->data.i; |
|
|
|
for (int j=0; j<get_len(subsample_train); ++j) |
|
{ |
|
int idx = *(sample_data + subsample_data[j]*s_step); |
|
if (leaves[i] == predictions[j]) |
|
*leaf_idx_data++ = idx; |
|
} |
|
|
|
float value = find_optimal_value(leaf_idx); |
|
leaves[i]->value = value; |
|
|
|
leaf_idx_data = leaf_idx->data.i; |
|
|
|
int len = sum_response_tmp->cols; |
|
for (int j=0; j<get_len(leaf_idx); ++j) |
|
{ |
|
int idx = leaf_idx_data[j]; |
|
sum_response_tmp->data.fl[idx + _k*len] = |
|
sum_response->data.fl[idx + _k*len] + |
|
params.shrinkage * value; |
|
} |
|
leaf_idx_data = 0; |
|
cvReleaseMat(&leaf_idx); |
|
} |
|
|
|
// releasing the memory |
|
for (int i=0; i<get_len(subsample_train); ++i) |
|
{ |
|
predictions[i] = 0; |
|
} |
|
delete[] predictions; |
|
|
|
for (int i=0; i<leaves_count; ++i) |
|
{ |
|
leaves[i] = 0; |
|
} |
|
delete[] leaves; |
|
|
|
} |
|
|
|
//=========================================================================== |
|
/* |
|
void CvGBTrees::change_values(CvDTree* tree, const int _k) |
|
{ |
|
|
|
CvDTreeNode** leaves; |
|
int leaves_count = 0; |
|
int offset = _k*sum_response_tmp->cols; |
|
CvMat leaf_idx; |
|
leaf_idx.rows = 1; |
|
|
|
leaves = GetLeaves( tree, leaves_count); |
|
|
|
for (int i=0; i<leaves_count; ++i) |
|
{ |
|
int n = leaves[i]->sample_count; |
|
int* leaf_idx_data = new int[n]; |
|
data->get_sample_indices(leaves[i], leaf_idx_data); |
|
//CvMat* leaf_idx = new CvMat(); |
|
//cvInitMatHeader(leaf_idx, n, 1, CV_32S, leaf_idx_data); |
|
leaf_idx.cols = n; |
|
leaf_idx.data.i = leaf_idx_data; |
|
|
|
float value = find_optimal_value(&leaf_idx); |
|
leaves[i]->value = value; |
|
float val = params.shrinkage * value; |
|
|
|
|
|
for (int j=0; j<n; ++j) |
|
{ |
|
int idx = leaf_idx_data[j] + offset; |
|
sum_response_tmp->data.fl[idx] = sum_response->data.fl[idx] + val; |
|
} |
|
//leaf_idx_data = 0; |
|
//cvReleaseMat(&leaf_idx); |
|
leaf_idx.data.i = 0; |
|
//delete leaf_idx; |
|
delete[] leaf_idx_data; |
|
} |
|
|
|
// releasing the memory |
|
for (int i=0; i<leaves_count; ++i) |
|
{ |
|
leaves[i] = 0; |
|
} |
|
delete[] leaves; |
|
|
|
} //change_values(...); |
|
*/ |
|
//=========================================================================== |
|
|
|
float CvGBTrees::find_optimal_value( const CvMat* _Idx ) |
|
{ |
|
|
|
double gamma = (double)0.0; |
|
|
|
int* idx = _Idx->data.i; |
|
float* resp_data = orig_response->data.fl; |
|
float* cur_data = sum_response->data.fl; |
|
int n = get_len(_Idx); |
|
|
|
switch (params.loss_function_type) |
|
// SQUARED_LOSS=0, ABSOLUTE_LOSS=1, HUBER_LOSS=3, DEVIANCE_LOSS=4 |
|
{ |
|
case SQUARED_LOSS: |
|
{ |
|
for (int i=0; i<n; ++i) |
|
gamma += resp_data[idx[i]] - cur_data[idx[i]]; |
|
gamma /= (double)n; |
|
}; break; |
|
|
|
case ABSOLUTE_LOSS: |
|
{ |
|
float* residuals = new float[n]; |
|
for (int i=0; i<n; ++i, ++idx) |
|
residuals[i] = (resp_data[*idx] - cur_data[*idx]); |
|
std::sort(residuals, residuals + n); |
|
if (n % 2) |
|
gamma = residuals[n/2]; |
|
else gamma = (residuals[n/2-1] + residuals[n/2]) / 2.0f; |
|
delete[] residuals; |
|
}; break; |
|
|
|
case HUBER_LOSS: |
|
{ |
|
float* residuals = new float[n]; |
|
for (int i=0; i<n; ++i, ++idx) |
|
residuals[i] = (resp_data[*idx] - cur_data[*idx]); |
|
std::sort(residuals, residuals + n); |
|
|
|
int n_half = n >> 1; |
|
float r_median = (n == n_half<<1) ? |
|
(residuals[n_half-1] + residuals[n_half]) / 2.0f : |
|
residuals[n_half]; |
|
|
|
for (int i=0; i<n; ++i) |
|
{ |
|
float dif = residuals[i] - r_median; |
|
gamma += (delta < fabs(dif)) ? Sign(dif)*delta : dif; |
|
} |
|
gamma /= (double)n; |
|
gamma += r_median; |
|
delete[] residuals; |
|
|
|
}; break; |
|
|
|
case DEVIANCE_LOSS: |
|
{ |
|
float* grad_data = data->responses->data.fl; |
|
double tmp1 = 0; |
|
double tmp2 = 0; |
|
double tmp = 0; |
|
for (int i=0; i<n; ++i) |
|
{ |
|
tmp = grad_data[idx[i]]; |
|
tmp1 += tmp; |
|
tmp2 += fabs(tmp)*(1-fabs(tmp)); |
|
}; |
|
if (tmp2 == 0) |
|
{ |
|
tmp2 = 1; |
|
} |
|
|
|
gamma = ((double)(class_count-1)) / (double)class_count * (tmp1/tmp2); |
|
}; break; |
|
|
|
default: break; |
|
} |
|
|
|
return float(gamma); |
|
|
|
} // CvGBTrees::find_optimal_value |
|
|
|
//=========================================================================== |
|
|
|
|
|
void CvGBTrees::leaves_get( CvDTreeNode** leaves, int& count, CvDTreeNode* node ) |
|
{ |
|
if (node->left != NULL) leaves_get(leaves, count, node->left); |
|
if (node->right != NULL) leaves_get(leaves, count, node->right); |
|
if ((node->left == NULL) && (node->right == NULL)) |
|
leaves[count++] = node; |
|
} |
|
|
|
//--------------------------------------------------------------------------- |
|
|
|
CvDTreeNode** CvGBTrees::GetLeaves( const CvDTree* dtree, int& len ) |
|
{ |
|
len = 0; |
|
CvDTreeNode** leaves = new pCvDTreeNode[(size_t)1 << params.max_depth]; |
|
leaves_get(leaves, len, const_cast<pCvDTreeNode>(dtree->get_root())); |
|
return leaves; |
|
} |
|
|
|
//=========================================================================== |
|
|
|
void CvGBTrees::do_subsample() |
|
{ |
|
|
|
int n = get_len(sample_idx); |
|
int* idx = subsample_train->data.i; |
|
|
|
for (int i = 0; i < n; i++ ) |
|
idx[i] = i; |
|
|
|
if (subsample_test) |
|
for (int i = 0; i < n; i++) |
|
{ |
|
int a = (*rng)(n); |
|
int b = (*rng)(n); |
|
int t; |
|
CV_SWAP( idx[a], idx[b], t ); |
|
} |
|
|
|
/* |
|
int n = get_len(sample_idx); |
|
if (subsample_train == 0) |
|
subsample_train = cvCreateMat(1, n, CV_32S); |
|
int* subsample_data = subsample_train->data.i; |
|
for (int i=0; i<n; ++i) |
|
subsample_data[i] = i; |
|
subsample_test = 0; |
|
*/ |
|
} |
|
|
|
//=========================================================================== |
|
|
|
float CvGBTrees::predict_serial( const CvMat* _sample, const CvMat* _missing, |
|
CvMat* weak_responses, CvSlice slice, int k) const |
|
{ |
|
float result = 0.0f; |
|
|
|
if (!weak) return 0.0f; |
|
|
|
CvSeqReader reader; |
|
int weak_count = cvSliceLength( slice, weak[class_count-1] ); |
|
CvDTree* tree; |
|
|
|
if (weak_responses) |
|
{ |
|
if (CV_MAT_TYPE(weak_responses->type) != CV_32F) |
|
return 0.0f; |
|
if ((k >= 0) && (k<class_count) && (weak_responses->rows != 1)) |
|
return 0.0f; |
|
if ((k == -1) && (weak_responses->rows != class_count)) |
|
return 0.0f; |
|
if (weak_responses->cols != weak_count) |
|
return 0.0f; |
|
} |
|
|
|
float* sum = new float[class_count]; |
|
memset(sum, 0, class_count*sizeof(float)); |
|
|
|
for (int i=0; i<class_count; ++i) |
|
{ |
|
if ((weak[i]) && (weak_count)) |
|
{ |
|
cvStartReadSeq( weak[i], &reader ); |
|
cvSetSeqReaderPos( &reader, slice.start_index ); |
|
for (int j=0; j<weak_count; ++j) |
|
{ |
|
CV_READ_SEQ_ELEM( tree, reader ); |
|
float p = (float)(tree->predict(_sample, _missing)->value); |
|
sum[i] += params.shrinkage * p; |
|
if (weak_responses) |
|
weak_responses->data.fl[i*weak_count+j] = p; |
|
} |
|
} |
|
} |
|
|
|
for (int i=0; i<class_count; ++i) |
|
sum[i] += base_value; |
|
|
|
if (class_count == 1) |
|
{ |
|
result = sum[0]; |
|
delete[] sum; |
|
return result; |
|
} |
|
|
|
if ((k>=0) && (k<class_count)) |
|
{ |
|
result = sum[k]; |
|
delete[] sum; |
|
return result; |
|
} |
|
|
|
float max = sum[0]; |
|
int class_label = 0; |
|
for (int i=1; i<class_count; ++i) |
|
if (sum[i] > max) |
|
{ |
|
max = sum[i]; |
|
class_label = i; |
|
} |
|
|
|
delete[] sum; |
|
|
|
/* |
|
int orig_class_label = -1; |
|
for (int i=0; i<get_len(class_labels); ++i) |
|
if (class_labels->data.i[i] == class_label+1) |
|
orig_class_label = i; |
|
*/ |
|
int orig_class_label = class_labels->data.i[class_label]; |
|
|
|
return float(orig_class_label); |
|
} |
|
|
|
|
|
class Tree_predictor : public cv::ParallelLoopBody |
|
{ |
|
private: |
|
pCvSeq* weak; |
|
float* sum; |
|
const int k; |
|
const CvMat* sample; |
|
const CvMat* missing; |
|
const float shrinkage; |
|
|
|
static cv::Mutex SumMutex; |
|
|
|
|
|
public: |
|
Tree_predictor() : weak(0), sum(0), k(0), sample(0), missing(0), shrinkage(1.0f) {} |
|
Tree_predictor(pCvSeq* _weak, const int _k, const float _shrinkage, |
|
const CvMat* _sample, const CvMat* _missing, float* _sum ) : |
|
weak(_weak), sum(_sum), k(_k), sample(_sample), |
|
missing(_missing), shrinkage(_shrinkage) |
|
{} |
|
|
|
Tree_predictor( const Tree_predictor& p, cv::Split ) : |
|
weak(p.weak), sum(p.sum), k(p.k), sample(p.sample), |
|
missing(p.missing), shrinkage(p.shrinkage) |
|
{} |
|
|
|
Tree_predictor& operator=( const Tree_predictor& ) |
|
{ return *this; } |
|
|
|
virtual void operator()(const cv::Range& range) const |
|
{ |
|
CvSeqReader reader; |
|
int begin = range.start; |
|
int end = range.end; |
|
|
|
int weak_count = end - begin; |
|
CvDTree* tree; |
|
|
|
for (int i=0; i<k; ++i) |
|
{ |
|
float tmp_sum = 0.0f; |
|
if ((weak[i]) && (weak_count)) |
|
{ |
|
cvStartReadSeq( weak[i], &reader ); |
|
cvSetSeqReaderPos( &reader, begin ); |
|
for (int j=0; j<weak_count; ++j) |
|
{ |
|
CV_READ_SEQ_ELEM( tree, reader ); |
|
tmp_sum += shrinkage*(float)(tree->predict(sample, missing)->value); |
|
} |
|
} |
|
|
|
{ |
|
cv::AutoLock lock(SumMutex); |
|
sum[i] += tmp_sum; |
|
} |
|
} |
|
} // Tree_predictor::operator() |
|
|
|
virtual ~Tree_predictor() {} |
|
|
|
}; // class Tree_predictor |
|
|
|
cv::Mutex Tree_predictor::SumMutex; |
|
|
|
|
|
float CvGBTrees::predict( const CvMat* _sample, const CvMat* _missing, |
|
CvMat* /*weak_responses*/, CvSlice slice, int k) const |
|
{ |
|
float result = 0.0f; |
|
if (!weak) return 0.0f; |
|
float* sum = new float[class_count]; |
|
for (int i=0; i<class_count; ++i) |
|
sum[i] = 0.0f; |
|
int begin = slice.start_index; |
|
int end = begin + cvSliceLength( slice, weak[0] ); |
|
|
|
pCvSeq* weak_seq = weak; |
|
Tree_predictor predictor = Tree_predictor(weak_seq, class_count, |
|
params.shrinkage, _sample, _missing, sum); |
|
|
|
cv::parallel_for_(cv::Range(begin, end), predictor); |
|
|
|
for (int i=0; i<class_count; ++i) |
|
sum[i] = sum[i] /** params.shrinkage*/ + base_value; |
|
|
|
if (class_count == 1) |
|
{ |
|
result = sum[0]; |
|
delete[] sum; |
|
return result; |
|
} |
|
|
|
if ((k>=0) && (k<class_count)) |
|
{ |
|
result = sum[k]; |
|
delete[] sum; |
|
return result; |
|
} |
|
|
|
float max = sum[0]; |
|
int class_label = 0; |
|
for (int i=1; i<class_count; ++i) |
|
if (sum[i] > max) |
|
{ |
|
max = sum[i]; |
|
class_label = i; |
|
} |
|
|
|
delete[] sum; |
|
int orig_class_label = class_labels->data.i[class_label]; |
|
|
|
return float(orig_class_label); |
|
} |
|
|
|
|
|
//=========================================================================== |
|
|
|
void CvGBTrees::write_params( CvFileStorage* fs ) const |
|
{ |
|
const char* loss_function_type_str = |
|
params.loss_function_type == SQUARED_LOSS ? "SquaredLoss" : |
|
params.loss_function_type == ABSOLUTE_LOSS ? "AbsoluteLoss" : |
|
params.loss_function_type == HUBER_LOSS ? "HuberLoss" : |
|
params.loss_function_type == DEVIANCE_LOSS ? "DevianceLoss" : 0; |
|
|
|
|
|
if( loss_function_type_str ) |
|
cvWriteString( fs, "loss_function", loss_function_type_str ); |
|
else |
|
cvWriteInt( fs, "loss_function", params.loss_function_type ); |
|
|
|
cvWriteInt( fs, "ensemble_length", params.weak_count ); |
|
cvWriteReal( fs, "shrinkage", params.shrinkage ); |
|
cvWriteReal( fs, "subsample_portion", params.subsample_portion ); |
|
//cvWriteInt( fs, "max_tree_depth", params.max_depth ); |
|
//cvWriteString( fs, "use_surrogate_splits", params.use_surrogates ? "true" : "false"); |
|
if (class_labels) cvWrite( fs, "class_labels", class_labels); |
|
|
|
data->is_classifier = !problem_type(); |
|
data->write_params( fs ); |
|
data->is_classifier = 0; |
|
} |
|
|
|
|
|
//=========================================================================== |
|
|
|
void CvGBTrees::read_params( CvFileStorage* fs, CvFileNode* fnode ) |
|
{ |
|
CV_FUNCNAME( "CvGBTrees::read_params" ); |
|
__BEGIN__; |
|
|
|
|
|
CvFileNode* temp; |
|
|
|
if( !fnode || !CV_NODE_IS_MAP(fnode->tag) ) |
|
return; |
|
|
|
data = new CvDTreeTrainData(); |
|
CV_CALL( data->read_params(fs, fnode)); |
|
data->shared = true; |
|
|
|
params.max_depth = data->params.max_depth; |
|
params.min_sample_count = data->params.min_sample_count; |
|
params.max_categories = data->params.max_categories; |
|
params.priors = data->params.priors; |
|
params.regression_accuracy = data->params.regression_accuracy; |
|
params.use_surrogates = data->params.use_surrogates; |
|
|
|
temp = cvGetFileNodeByName( fs, fnode, "loss_function" ); |
|
if( !temp ) |
|
EXIT; |
|
|
|
if( temp && CV_NODE_IS_STRING(temp->tag) ) |
|
{ |
|
const char* loss_function_type_str = cvReadString( temp, "" ); |
|
params.loss_function_type = strcmp( loss_function_type_str, "SquaredLoss" ) == 0 ? SQUARED_LOSS : |
|
strcmp( loss_function_type_str, "AbsoluteLoss" ) == 0 ? ABSOLUTE_LOSS : |
|
strcmp( loss_function_type_str, "HuberLoss" ) == 0 ? HUBER_LOSS : |
|
strcmp( loss_function_type_str, "DevianceLoss" ) == 0 ? DEVIANCE_LOSS : -1; |
|
} |
|
else |
|
params.loss_function_type = cvReadInt( temp, -1 ); |
|
|
|
|
|
if( params.loss_function_type < SQUARED_LOSS || params.loss_function_type > DEVIANCE_LOSS || params.loss_function_type == 2) |
|
CV_ERROR( CV_StsBadArg, "Unknown loss function" ); |
|
|
|
params.weak_count = cvReadIntByName( fs, fnode, "ensemble_length" ); |
|
params.shrinkage = (float)cvReadRealByName( fs, fnode, "shrinkage", 0.1 ); |
|
params.subsample_portion = (float)cvReadRealByName( fs, fnode, "subsample_portion", 1.0 ); |
|
|
|
if (data->is_classifier) |
|
{ |
|
class_labels = (CvMat*)cvReadByName( fs, fnode, "class_labels" ); |
|
if( class_labels && !CV_IS_MAT(class_labels)) |
|
CV_ERROR( CV_StsParseError, "class_labels must stored as a matrix"); |
|
} |
|
data->is_classifier = 0; |
|
|
|
__END__; |
|
} |
|
|
|
|
|
|
|
|
|
void CvGBTrees::write( CvFileStorage* fs, const char* name ) const |
|
{ |
|
CV_FUNCNAME( "CvGBTrees::write" ); |
|
|
|
__BEGIN__; |
|
|
|
CvSeqReader reader; |
|
int i; |
|
cv::String s; |
|
|
|
cvStartWriteStruct( fs, name, CV_NODE_MAP, CV_TYPE_NAME_ML_GBT ); |
|
|
|
if( !weak ) |
|
CV_ERROR( CV_StsBadArg, "The model has not been trained yet" ); |
|
|
|
write_params( fs ); |
|
cvWriteReal( fs, "base_value", base_value); |
|
cvWriteInt( fs, "class_count", class_count); |
|
|
|
for ( int j=0; j < class_count; ++j ) |
|
{ |
|
s = cv::format("trees_%d", j); |
|
cvStartWriteStruct( fs, s.c_str(), CV_NODE_SEQ ); |
|
|
|
cvStartReadSeq( weak[j], &reader ); |
|
|
|
for( i = 0; i < weak[j]->total; i++ ) |
|
{ |
|
CvDTree* tree; |
|
CV_READ_SEQ_ELEM( tree, reader ); |
|
cvStartWriteStruct( fs, 0, CV_NODE_MAP ); |
|
tree->write( fs ); |
|
cvEndWriteStruct( fs ); |
|
} |
|
|
|
cvEndWriteStruct( fs ); |
|
} |
|
|
|
cvEndWriteStruct( fs ); |
|
|
|
__END__; |
|
} |
|
|
|
|
|
//=========================================================================== |
|
|
|
|
|
void CvGBTrees::read( CvFileStorage* fs, CvFileNode* node ) |
|
{ |
|
|
|
CV_FUNCNAME( "CvGBTrees::read" ); |
|
|
|
__BEGIN__; |
|
|
|
CvSeqReader reader; |
|
CvFileNode* trees_fnode; |
|
CvMemStorage* storage; |
|
int i, ntrees; |
|
cv::String s; |
|
|
|
clear(); |
|
read_params( fs, node ); |
|
|
|
if( !data ) |
|
EXIT; |
|
|
|
base_value = (float)cvReadRealByName( fs, node, "base_value", 0.0 ); |
|
class_count = cvReadIntByName( fs, node, "class_count", 1 ); |
|
|
|
weak = new pCvSeq[class_count]; |
|
|
|
|
|
for (int j=0; j<class_count; ++j) |
|
{ |
|
s = cv::format("trees_%d", j); |
|
|
|
trees_fnode = cvGetFileNodeByName( fs, node, s.c_str() ); |
|
if( !trees_fnode || !CV_NODE_IS_SEQ(trees_fnode->tag) ) |
|
CV_ERROR( CV_StsParseError, "<trees_x> tag is missing" ); |
|
|
|
cvStartReadSeq( trees_fnode->data.seq, &reader ); |
|
ntrees = trees_fnode->data.seq->total; |
|
|
|
if( ntrees != params.weak_count ) |
|
CV_ERROR( CV_StsUnmatchedSizes, |
|
"The number of trees stored does not match <ntrees> tag value" ); |
|
|
|
CV_CALL( storage = cvCreateMemStorage() ); |
|
weak[j] = cvCreateSeq( 0, sizeof(CvSeq), sizeof(CvDTree*), storage ); |
|
|
|
for( i = 0; i < ntrees; i++ ) |
|
{ |
|
CvDTree* tree = new CvDTree(); |
|
CV_CALL(tree->read( fs, (CvFileNode*)reader.ptr, data )); |
|
CV_NEXT_SEQ_ELEM( reader.seq->elem_size, reader ); |
|
cvSeqPush( weak[j], &tree ); |
|
} |
|
} |
|
|
|
__END__; |
|
} |
|
|
|
//=========================================================================== |
|
|
|
class Sample_predictor : public cv::ParallelLoopBody |
|
{ |
|
private: |
|
const CvGBTrees* gbt; |
|
float* predictions; |
|
const CvMat* samples; |
|
const CvMat* missing; |
|
const CvMat* idx; |
|
CvSlice slice; |
|
|
|
public: |
|
Sample_predictor() : gbt(0), predictions(0), samples(0), missing(0), |
|
idx(0), slice(CV_WHOLE_SEQ) |
|
{} |
|
|
|
Sample_predictor(const CvGBTrees* _gbt, float* _predictions, |
|
const CvMat* _samples, const CvMat* _missing, |
|
const CvMat* _idx, CvSlice _slice=CV_WHOLE_SEQ) : |
|
gbt(_gbt), predictions(_predictions), samples(_samples), |
|
missing(_missing), idx(_idx), slice(_slice) |
|
{} |
|
|
|
|
|
Sample_predictor( const Sample_predictor& p, cv::Split ) : |
|
gbt(p.gbt), predictions(p.predictions), |
|
samples(p.samples), missing(p.missing), idx(p.idx), |
|
slice(p.slice) |
|
{} |
|
|
|
|
|
virtual void operator()(const cv::Range& range) const |
|
{ |
|
int begin = range.start; |
|
int end = range.end; |
|
|
|
CvMat x; |
|
CvMat miss; |
|
|
|
for (int i=begin; i<end; ++i) |
|
{ |
|
int j = idx ? idx->data.i[i] : i; |
|
cvGetRow(samples, &x, j); |
|
if (!missing) |
|
{ |
|
predictions[i] = gbt->predict_serial(&x,0,0,slice); |
|
} |
|
else |
|
{ |
|
cvGetRow(missing, &miss, j); |
|
predictions[i] = gbt->predict_serial(&x,&miss,0,slice); |
|
} |
|
} |
|
} // Sample_predictor::operator() |
|
|
|
virtual ~Sample_predictor() {} |
|
|
|
}; // class Sample_predictor |
|
|
|
|
|
|
|
// type in {CV_TRAIN_ERROR, CV_TEST_ERROR} |
|
float |
|
CvGBTrees::calc_error( CvMLData* _data, int type, std::vector<float> *resp ) |
|
{ |
|
|
|
float err = 0.0f; |
|
const CvMat* _sample_idx = (type == CV_TRAIN_ERROR) ? |
|
_data->get_train_sample_idx() : |
|
_data->get_test_sample_idx(); |
|
const CvMat* response = _data->get_responses(); |
|
|
|
int n = _sample_idx ? get_len(_sample_idx) : 0; |
|
n = (type == CV_TRAIN_ERROR && n == 0) ? _data->get_values()->rows : n; |
|
|
|
if (!n) |
|
return -FLT_MAX; |
|
|
|
float* pred_resp = 0; |
|
bool needsFreeing = false; |
|
|
|
if (resp) |
|
{ |
|
resp->resize(n); |
|
pred_resp = &((*resp)[0]); |
|
} |
|
else |
|
{ |
|
pred_resp = new float[n]; |
|
needsFreeing = true; |
|
} |
|
|
|
Sample_predictor predictor = Sample_predictor(this, pred_resp, _data->get_values(), |
|
_data->get_missing(), _sample_idx); |
|
|
|
cv::parallel_for_(cv::Range(0,n), predictor); |
|
|
|
int* sidx = _sample_idx ? _sample_idx->data.i : 0; |
|
int r_step = CV_IS_MAT_CONT(response->type) ? |
|
1 : response->step / CV_ELEM_SIZE(response->type); |
|
|
|
|
|
if ( !problem_type() ) |
|
{ |
|
for( int i = 0; i < n; i++ ) |
|
{ |
|
int si = sidx ? sidx[i] : i; |
|
int d = fabs((double)pred_resp[i] - response->data.fl[si*r_step]) <= FLT_EPSILON ? 0 : 1; |
|
err += d; |
|
} |
|
err = err / (float)n * 100.0f; |
|
} |
|
else |
|
{ |
|
for( int i = 0; i < n; i++ ) |
|
{ |
|
int si = sidx ? sidx[i] : i; |
|
float d = pred_resp[i] - response->data.fl[si*r_step]; |
|
err += d*d; |
|
} |
|
err = err / (float)n; |
|
} |
|
|
|
if (needsFreeing) |
|
delete[]pred_resp; |
|
|
|
return err; |
|
} |
|
|
|
|
|
CvGBTrees::CvGBTrees( const cv::Mat& trainData, int tflag, |
|
const cv::Mat& responses, const cv::Mat& varIdx, |
|
const cv::Mat& sampleIdx, const cv::Mat& varType, |
|
const cv::Mat& missingDataMask, |
|
CvGBTreesParams _params ) |
|
{ |
|
data = 0; |
|
weak = 0; |
|
default_model_name = "my_boost_tree"; |
|
orig_response = sum_response = sum_response_tmp = 0; |
|
subsample_train = subsample_test = 0; |
|
missing = sample_idx = 0; |
|
class_labels = 0; |
|
class_count = 1; |
|
delta = 0.0f; |
|
|
|
clear(); |
|
|
|
train(trainData, tflag, responses, varIdx, sampleIdx, varType, missingDataMask, _params, false); |
|
} |
|
|
|
bool CvGBTrees::train( const cv::Mat& trainData, int tflag, |
|
const cv::Mat& responses, const cv::Mat& varIdx, |
|
const cv::Mat& sampleIdx, const cv::Mat& varType, |
|
const cv::Mat& missingDataMask, |
|
CvGBTreesParams _params, |
|
bool update ) |
|
{ |
|
CvMat _trainData = trainData, _responses = responses; |
|
CvMat _varIdx = varIdx, _sampleIdx = sampleIdx, _varType = varType; |
|
CvMat _missingDataMask = missingDataMask; |
|
|
|
return train( &_trainData, tflag, &_responses, varIdx.empty() ? 0 : &_varIdx, |
|
sampleIdx.empty() ? 0 : &_sampleIdx, varType.empty() ? 0 : &_varType, |
|
missingDataMask.empty() ? 0 : &_missingDataMask, _params, update); |
|
} |
|
|
|
float CvGBTrees::predict( const cv::Mat& sample, const cv::Mat& _missing, |
|
const cv::Range& slice, int k ) const |
|
{ |
|
CvMat _sample = sample, miss = _missing; |
|
return predict(&_sample, _missing.empty() ? 0 : &miss, 0, |
|
slice==cv::Range::all() ? CV_WHOLE_SEQ : cvSlice(slice.start, slice.end), k); |
|
} |
|
|
|
#endif
|
|
|