mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1435 lines
38 KiB
1435 lines
38 KiB
/////////////////////////////////////////////////////////////////////////// |
|
// |
|
// Copyright (c) 2002, Industrial Light & Magic, a division of Lucas |
|
// Digital Ltd. LLC |
|
// |
|
// All rights reserved. |
|
// |
|
// Redistribution and use in source and binary forms, with or without |
|
// modification, are permitted provided that the following conditions are |
|
// met: |
|
// * Redistributions of source code must retain the above copyright |
|
// notice, this list of conditions and the following disclaimer. |
|
// * Redistributions in binary form must reproduce the above |
|
// copyright notice, this list of conditions and the following disclaimer |
|
// in the documentation and/or other materials provided with the |
|
// distribution. |
|
// * Neither the name of Industrial Light & Magic nor the names of |
|
// its contributors may be used to endorse or promote products derived |
|
// from this software without specific prior written permission. |
|
// |
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
// |
|
/////////////////////////////////////////////////////////////////////////// |
|
|
|
|
|
#ifndef INCLUDED_IMATHMATRIXALGO_H |
|
#define INCLUDED_IMATHMATRIXALGO_H |
|
|
|
//------------------------------------------------------------------------- |
|
// |
|
// This file contains algorithms applied to or in conjunction with |
|
// transformation matrices (Imath::Matrix33 and Imath::Matrix44). |
|
// The assumption made is that these functions are called much less |
|
// often than the basic point functions or these functions require |
|
// more support classes. |
|
// |
|
// This file also defines a few predefined constant matrices. |
|
// |
|
//------------------------------------------------------------------------- |
|
|
|
#include "ImathMatrix.h" |
|
#include "ImathQuat.h" |
|
#include "ImathEuler.h" |
|
#include "ImathExc.h" |
|
#include "ImathVec.h" |
|
#include "ImathLimits.h" |
|
#include <math.h> |
|
|
|
|
|
#ifdef OPENEXR_DLL |
|
#ifdef IMATH_EXPORTS |
|
#define IMATH_EXPORT_CONST extern __declspec(dllexport) |
|
#else |
|
#define IMATH_EXPORT_CONST extern __declspec(dllimport) |
|
#endif |
|
#else |
|
#define IMATH_EXPORT_CONST extern const |
|
#endif |
|
|
|
|
|
namespace Imath { |
|
|
|
//------------------ |
|
// Identity matrices |
|
//------------------ |
|
|
|
IMATH_EXPORT_CONST M33f identity33f; |
|
IMATH_EXPORT_CONST M44f identity44f; |
|
IMATH_EXPORT_CONST M33d identity33d; |
|
IMATH_EXPORT_CONST M44d identity44d; |
|
|
|
//---------------------------------------------------------------------- |
|
// Extract scale, shear, rotation, and translation values from a matrix: |
|
// |
|
// Notes: |
|
// |
|
// This implementation follows the technique described in the paper by |
|
// Spencer W. Thomas in the Graphics Gems II article: "Decomposing a |
|
// Matrix into Simple Transformations", p. 320. |
|
// |
|
// - Some of the functions below have an optional exc parameter |
|
// that determines the functions' behavior when the matrix' |
|
// scaling is very close to zero: |
|
// |
|
// If exc is true, the functions throw an Imath::ZeroScale exception. |
|
// |
|
// If exc is false: |
|
// |
|
// extractScaling (m, s) returns false, s is invalid |
|
// sansScaling (m) returns m |
|
// removeScaling (m) returns false, m is unchanged |
|
// sansScalingAndShear (m) returns m |
|
// removeScalingAndShear (m) returns false, m is unchanged |
|
// extractAndRemoveScalingAndShear (m, s, h) |
|
// returns false, m is unchanged, |
|
// (sh) are invalid |
|
// checkForZeroScaleInRow () returns false |
|
// extractSHRT (m, s, h, r, t) returns false, (shrt) are invalid |
|
// |
|
// - Functions extractEuler(), extractEulerXYZ() and extractEulerZYX() |
|
// assume that the matrix does not include shear or non-uniform scaling, |
|
// but they do not examine the matrix to verify this assumption. |
|
// Matrices with shear or non-uniform scaling are likely to produce |
|
// meaningless results. Therefore, you should use the |
|
// removeScalingAndShear() routine, if necessary, prior to calling |
|
// extractEuler...() . |
|
// |
|
// - All functions assume that the matrix does not include perspective |
|
// transformation(s), but they do not examine the matrix to verify |
|
// this assumption. Matrices with perspective transformations are |
|
// likely to produce meaningless results. |
|
// |
|
//---------------------------------------------------------------------- |
|
|
|
|
|
// |
|
// Declarations for 4x4 matrix. |
|
// |
|
|
|
template <class T> bool extractScaling |
|
(const Matrix44<T> &mat, |
|
Vec3<T> &scl, |
|
bool exc = true); |
|
|
|
template <class T> Matrix44<T> sansScaling (const Matrix44<T> &mat, |
|
bool exc = true); |
|
|
|
template <class T> bool removeScaling |
|
(Matrix44<T> &mat, |
|
bool exc = true); |
|
|
|
template <class T> bool extractScalingAndShear |
|
(const Matrix44<T> &mat, |
|
Vec3<T> &scl, |
|
Vec3<T> &shr, |
|
bool exc = true); |
|
|
|
template <class T> Matrix44<T> sansScalingAndShear |
|
(const Matrix44<T> &mat, |
|
bool exc = true); |
|
|
|
template <class T> void sansScalingAndShear |
|
(Matrix44<T> &result, |
|
const Matrix44<T> &mat, |
|
bool exc = true); |
|
|
|
template <class T> bool removeScalingAndShear |
|
(Matrix44<T> &mat, |
|
bool exc = true); |
|
|
|
template <class T> bool extractAndRemoveScalingAndShear |
|
(Matrix44<T> &mat, |
|
Vec3<T> &scl, |
|
Vec3<T> &shr, |
|
bool exc = true); |
|
|
|
template <class T> void extractEulerXYZ |
|
(const Matrix44<T> &mat, |
|
Vec3<T> &rot); |
|
|
|
template <class T> void extractEulerZYX |
|
(const Matrix44<T> &mat, |
|
Vec3<T> &rot); |
|
|
|
template <class T> Quat<T> extractQuat (const Matrix44<T> &mat); |
|
|
|
template <class T> bool extractSHRT |
|
(const Matrix44<T> &mat, |
|
Vec3<T> &s, |
|
Vec3<T> &h, |
|
Vec3<T> &r, |
|
Vec3<T> &t, |
|
bool exc /*= true*/, |
|
typename Euler<T>::Order rOrder); |
|
|
|
template <class T> bool extractSHRT |
|
(const Matrix44<T> &mat, |
|
Vec3<T> &s, |
|
Vec3<T> &h, |
|
Vec3<T> &r, |
|
Vec3<T> &t, |
|
bool exc = true); |
|
|
|
template <class T> bool extractSHRT |
|
(const Matrix44<T> &mat, |
|
Vec3<T> &s, |
|
Vec3<T> &h, |
|
Euler<T> &r, |
|
Vec3<T> &t, |
|
bool exc = true); |
|
|
|
// |
|
// Internal utility function. |
|
// |
|
|
|
template <class T> bool checkForZeroScaleInRow |
|
(const T &scl, |
|
const Vec3<T> &row, |
|
bool exc = true); |
|
|
|
template <class T> Matrix44<T> outerProduct |
|
( const Vec4<T> &a, |
|
const Vec4<T> &b); |
|
|
|
|
|
// |
|
// Returns a matrix that rotates "fromDirection" vector to "toDirection" |
|
// vector. |
|
// |
|
|
|
template <class T> Matrix44<T> rotationMatrix (const Vec3<T> &fromDirection, |
|
const Vec3<T> &toDirection); |
|
|
|
|
|
|
|
// |
|
// Returns a matrix that rotates the "fromDir" vector |
|
// so that it points towards "toDir". You may also |
|
// specify that you want the up vector to be pointing |
|
// in a certain direction "upDir". |
|
// |
|
|
|
template <class T> Matrix44<T> rotationMatrixWithUpDir |
|
(const Vec3<T> &fromDir, |
|
const Vec3<T> &toDir, |
|
const Vec3<T> &upDir); |
|
|
|
|
|
// |
|
// Constructs a matrix that rotates the z-axis so that it |
|
// points towards "targetDir". You must also specify |
|
// that you want the up vector to be pointing in a |
|
// certain direction "upDir". |
|
// |
|
// Notes: The following degenerate cases are handled: |
|
// (a) when the directions given by "toDir" and "upDir" |
|
// are parallel or opposite; |
|
// (the direction vectors must have a non-zero cross product) |
|
// (b) when any of the given direction vectors have zero length |
|
// |
|
|
|
template <class T> void alignZAxisWithTargetDir |
|
(Matrix44<T> &result, |
|
Vec3<T> targetDir, |
|
Vec3<T> upDir); |
|
|
|
|
|
// Compute an orthonormal direct frame from : a position, an x axis direction and a normal to the y axis |
|
// If the x axis and normal are perpendicular, then the normal will have the same direction as the z axis. |
|
// Inputs are : |
|
// -the position of the frame |
|
// -the x axis direction of the frame |
|
// -a normal to the y axis of the frame |
|
// Return is the orthonormal frame |
|
template <class T> Matrix44<T> computeLocalFrame( const Vec3<T>& p, |
|
const Vec3<T>& xDir, |
|
const Vec3<T>& normal); |
|
|
|
// Add a translate/rotate/scale offset to an input frame |
|
// and put it in another frame of reference |
|
// Inputs are : |
|
// - input frame |
|
// - translate offset |
|
// - rotate offset in degrees |
|
// - scale offset |
|
// - frame of reference |
|
// Output is the offsetted frame |
|
template <class T> Matrix44<T> addOffset( const Matrix44<T>& inMat, |
|
const Vec3<T>& tOffset, |
|
const Vec3<T>& rOffset, |
|
const Vec3<T>& sOffset, |
|
const Vec3<T>& ref); |
|
|
|
// Compute Translate/Rotate/Scale matrix from matrix A with the Rotate/Scale of Matrix B |
|
// Inputs are : |
|
// -keepRotateA : if true keep rotate from matrix A, use B otherwise |
|
// -keepScaleA : if true keep scale from matrix A, use B otherwise |
|
// -Matrix A |
|
// -Matrix B |
|
// Return Matrix A with tweaked rotation/scale |
|
template <class T> Matrix44<T> computeRSMatrix( bool keepRotateA, |
|
bool keepScaleA, |
|
const Matrix44<T>& A, |
|
const Matrix44<T>& B); |
|
|
|
|
|
//---------------------------------------------------------------------- |
|
|
|
|
|
// |
|
// Declarations for 3x3 matrix. |
|
// |
|
|
|
|
|
template <class T> bool extractScaling |
|
(const Matrix33<T> &mat, |
|
Vec2<T> &scl, |
|
bool exc = true); |
|
|
|
template <class T> Matrix33<T> sansScaling (const Matrix33<T> &mat, |
|
bool exc = true); |
|
|
|
template <class T> bool removeScaling |
|
(Matrix33<T> &mat, |
|
bool exc = true); |
|
|
|
template <class T> bool extractScalingAndShear |
|
(const Matrix33<T> &mat, |
|
Vec2<T> &scl, |
|
T &h, |
|
bool exc = true); |
|
|
|
template <class T> Matrix33<T> sansScalingAndShear |
|
(const Matrix33<T> &mat, |
|
bool exc = true); |
|
|
|
template <class T> bool removeScalingAndShear |
|
(Matrix33<T> &mat, |
|
bool exc = true); |
|
|
|
template <class T> bool extractAndRemoveScalingAndShear |
|
(Matrix33<T> &mat, |
|
Vec2<T> &scl, |
|
T &shr, |
|
bool exc = true); |
|
|
|
template <class T> void extractEuler |
|
(const Matrix33<T> &mat, |
|
T &rot); |
|
|
|
template <class T> bool extractSHRT (const Matrix33<T> &mat, |
|
Vec2<T> &s, |
|
T &h, |
|
T &r, |
|
Vec2<T> &t, |
|
bool exc = true); |
|
|
|
template <class T> bool checkForZeroScaleInRow |
|
(const T &scl, |
|
const Vec2<T> &row, |
|
bool exc = true); |
|
|
|
template <class T> Matrix33<T> outerProduct |
|
( const Vec3<T> &a, |
|
const Vec3<T> &b); |
|
|
|
|
|
//----------------------------------------------------------------------------- |
|
// Implementation for 4x4 Matrix |
|
//------------------------------ |
|
|
|
|
|
template <class T> |
|
bool |
|
extractScaling (const Matrix44<T> &mat, Vec3<T> &scl, bool exc) |
|
{ |
|
Vec3<T> shr; |
|
Matrix44<T> M (mat); |
|
|
|
if (! extractAndRemoveScalingAndShear (M, scl, shr, exc)) |
|
return false; |
|
|
|
return true; |
|
} |
|
|
|
|
|
template <class T> |
|
Matrix44<T> |
|
sansScaling (const Matrix44<T> &mat, bool exc) |
|
{ |
|
Vec3<T> scl; |
|
Vec3<T> shr; |
|
Vec3<T> rot; |
|
Vec3<T> tran; |
|
|
|
if (! extractSHRT (mat, scl, shr, rot, tran, exc)) |
|
return mat; |
|
|
|
Matrix44<T> M; |
|
|
|
M.translate (tran); |
|
M.rotate (rot); |
|
M.shear (shr); |
|
|
|
return M; |
|
} |
|
|
|
|
|
template <class T> |
|
bool |
|
removeScaling (Matrix44<T> &mat, bool exc) |
|
{ |
|
Vec3<T> scl; |
|
Vec3<T> shr; |
|
Vec3<T> rot; |
|
Vec3<T> tran; |
|
|
|
if (! extractSHRT (mat, scl, shr, rot, tran, exc)) |
|
return false; |
|
|
|
mat.makeIdentity (); |
|
mat.translate (tran); |
|
mat.rotate (rot); |
|
mat.shear (shr); |
|
|
|
return true; |
|
} |
|
|
|
|
|
template <class T> |
|
bool |
|
extractScalingAndShear (const Matrix44<T> &mat, |
|
Vec3<T> &scl, Vec3<T> &shr, bool exc) |
|
{ |
|
Matrix44<T> M (mat); |
|
|
|
if (! extractAndRemoveScalingAndShear (M, scl, shr, exc)) |
|
return false; |
|
|
|
return true; |
|
} |
|
|
|
|
|
template <class T> |
|
Matrix44<T> |
|
sansScalingAndShear (const Matrix44<T> &mat, bool exc) |
|
{ |
|
Vec3<T> scl; |
|
Vec3<T> shr; |
|
Matrix44<T> M (mat); |
|
|
|
if (! extractAndRemoveScalingAndShear (M, scl, shr, exc)) |
|
return mat; |
|
|
|
return M; |
|
} |
|
|
|
|
|
template <class T> |
|
void |
|
sansScalingAndShear (Matrix44<T> &result, const Matrix44<T> &mat, bool exc) |
|
{ |
|
Vec3<T> scl; |
|
Vec3<T> shr; |
|
|
|
if (! extractAndRemoveScalingAndShear (result, scl, shr, exc)) |
|
result = mat; |
|
} |
|
|
|
|
|
template <class T> |
|
bool |
|
removeScalingAndShear (Matrix44<T> &mat, bool exc) |
|
{ |
|
Vec3<T> scl; |
|
Vec3<T> shr; |
|
|
|
if (! extractAndRemoveScalingAndShear (mat, scl, shr, exc)) |
|
return false; |
|
|
|
return true; |
|
} |
|
|
|
|
|
template <class T> |
|
bool |
|
extractAndRemoveScalingAndShear (Matrix44<T> &mat, |
|
Vec3<T> &scl, Vec3<T> &shr, bool exc) |
|
{ |
|
// |
|
// This implementation follows the technique described in the paper by |
|
// Spencer W. Thomas in the Graphics Gems II article: "Decomposing a |
|
// Matrix into Simple Transformations", p. 320. |
|
// |
|
|
|
Vec3<T> row[3]; |
|
|
|
row[0] = Vec3<T> (mat[0][0], mat[0][1], mat[0][2]); |
|
row[1] = Vec3<T> (mat[1][0], mat[1][1], mat[1][2]); |
|
row[2] = Vec3<T> (mat[2][0], mat[2][1], mat[2][2]); |
|
|
|
T maxVal = 0; |
|
for (int i=0; i < 3; i++) |
|
for (int j=0; j < 3; j++) |
|
if (Imath::abs (row[i][j]) > maxVal) |
|
maxVal = Imath::abs (row[i][j]); |
|
|
|
// |
|
// We normalize the 3x3 matrix here. |
|
// It was noticed that this can improve numerical stability significantly, |
|
// especially when many of the upper 3x3 matrix's coefficients are very |
|
// close to zero; we correct for this step at the end by multiplying the |
|
// scaling factors by maxVal at the end (shear and rotation are not |
|
// affected by the normalization). |
|
|
|
if (maxVal != 0) |
|
{ |
|
for (int i=0; i < 3; i++) |
|
if (! checkForZeroScaleInRow (maxVal, row[i], exc)) |
|
return false; |
|
else |
|
row[i] /= maxVal; |
|
} |
|
|
|
// Compute X scale factor. |
|
scl.x = row[0].length (); |
|
if (! checkForZeroScaleInRow (scl.x, row[0], exc)) |
|
return false; |
|
|
|
// Normalize first row. |
|
row[0] /= scl.x; |
|
|
|
// An XY shear factor will shear the X coord. as the Y coord. changes. |
|
// There are 6 combinations (XY, XZ, YZ, YX, ZX, ZY), although we only |
|
// extract the first 3 because we can effect the last 3 by shearing in |
|
// XY, XZ, YZ combined rotations and scales. |
|
// |
|
// shear matrix < 1, YX, ZX, 0, |
|
// XY, 1, ZY, 0, |
|
// XZ, YZ, 1, 0, |
|
// 0, 0, 0, 1 > |
|
|
|
// Compute XY shear factor and make 2nd row orthogonal to 1st. |
|
shr[0] = row[0].dot (row[1]); |
|
row[1] -= shr[0] * row[0]; |
|
|
|
// Now, compute Y scale. |
|
scl.y = row[1].length (); |
|
if (! checkForZeroScaleInRow (scl.y, row[1], exc)) |
|
return false; |
|
|
|
// Normalize 2nd row and correct the XY shear factor for Y scaling. |
|
row[1] /= scl.y; |
|
shr[0] /= scl.y; |
|
|
|
// Compute XZ and YZ shears, orthogonalize 3rd row. |
|
shr[1] = row[0].dot (row[2]); |
|
row[2] -= shr[1] * row[0]; |
|
shr[2] = row[1].dot (row[2]); |
|
row[2] -= shr[2] * row[1]; |
|
|
|
// Next, get Z scale. |
|
scl.z = row[2].length (); |
|
if (! checkForZeroScaleInRow (scl.z, row[2], exc)) |
|
return false; |
|
|
|
// Normalize 3rd row and correct the XZ and YZ shear factors for Z scaling. |
|
row[2] /= scl.z; |
|
shr[1] /= scl.z; |
|
shr[2] /= scl.z; |
|
|
|
// At this point, the upper 3x3 matrix in mat is orthonormal. |
|
// Check for a coordinate system flip. If the determinant |
|
// is less than zero, then negate the matrix and the scaling factors. |
|
if (row[0].dot (row[1].cross (row[2])) < 0) |
|
for (int i=0; i < 3; i++) |
|
{ |
|
scl[i] *= -1; |
|
row[i] *= -1; |
|
} |
|
|
|
// Copy over the orthonormal rows into the returned matrix. |
|
// The upper 3x3 matrix in mat is now a rotation matrix. |
|
for (int i=0; i < 3; i++) |
|
{ |
|
mat[i][0] = row[i][0]; |
|
mat[i][1] = row[i][1]; |
|
mat[i][2] = row[i][2]; |
|
} |
|
|
|
// Correct the scaling factors for the normalization step that we |
|
// performed above; shear and rotation are not affected by the |
|
// normalization. |
|
scl *= maxVal; |
|
|
|
return true; |
|
} |
|
|
|
|
|
template <class T> |
|
void |
|
extractEulerXYZ (const Matrix44<T> &mat, Vec3<T> &rot) |
|
{ |
|
// |
|
// Normalize the local x, y and z axes to remove scaling. |
|
// |
|
|
|
Vec3<T> i (mat[0][0], mat[0][1], mat[0][2]); |
|
Vec3<T> j (mat[1][0], mat[1][1], mat[1][2]); |
|
Vec3<T> k (mat[2][0], mat[2][1], mat[2][2]); |
|
|
|
i.normalize(); |
|
j.normalize(); |
|
k.normalize(); |
|
|
|
Matrix44<T> M (i[0], i[1], i[2], 0, |
|
j[0], j[1], j[2], 0, |
|
k[0], k[1], k[2], 0, |
|
0, 0, 0, 1); |
|
|
|
// |
|
// Extract the first angle, rot.x. |
|
// |
|
|
|
rot.x = Math<T>::atan2 (M[1][2], M[2][2]); |
|
|
|
// |
|
// Remove the rot.x rotation from M, so that the remaining |
|
// rotation, N, is only around two axes, and gimbal lock |
|
// cannot occur. |
|
// |
|
|
|
Matrix44<T> N; |
|
N.rotate (Vec3<T> (-rot.x, 0, 0)); |
|
N = N * M; |
|
|
|
// |
|
// Extract the other two angles, rot.y and rot.z, from N. |
|
// |
|
|
|
T cy = Math<T>::sqrt (N[0][0]*N[0][0] + N[0][1]*N[0][1]); |
|
rot.y = Math<T>::atan2 (-N[0][2], cy); |
|
rot.z = Math<T>::atan2 (-N[1][0], N[1][1]); |
|
} |
|
|
|
|
|
template <class T> |
|
void |
|
extractEulerZYX (const Matrix44<T> &mat, Vec3<T> &rot) |
|
{ |
|
// |
|
// Normalize the local x, y and z axes to remove scaling. |
|
// |
|
|
|
Vec3<T> i (mat[0][0], mat[0][1], mat[0][2]); |
|
Vec3<T> j (mat[1][0], mat[1][1], mat[1][2]); |
|
Vec3<T> k (mat[2][0], mat[2][1], mat[2][2]); |
|
|
|
i.normalize(); |
|
j.normalize(); |
|
k.normalize(); |
|
|
|
Matrix44<T> M (i[0], i[1], i[2], 0, |
|
j[0], j[1], j[2], 0, |
|
k[0], k[1], k[2], 0, |
|
0, 0, 0, 1); |
|
|
|
// |
|
// Extract the first angle, rot.x. |
|
// |
|
|
|
rot.x = -Math<T>::atan2 (M[1][0], M[0][0]); |
|
|
|
// |
|
// Remove the x rotation from M, so that the remaining |
|
// rotation, N, is only around two axes, and gimbal lock |
|
// cannot occur. |
|
// |
|
|
|
Matrix44<T> N; |
|
N.rotate (Vec3<T> (0, 0, -rot.x)); |
|
N = N * M; |
|
|
|
// |
|
// Extract the other two angles, rot.y and rot.z, from N. |
|
// |
|
|
|
T cy = Math<T>::sqrt (N[2][2]*N[2][2] + N[2][1]*N[2][1]); |
|
rot.y = -Math<T>::atan2 (-N[2][0], cy); |
|
rot.z = -Math<T>::atan2 (-N[1][2], N[1][1]); |
|
} |
|
|
|
|
|
template <class T> |
|
Quat<T> |
|
extractQuat (const Matrix44<T> &mat) |
|
{ |
|
Matrix44<T> rot; |
|
|
|
T tr, s; |
|
T q[4]; |
|
int i, j, k; |
|
Quat<T> quat; |
|
|
|
int nxt[3] = {1, 2, 0}; |
|
tr = mat[0][0] + mat[1][1] + mat[2][2]; |
|
|
|
// check the diagonal |
|
if (tr > 0.0) { |
|
s = Math<T>::sqrt (tr + T(1.0)); |
|
quat.r = s / T(2.0); |
|
s = T(0.5) / s; |
|
|
|
quat.v.x = (mat[1][2] - mat[2][1]) * s; |
|
quat.v.y = (mat[2][0] - mat[0][2]) * s; |
|
quat.v.z = (mat[0][1] - mat[1][0]) * s; |
|
} |
|
else { |
|
// diagonal is negative |
|
i = 0; |
|
if (mat[1][1] > mat[0][0]) |
|
i=1; |
|
if (mat[2][2] > mat[i][i]) |
|
i=2; |
|
|
|
j = nxt[i]; |
|
k = nxt[j]; |
|
s = Math<T>::sqrt ((mat[i][i] - (mat[j][j] + mat[k][k])) + T(1.0)); |
|
|
|
q[i] = s * T(0.5); |
|
if (s != T(0.0)) |
|
s = T(0.5) / s; |
|
|
|
q[3] = (mat[j][k] - mat[k][j]) * s; |
|
q[j] = (mat[i][j] + mat[j][i]) * s; |
|
q[k] = (mat[i][k] + mat[k][i]) * s; |
|
|
|
quat.v.x = q[0]; |
|
quat.v.y = q[1]; |
|
quat.v.z = q[2]; |
|
quat.r = q[3]; |
|
} |
|
|
|
return quat; |
|
} |
|
|
|
template <class T> |
|
bool |
|
extractSHRT (const Matrix44<T> &mat, |
|
Vec3<T> &s, |
|
Vec3<T> &h, |
|
Vec3<T> &r, |
|
Vec3<T> &t, |
|
bool exc /* = true */ , |
|
typename Euler<T>::Order rOrder /* = Euler<T>::XYZ */ ) |
|
{ |
|
Matrix44<T> rot; |
|
|
|
rot = mat; |
|
if (! extractAndRemoveScalingAndShear (rot, s, h, exc)) |
|
return false; |
|
|
|
extractEulerXYZ (rot, r); |
|
|
|
t.x = mat[3][0]; |
|
t.y = mat[3][1]; |
|
t.z = mat[3][2]; |
|
|
|
if (rOrder != Euler<T>::XYZ) |
|
{ |
|
Imath::Euler<T> eXYZ (r, Imath::Euler<T>::XYZ); |
|
Imath::Euler<T> e (eXYZ, rOrder); |
|
r = e.toXYZVector (); |
|
} |
|
|
|
return true; |
|
} |
|
|
|
template <class T> |
|
bool |
|
extractSHRT (const Matrix44<T> &mat, |
|
Vec3<T> &s, |
|
Vec3<T> &h, |
|
Vec3<T> &r, |
|
Vec3<T> &t, |
|
bool exc) |
|
{ |
|
return extractSHRT(mat, s, h, r, t, exc, Imath::Euler<T>::XYZ); |
|
} |
|
|
|
template <class T> |
|
bool |
|
extractSHRT (const Matrix44<T> &mat, |
|
Vec3<T> &s, |
|
Vec3<T> &h, |
|
Euler<T> &r, |
|
Vec3<T> &t, |
|
bool exc /* = true */) |
|
{ |
|
return extractSHRT (mat, s, h, r, t, exc, r.order ()); |
|
} |
|
|
|
|
|
template <class T> |
|
bool |
|
checkForZeroScaleInRow (const T& scl, |
|
const Vec3<T> &row, |
|
bool exc /* = true */ ) |
|
{ |
|
for (int i = 0; i < 3; i++) |
|
{ |
|
if ((abs (scl) < 1 && abs (row[i]) >= limits<T>::max() * abs (scl))) |
|
{ |
|
if (exc) |
|
throw Imath::ZeroScaleExc ("Cannot remove zero scaling " |
|
"from matrix."); |
|
else |
|
return false; |
|
} |
|
} |
|
|
|
return true; |
|
} |
|
|
|
template <class T> |
|
Matrix44<T> |
|
outerProduct (const Vec4<T> &a, const Vec4<T> &b ) |
|
{ |
|
return Matrix44<T> (a.x*b.x, a.x*b.y, a.x*b.z, a.x*b.w, |
|
a.y*b.x, a.y*b.y, a.y*b.z, a.x*b.w, |
|
a.z*b.x, a.z*b.y, a.z*b.z, a.x*b.w, |
|
a.w*b.x, a.w*b.y, a.w*b.z, a.w*b.w); |
|
} |
|
|
|
template <class T> |
|
Matrix44<T> |
|
rotationMatrix (const Vec3<T> &from, const Vec3<T> &to) |
|
{ |
|
Quat<T> q; |
|
q.setRotation(from, to); |
|
return q.toMatrix44(); |
|
} |
|
|
|
|
|
template <class T> |
|
Matrix44<T> |
|
rotationMatrixWithUpDir (const Vec3<T> &fromDir, |
|
const Vec3<T> &toDir, |
|
const Vec3<T> &upDir) |
|
{ |
|
// |
|
// The goal is to obtain a rotation matrix that takes |
|
// "fromDir" to "toDir". We do this in two steps and |
|
// compose the resulting rotation matrices; |
|
// (a) rotate "fromDir" into the z-axis |
|
// (b) rotate the z-axis into "toDir" |
|
// |
|
|
|
// The from direction must be non-zero; but we allow zero to and up dirs. |
|
if (fromDir.length () == 0) |
|
return Matrix44<T> (); |
|
|
|
else |
|
{ |
|
Matrix44<T> zAxis2FromDir( Imath::UNINITIALIZED ); |
|
alignZAxisWithTargetDir (zAxis2FromDir, fromDir, Vec3<T> (0, 1, 0)); |
|
|
|
Matrix44<T> fromDir2zAxis = zAxis2FromDir.transposed (); |
|
|
|
Matrix44<T> zAxis2ToDir( Imath::UNINITIALIZED ); |
|
alignZAxisWithTargetDir (zAxis2ToDir, toDir, upDir); |
|
|
|
return fromDir2zAxis * zAxis2ToDir; |
|
} |
|
} |
|
|
|
|
|
template <class T> |
|
void |
|
alignZAxisWithTargetDir (Matrix44<T> &result, Vec3<T> targetDir, Vec3<T> upDir) |
|
{ |
|
// |
|
// Ensure that the target direction is non-zero. |
|
// |
|
|
|
if ( targetDir.length () == 0 ) |
|
targetDir = Vec3<T> (0, 0, 1); |
|
|
|
// |
|
// Ensure that the up direction is non-zero. |
|
// |
|
|
|
if ( upDir.length () == 0 ) |
|
upDir = Vec3<T> (0, 1, 0); |
|
|
|
// |
|
// Check for degeneracies. If the upDir and targetDir are parallel |
|
// or opposite, then compute a new, arbitrary up direction that is |
|
// not parallel or opposite to the targetDir. |
|
// |
|
|
|
if (upDir.cross (targetDir).length () == 0) |
|
{ |
|
upDir = targetDir.cross (Vec3<T> (1, 0, 0)); |
|
if (upDir.length() == 0) |
|
upDir = targetDir.cross(Vec3<T> (0, 0, 1)); |
|
} |
|
|
|
// |
|
// Compute the x-, y-, and z-axis vectors of the new coordinate system. |
|
// |
|
|
|
Vec3<T> targetPerpDir = upDir.cross (targetDir); |
|
Vec3<T> targetUpDir = targetDir.cross (targetPerpDir); |
|
|
|
// |
|
// Rotate the x-axis into targetPerpDir (row 0), |
|
// rotate the y-axis into targetUpDir (row 1), |
|
// rotate the z-axis into targetDir (row 2). |
|
// |
|
|
|
Vec3<T> row[3]; |
|
row[0] = targetPerpDir.normalized (); |
|
row[1] = targetUpDir .normalized (); |
|
row[2] = targetDir .normalized (); |
|
|
|
result.x[0][0] = row[0][0]; |
|
result.x[0][1] = row[0][1]; |
|
result.x[0][2] = row[0][2]; |
|
result.x[0][3] = (T)0; |
|
|
|
result.x[1][0] = row[1][0]; |
|
result.x[1][1] = row[1][1]; |
|
result.x[1][2] = row[1][2]; |
|
result.x[1][3] = (T)0; |
|
|
|
result.x[2][0] = row[2][0]; |
|
result.x[2][1] = row[2][1]; |
|
result.x[2][2] = row[2][2]; |
|
result.x[2][3] = (T)0; |
|
|
|
result.x[3][0] = (T)0; |
|
result.x[3][1] = (T)0; |
|
result.x[3][2] = (T)0; |
|
result.x[3][3] = (T)1; |
|
} |
|
|
|
|
|
// Compute an orthonormal direct frame from : a position, an x axis direction and a normal to the y axis |
|
// If the x axis and normal are perpendicular, then the normal will have the same direction as the z axis. |
|
// Inputs are : |
|
// -the position of the frame |
|
// -the x axis direction of the frame |
|
// -a normal to the y axis of the frame |
|
// Return is the orthonormal frame |
|
template <class T> |
|
Matrix44<T> |
|
computeLocalFrame( const Vec3<T>& p, |
|
const Vec3<T>& xDir, |
|
const Vec3<T>& normal) |
|
{ |
|
Vec3<T> _xDir(xDir); |
|
Vec3<T> x = _xDir.normalize(); |
|
Vec3<T> y = (normal % x).normalize(); |
|
Vec3<T> z = (x % y).normalize(); |
|
|
|
Matrix44<T> L; |
|
L[0][0] = x[0]; |
|
L[0][1] = x[1]; |
|
L[0][2] = x[2]; |
|
L[0][3] = 0.0; |
|
|
|
L[1][0] = y[0]; |
|
L[1][1] = y[1]; |
|
L[1][2] = y[2]; |
|
L[1][3] = 0.0; |
|
|
|
L[2][0] = z[0]; |
|
L[2][1] = z[1]; |
|
L[2][2] = z[2]; |
|
L[2][3] = 0.0; |
|
|
|
L[3][0] = p[0]; |
|
L[3][1] = p[1]; |
|
L[3][2] = p[2]; |
|
L[3][3] = 1.0; |
|
|
|
return L; |
|
} |
|
|
|
// Add a translate/rotate/scale offset to an input frame |
|
// and put it in another frame of reference |
|
// Inputs are : |
|
// - input frame |
|
// - translate offset |
|
// - rotate offset in degrees |
|
// - scale offset |
|
// - frame of reference |
|
// Output is the offsetted frame |
|
template <class T> |
|
Matrix44<T> |
|
addOffset( const Matrix44<T>& inMat, |
|
const Vec3<T>& tOffset, |
|
const Vec3<T>& rOffset, |
|
const Vec3<T>& sOffset, |
|
const Matrix44<T>& ref) |
|
{ |
|
Matrix44<T> O; |
|
|
|
Vec3<T> _rOffset(rOffset); |
|
_rOffset *= M_PI / 180.0; |
|
O.rotate (_rOffset); |
|
|
|
O[3][0] = tOffset[0]; |
|
O[3][1] = tOffset[1]; |
|
O[3][2] = tOffset[2]; |
|
|
|
Matrix44<T> S; |
|
S.scale (sOffset); |
|
|
|
Matrix44<T> X = S * O * inMat * ref; |
|
|
|
return X; |
|
} |
|
|
|
// Compute Translate/Rotate/Scale matrix from matrix A with the Rotate/Scale of Matrix B |
|
// Inputs are : |
|
// -keepRotateA : if true keep rotate from matrix A, use B otherwise |
|
// -keepScaleA : if true keep scale from matrix A, use B otherwise |
|
// -Matrix A |
|
// -Matrix B |
|
// Return Matrix A with tweaked rotation/scale |
|
template <class T> |
|
Matrix44<T> |
|
computeRSMatrix( bool keepRotateA, |
|
bool keepScaleA, |
|
const Matrix44<T>& A, |
|
const Matrix44<T>& B) |
|
{ |
|
Vec3<T> as, ah, ar, at; |
|
extractSHRT (A, as, ah, ar, at); |
|
|
|
Vec3<T> bs, bh, br, bt; |
|
extractSHRT (B, bs, bh, br, bt); |
|
|
|
if (!keepRotateA) |
|
ar = br; |
|
|
|
if (!keepScaleA) |
|
as = bs; |
|
|
|
Matrix44<T> mat; |
|
mat.makeIdentity(); |
|
mat.translate (at); |
|
mat.rotate (ar); |
|
mat.scale (as); |
|
|
|
return mat; |
|
} |
|
|
|
|
|
|
|
//----------------------------------------------------------------------------- |
|
// Implementation for 3x3 Matrix |
|
//------------------------------ |
|
|
|
|
|
template <class T> |
|
bool |
|
extractScaling (const Matrix33<T> &mat, Vec2<T> &scl, bool exc) |
|
{ |
|
T shr; |
|
Matrix33<T> M (mat); |
|
|
|
if (! extractAndRemoveScalingAndShear (M, scl, shr, exc)) |
|
return false; |
|
|
|
return true; |
|
} |
|
|
|
|
|
template <class T> |
|
Matrix33<T> |
|
sansScaling (const Matrix33<T> &mat, bool exc) |
|
{ |
|
Vec2<T> scl; |
|
T shr; |
|
T rot; |
|
Vec2<T> tran; |
|
|
|
if (! extractSHRT (mat, scl, shr, rot, tran, exc)) |
|
return mat; |
|
|
|
Matrix33<T> M; |
|
|
|
M.translate (tran); |
|
M.rotate (rot); |
|
M.shear (shr); |
|
|
|
return M; |
|
} |
|
|
|
|
|
template <class T> |
|
bool |
|
removeScaling (Matrix33<T> &mat, bool exc) |
|
{ |
|
Vec2<T> scl; |
|
T shr; |
|
T rot; |
|
Vec2<T> tran; |
|
|
|
if (! extractSHRT (mat, scl, shr, rot, tran, exc)) |
|
return false; |
|
|
|
mat.makeIdentity (); |
|
mat.translate (tran); |
|
mat.rotate (rot); |
|
mat.shear (shr); |
|
|
|
return true; |
|
} |
|
|
|
|
|
template <class T> |
|
bool |
|
extractScalingAndShear (const Matrix33<T> &mat, Vec2<T> &scl, T &shr, bool exc) |
|
{ |
|
Matrix33<T> M (mat); |
|
|
|
if (! extractAndRemoveScalingAndShear (M, scl, shr, exc)) |
|
return false; |
|
|
|
return true; |
|
} |
|
|
|
|
|
template <class T> |
|
Matrix33<T> |
|
sansScalingAndShear (const Matrix33<T> &mat, bool exc) |
|
{ |
|
Vec2<T> scl; |
|
T shr; |
|
Matrix33<T> M (mat); |
|
|
|
if (! extractAndRemoveScalingAndShear (M, scl, shr, exc)) |
|
return mat; |
|
|
|
return M; |
|
} |
|
|
|
|
|
template <class T> |
|
bool |
|
removeScalingAndShear (Matrix33<T> &mat, bool exc) |
|
{ |
|
Vec2<T> scl; |
|
T shr; |
|
|
|
if (! extractAndRemoveScalingAndShear (mat, scl, shr, exc)) |
|
return false; |
|
|
|
return true; |
|
} |
|
|
|
template <class T> |
|
bool |
|
extractAndRemoveScalingAndShear (Matrix33<T> &mat, |
|
Vec2<T> &scl, T &shr, bool exc) |
|
{ |
|
Vec2<T> row[2]; |
|
|
|
row[0] = Vec2<T> (mat[0][0], mat[0][1]); |
|
row[1] = Vec2<T> (mat[1][0], mat[1][1]); |
|
|
|
T maxVal = 0; |
|
for (int i=0; i < 2; i++) |
|
for (int j=0; j < 2; j++) |
|
if (Imath::abs (row[i][j]) > maxVal) |
|
maxVal = Imath::abs (row[i][j]); |
|
|
|
// |
|
// We normalize the 2x2 matrix here. |
|
// It was noticed that this can improve numerical stability significantly, |
|
// especially when many of the upper 2x2 matrix's coefficients are very |
|
// close to zero; we correct for this step at the end by multiplying the |
|
// scaling factors by maxVal at the end (shear and rotation are not |
|
// affected by the normalization). |
|
|
|
if (maxVal != 0) |
|
{ |
|
for (int i=0; i < 2; i++) |
|
if (! checkForZeroScaleInRow (maxVal, row[i], exc)) |
|
return false; |
|
else |
|
row[i] /= maxVal; |
|
} |
|
|
|
// Compute X scale factor. |
|
scl.x = row[0].length (); |
|
if (! checkForZeroScaleInRow (scl.x, row[0], exc)) |
|
return false; |
|
|
|
// Normalize first row. |
|
row[0] /= scl.x; |
|
|
|
// An XY shear factor will shear the X coord. as the Y coord. changes. |
|
// There are 2 combinations (XY, YX), although we only extract the XY |
|
// shear factor because we can effect the an YX shear factor by |
|
// shearing in XY combined with rotations and scales. |
|
// |
|
// shear matrix < 1, YX, 0, |
|
// XY, 1, 0, |
|
// 0, 0, 1 > |
|
|
|
// Compute XY shear factor and make 2nd row orthogonal to 1st. |
|
shr = row[0].dot (row[1]); |
|
row[1] -= shr * row[0]; |
|
|
|
// Now, compute Y scale. |
|
scl.y = row[1].length (); |
|
if (! checkForZeroScaleInRow (scl.y, row[1], exc)) |
|
return false; |
|
|
|
// Normalize 2nd row and correct the XY shear factor for Y scaling. |
|
row[1] /= scl.y; |
|
shr /= scl.y; |
|
|
|
// At this point, the upper 2x2 matrix in mat is orthonormal. |
|
// Check for a coordinate system flip. If the determinant |
|
// is -1, then flip the rotation matrix and adjust the scale(Y) |
|
// and shear(XY) factors to compensate. |
|
if (row[0][0] * row[1][1] - row[0][1] * row[1][0] < 0) |
|
{ |
|
row[1][0] *= -1; |
|
row[1][1] *= -1; |
|
scl[1] *= -1; |
|
shr *= -1; |
|
} |
|
|
|
// Copy over the orthonormal rows into the returned matrix. |
|
// The upper 2x2 matrix in mat is now a rotation matrix. |
|
for (int i=0; i < 2; i++) |
|
{ |
|
mat[i][0] = row[i][0]; |
|
mat[i][1] = row[i][1]; |
|
} |
|
|
|
scl *= maxVal; |
|
|
|
return true; |
|
} |
|
|
|
|
|
template <class T> |
|
void |
|
extractEuler (const Matrix33<T> &mat, T &rot) |
|
{ |
|
// |
|
// Normalize the local x and y axes to remove scaling. |
|
// |
|
|
|
Vec2<T> i (mat[0][0], mat[0][1]); |
|
Vec2<T> j (mat[1][0], mat[1][1]); |
|
|
|
i.normalize(); |
|
j.normalize(); |
|
|
|
// |
|
// Extract the angle, rot. |
|
// |
|
|
|
rot = - Math<T>::atan2 (j[0], i[0]); |
|
} |
|
|
|
|
|
template <class T> |
|
bool |
|
extractSHRT (const Matrix33<T> &mat, |
|
Vec2<T> &s, |
|
T &h, |
|
T &r, |
|
Vec2<T> &t, |
|
bool exc) |
|
{ |
|
Matrix33<T> rot; |
|
|
|
rot = mat; |
|
if (! extractAndRemoveScalingAndShear (rot, s, h, exc)) |
|
return false; |
|
|
|
extractEuler (rot, r); |
|
|
|
t.x = mat[2][0]; |
|
t.y = mat[2][1]; |
|
|
|
return true; |
|
} |
|
|
|
|
|
template <class T> |
|
bool |
|
checkForZeroScaleInRow (const T& scl, |
|
const Vec2<T> &row, |
|
bool exc /* = true */ ) |
|
{ |
|
for (int i = 0; i < 2; i++) |
|
{ |
|
if ((abs (scl) < 1 && abs (row[i]) >= limits<T>::max() * abs (scl))) |
|
{ |
|
if (exc) |
|
throw Imath::ZeroScaleExc ("Cannot remove zero scaling " |
|
"from matrix."); |
|
else |
|
return false; |
|
} |
|
} |
|
|
|
return true; |
|
} |
|
|
|
|
|
template <class T> |
|
Matrix33<T> |
|
outerProduct (const Vec3<T> &a, const Vec3<T> &b ) |
|
{ |
|
return Matrix33<T> (a.x*b.x, a.x*b.y, a.x*b.z, |
|
a.y*b.x, a.y*b.y, a.y*b.z, |
|
a.z*b.x, a.z*b.y, a.z*b.z ); |
|
} |
|
|
|
|
|
// Computes the translation and rotation that brings the 'from' points |
|
// as close as possible to the 'to' points under the Frobenius norm. |
|
// To be more specific, let x be the matrix of 'from' points and y be |
|
// the matrix of 'to' points, we want to find the matrix A of the form |
|
// [ R t ] |
|
// [ 0 1 ] |
|
// that minimizes |
|
// || (A*x - y)^T * W * (A*x - y) ||_F |
|
// If doScaling is true, then a uniform scale is allowed also. |
|
template <typename T> |
|
Imath::M44d |
|
procrustesRotationAndTranslation (const Imath::Vec3<T>* A, // From these |
|
const Imath::Vec3<T>* B, // To these |
|
const T* weights, |
|
const size_t numPoints, |
|
const bool doScaling = false); |
|
|
|
// Unweighted: |
|
template <typename T> |
|
Imath::M44d |
|
procrustesRotationAndTranslation (const Imath::Vec3<T>* A, |
|
const Imath::Vec3<T>* B, |
|
const size_t numPoints, |
|
const bool doScaling = false); |
|
|
|
// Compute the SVD of a 3x3 matrix using Jacobi transformations. This method |
|
// should be quite accurate (competitive with LAPACK) even for poorly |
|
// conditioned matrices, and because it has been written specifically for the |
|
// 3x3/4x4 case it is much faster than calling out to LAPACK. |
|
// |
|
// The SVD of a 3x3/4x4 matrix A is defined as follows: |
|
// A = U * S * V^T |
|
// where S is the diagonal matrix of singular values and both U and V are |
|
// orthonormal. By convention, the entries S are all positive and sorted from |
|
// the largest to the smallest. However, some uses of this function may |
|
// require that the matrix U*V^T have positive determinant; in this case, we |
|
// may make the smallest singular value negative to ensure that this is |
|
// satisfied. |
|
// |
|
// Currently only available for single- and double-precision matrices. |
|
template <typename T> |
|
void |
|
jacobiSVD (const Imath::Matrix33<T>& A, |
|
Imath::Matrix33<T>& U, |
|
Imath::Vec3<T>& S, |
|
Imath::Matrix33<T>& V, |
|
const T tol = Imath::limits<T>::epsilon(), |
|
const bool forcePositiveDeterminant = false); |
|
|
|
template <typename T> |
|
void |
|
jacobiSVD (const Imath::Matrix44<T>& A, |
|
Imath::Matrix44<T>& U, |
|
Imath::Vec4<T>& S, |
|
Imath::Matrix44<T>& V, |
|
const T tol = Imath::limits<T>::epsilon(), |
|
const bool forcePositiveDeterminant = false); |
|
|
|
// Compute the eigenvalues (S) and the eigenvectors (V) of |
|
// a real symmetric matrix using Jacobi transformation. |
|
// |
|
// Jacobi transformation of a 3x3/4x4 matrix A outputs S and V: |
|
// A = V * S * V^T |
|
// where V is orthonormal and S is the diagonal matrix of eigenvalues. |
|
// Input matrix A must be symmetric. A is also modified during |
|
// the computation so that upper diagonal entries of A become zero. |
|
// |
|
template <typename T> |
|
void |
|
jacobiEigenSolver (Matrix33<T>& A, |
|
Vec3<T>& S, |
|
Matrix33<T>& V, |
|
const T tol); |
|
|
|
template <typename T> |
|
inline |
|
void |
|
jacobiEigenSolver (Matrix33<T>& A, |
|
Vec3<T>& S, |
|
Matrix33<T>& V) |
|
{ |
|
jacobiEigenSolver(A,S,V,limits<T>::epsilon()); |
|
} |
|
|
|
template <typename T> |
|
void |
|
jacobiEigenSolver (Matrix44<T>& A, |
|
Vec4<T>& S, |
|
Matrix44<T>& V, |
|
const T tol); |
|
|
|
template <typename T> |
|
inline |
|
void |
|
jacobiEigenSolver (Matrix44<T>& A, |
|
Vec4<T>& S, |
|
Matrix44<T>& V) |
|
{ |
|
jacobiEigenSolver(A,S,V,limits<T>::epsilon()); |
|
} |
|
|
|
// Compute a eigenvector corresponding to the abs max/min eigenvalue |
|
// of a real symmetric matrix using Jacobi transformation. |
|
template <typename TM, typename TV> |
|
void |
|
maxEigenVector (TM& A, TV& S); |
|
template <typename TM, typename TV> |
|
void |
|
minEigenVector (TM& A, TV& S); |
|
|
|
} // namespace Imath |
|
|
|
#endif
|
|
|