|
|
#include <opencv2/opencv.hpp> |
|
|
|
|
|
#include <string> |
|
|
#include <iostream> |
|
|
#include <fstream> |
|
|
#include <vector> |
|
|
|
|
|
#include <time.h> |
|
|
|
|
|
using namespace cv; |
|
|
using namespace std; |
|
|
|
|
|
void get_svm_detector(const SVM& svm, vector< float > & hog_detector ); |
|
|
void convert_to_ml(const std::vector< cv::Mat > & train_samples, cv::Mat& trainData ); |
|
|
void load_images( const string & prefix, const string & filename, vector< Mat > & img_lst ); |
|
|
void sample_neg( const vector< Mat > & full_neg_lst, vector< Mat > & neg_lst, const Size & size ); |
|
|
Mat get_hogdescriptor_visu(Mat& color_origImg, vector<float>& descriptorValues, const Size & size ); |
|
|
void compute_hog( const vector< Mat > & img_lst, vector< Mat > & gradient_lst, const Size & size ); |
|
|
void train_svm( const vector< Mat > & gradient_lst, const vector< int > & labels ); |
|
|
void draw_locations( Mat & img, const vector< Rect > & locations, const Scalar & color ); |
|
|
void test_it( const Size & size ); |
|
|
|
|
|
void get_svm_detector(const SVM& svm, vector< float > & hog_detector ) |
|
|
{ |
|
|
// get the number of variables |
|
|
const int var_all = svm.get_var_count(); |
|
|
// get the number of support vectors |
|
|
const int sv_total = svm.get_support_vector_count(); |
|
|
// get the decision function |
|
|
const CvSVMDecisionFunc* decision_func = svm.get_decision_function(); |
|
|
// get the support vectors |
|
|
const float** sv = new const float*[ sv_total ]; |
|
|
for( int i = 0 ; i < sv_total ; ++i ) |
|
|
sv[ i ] = svm.get_support_vector(i); |
|
|
|
|
|
CV_Assert( var_all > 0 && |
|
|
sv_total > 0 && |
|
|
decision_func != 0 && |
|
|
decision_func->alpha != 0 && |
|
|
decision_func->sv_count == sv_total ); |
|
|
|
|
|
float svi = 0.f; |
|
|
|
|
|
hog_detector.clear(); //clear stuff in vector. |
|
|
hog_detector.reserve( var_all + 1 ); //reserve place for memory efficiency. |
|
|
|
|
|
/** |
|
|
* hog_detector^i = \sum_j support_vector_j^i * \alpha_j |
|
|
* hog_detector^dim = -\rho |
|
|
*/ |
|
|
for( int i = 0 ; i < var_all ; ++i ) |
|
|
{ |
|
|
svi = 0.f; |
|
|
for( int j = 0 ; j < sv_total ; ++j ) |
|
|
{ |
|
|
if( decision_func->sv_index != NULL ) // sometime the sv_index isn't store on YML/XML. |
|
|
svi += (float)( sv[decision_func->sv_index[j]][i] * decision_func->alpha[ j ] ); |
|
|
else |
|
|
svi += (float)( sv[j][i] * decision_func->alpha[ j ] ); |
|
|
} |
|
|
hog_detector.push_back( svi ); |
|
|
} |
|
|
hog_detector.push_back( (float)-decision_func->rho ); |
|
|
|
|
|
delete[] sv; |
|
|
} |
|
|
|
|
|
|
|
|
/* |
|
|
* Convert training/testing set to be used by OpenCV Machine Learning algorithms. |
|
|
* TrainData is a matrix of size (#samples x max(#cols,#rows) per samples), in 32FC1. |
|
|
* Transposition of samples are made if needed. |
|
|
*/ |
|
|
void convert_to_ml(const std::vector< cv::Mat > & train_samples, cv::Mat& trainData ) |
|
|
{ |
|
|
//--Convert data |
|
|
const int rows = (int)train_samples.size(); |
|
|
const int cols = (int)std::max( train_samples[0].cols, train_samples[0].rows ); |
|
|
cv::Mat tmp(1, cols, CV_32FC1); //< used for transposition if needed |
|
|
trainData = cv::Mat(rows, cols, CV_32FC1 ); |
|
|
vector< Mat >::const_iterator itr = train_samples.begin(); |
|
|
vector< Mat >::const_iterator end = train_samples.end(); |
|
|
for( int i = 0 ; itr != end ; ++itr, ++i ) |
|
|
{ |
|
|
CV_Assert( itr->cols == 1 || |
|
|
itr->rows == 1 ); |
|
|
if( itr->cols == 1 ) |
|
|
{ |
|
|
transpose( *(itr), tmp ); |
|
|
tmp.copyTo( trainData.row( i ) ); |
|
|
} |
|
|
else if( itr->rows == 1 ) |
|
|
{ |
|
|
itr->copyTo( trainData.row( i ) ); |
|
|
} |
|
|
} |
|
|
} |
|
|
|
|
|
void load_images( const string & prefix, const string & filename, vector< Mat > & img_lst ) |
|
|
{ |
|
|
string line; |
|
|
ifstream file; |
|
|
|
|
|
file.open( (prefix+filename).c_str() ); |
|
|
if( !file.is_open() ) |
|
|
{ |
|
|
cerr << "Unable to open the list of images from " << filename << " filename." << endl; |
|
|
exit( -1 ); |
|
|
} |
|
|
|
|
|
while( 1 ) |
|
|
{ |
|
|
getline( file, line ); |
|
|
if( line == "" ) // no more file to read |
|
|
break; |
|
|
Mat img = imread( (prefix+line).c_str() ); // load the image |
|
|
if( !img.data ) // invalid image, just skip it. |
|
|
continue; |
|
|
#ifdef _DEBUG |
|
|
imshow( "image", img ); |
|
|
waitKey( 10 ); |
|
|
#endif |
|
|
img_lst.push_back( img.clone() ); |
|
|
} |
|
|
} |
|
|
|
|
|
void sample_neg( const vector< Mat > & full_neg_lst, vector< Mat > & neg_lst, const Size & size ) |
|
|
{ |
|
|
Rect box; |
|
|
box.width = size.width; |
|
|
box.height = size.height; |
|
|
|
|
|
const int size_x = box.width; |
|
|
const int size_y = box.height; |
|
|
|
|
|
srand( time( NULL ) ); |
|
|
|
|
|
vector< Mat >::const_iterator img = full_neg_lst.begin(); |
|
|
vector< Mat >::const_iterator end = full_neg_lst.end(); |
|
|
for( ; img != end ; ++img ) |
|
|
{ |
|
|
box.x = rand() % (img->cols - size_x); |
|
|
box.y = rand() % (img->rows - size_y); |
|
|
Mat roi = (*img)(box); |
|
|
neg_lst.push_back( roi.clone() ); |
|
|
#ifdef _DEBUG |
|
|
imshow( "img", roi.clone() ); |
|
|
waitKey( 10 ); |
|
|
#endif |
|
|
} |
|
|
} |
|
|
|
|
|
// From http://www.juergenwiki.de/work/wiki/doku.php?id=public:hog_descriptor_computation_and_visualization |
|
|
Mat get_hogdescriptor_visu(Mat& color_origImg, vector<float>& descriptorValues, const Size & size ) |
|
|
{ |
|
|
const int DIMX = size.width; |
|
|
const int DIMY = size.height; |
|
|
float zoomFac = 3; |
|
|
Mat visu; |
|
|
resize(color_origImg, visu, Size(color_origImg.cols*zoomFac, color_origImg.rows*zoomFac)); |
|
|
|
|
|
int cellSize = 8; |
|
|
int gradientBinSize = 9; |
|
|
float radRangeForOneBin = CV_PI/(float)gradientBinSize; // dividing 180<EFBFBD> into 9 bins, how large (in rad) is one bin? |
|
|
|
|
|
// prepare data structure: 9 orientation / gradient strenghts for each cell |
|
|
int cells_in_x_dir = DIMX / cellSize; |
|
|
int cells_in_y_dir = DIMY / cellSize; |
|
|
float*** gradientStrengths = new float**[cells_in_y_dir]; |
|
|
int** cellUpdateCounter = new int*[cells_in_y_dir]; |
|
|
for (int y=0; y<cells_in_y_dir; y++) |
|
|
{ |
|
|
gradientStrengths[y] = new float*[cells_in_x_dir]; |
|
|
cellUpdateCounter[y] = new int[cells_in_x_dir]; |
|
|
for (int x=0; x<cells_in_x_dir; x++) |
|
|
{ |
|
|
gradientStrengths[y][x] = new float[gradientBinSize]; |
|
|
cellUpdateCounter[y][x] = 0; |
|
|
|
|
|
for (int bin=0; bin<gradientBinSize; bin++) |
|
|
gradientStrengths[y][x][bin] = 0.0; |
|
|
} |
|
|
} |
|
|
|
|
|
// nr of blocks = nr of cells - 1 |
|
|
// since there is a new block on each cell (overlapping blocks!) but the last one |
|
|
int blocks_in_x_dir = cells_in_x_dir - 1; |
|
|
int blocks_in_y_dir = cells_in_y_dir - 1; |
|
|
|
|
|
// compute gradient strengths per cell |
|
|
int descriptorDataIdx = 0; |
|
|
int cellx = 0; |
|
|
int celly = 0; |
|
|
|
|
|
for (int blockx=0; blockx<blocks_in_x_dir; blockx++) |
|
|
{ |
|
|
for (int blocky=0; blocky<blocks_in_y_dir; blocky++) |
|
|
{ |
|
|
// 4 cells per block ... |
|
|
for (int cellNr=0; cellNr<4; cellNr++) |
|
|
{ |
|
|
// compute corresponding cell nr |
|
|
cellx = blockx; |
|
|
celly = blocky; |
|
|
if (cellNr==1) celly++; |
|
|
if (cellNr==2) cellx++; |
|
|
if (cellNr==3) |
|
|
{ |
|
|
cellx++; |
|
|
celly++; |
|
|
} |
|
|
|
|
|
for (int bin=0; bin<gradientBinSize; bin++) |
|
|
{ |
|
|
float gradientStrength = descriptorValues[ descriptorDataIdx ]; |
|
|
descriptorDataIdx++; |
|
|
|
|
|
gradientStrengths[celly][cellx][bin] += gradientStrength; |
|
|
|
|
|
} // for (all bins) |
|
|
|
|
|
|
|
|
// note: overlapping blocks lead to multiple updates of this sum! |
|
|
// we therefore keep track how often a cell was updated, |
|
|
// to compute average gradient strengths |
|
|
cellUpdateCounter[celly][cellx]++; |
|
|
|
|
|
} // for (all cells) |
|
|
|
|
|
|
|
|
} // for (all block x pos) |
|
|
} // for (all block y pos) |
|
|
|
|
|
|
|
|
// compute average gradient strengths |
|
|
for (celly=0; celly<cells_in_y_dir; celly++) |
|
|
{ |
|
|
for (cellx=0; cellx<cells_in_x_dir; cellx++) |
|
|
{ |
|
|
|
|
|
float NrUpdatesForThisCell = (float)cellUpdateCounter[celly][cellx]; |
|
|
|
|
|
// compute average gradient strenghts for each gradient bin direction |
|
|
for (int bin=0; bin<gradientBinSize; bin++) |
|
|
{ |
|
|
gradientStrengths[celly][cellx][bin] /= NrUpdatesForThisCell; |
|
|
} |
|
|
} |
|
|
} |
|
|
|
|
|
// draw cells |
|
|
for (celly=0; celly<cells_in_y_dir; celly++) |
|
|
{ |
|
|
for (cellx=0; cellx<cells_in_x_dir; cellx++) |
|
|
{ |
|
|
int drawX = cellx * cellSize; |
|
|
int drawY = celly * cellSize; |
|
|
|
|
|
int mx = drawX + cellSize/2; |
|
|
int my = drawY + cellSize/2; |
|
|
|
|
|
rectangle(visu, Point(drawX*zoomFac,drawY*zoomFac), Point((drawX+cellSize)*zoomFac,(drawY+cellSize)*zoomFac), CV_RGB(100,100,100), 1); |
|
|
|
|
|
// draw in each cell all 9 gradient strengths |
|
|
for (int bin=0; bin<gradientBinSize; bin++) |
|
|
{ |
|
|
float currentGradStrength = gradientStrengths[celly][cellx][bin]; |
|
|
|
|
|
// no line to draw? |
|
|
if (currentGradStrength==0) |
|
|
continue; |
|
|
|
|
|
float currRad = bin * radRangeForOneBin + radRangeForOneBin/2; |
|
|
|
|
|
float dirVecX = cos( currRad ); |
|
|
float dirVecY = sin( currRad ); |
|
|
float maxVecLen = cellSize/2; |
|
|
float scale = 2.5; // just a visualization scale, to see the lines better |
|
|
|
|
|
// compute line coordinates |
|
|
float x1 = mx - dirVecX * currentGradStrength * maxVecLen * scale; |
|
|
float y1 = my - dirVecY * currentGradStrength * maxVecLen * scale; |
|
|
float x2 = mx + dirVecX * currentGradStrength * maxVecLen * scale; |
|
|
float y2 = my + dirVecY * currentGradStrength * maxVecLen * scale; |
|
|
|
|
|
// draw gradient visualization |
|
|
line(visu, Point(x1*zoomFac,y1*zoomFac), Point(x2*zoomFac,y2*zoomFac), CV_RGB(0,255,0), 1); |
|
|
|
|
|
} // for (all bins) |
|
|
|
|
|
} // for (cellx) |
|
|
} // for (celly) |
|
|
|
|
|
|
|
|
// don't forget to free memory allocated by helper data structures! |
|
|
for (int y=0; y<cells_in_y_dir; y++) |
|
|
{ |
|
|
for (int x=0; x<cells_in_x_dir; x++) |
|
|
{ |
|
|
delete[] gradientStrengths[y][x]; |
|
|
} |
|
|
delete[] gradientStrengths[y]; |
|
|
delete[] cellUpdateCounter[y]; |
|
|
} |
|
|
delete[] gradientStrengths; |
|
|
delete[] cellUpdateCounter; |
|
|
|
|
|
return visu; |
|
|
|
|
|
} // get_hogdescriptor_visu |
|
|
|
|
|
void compute_hog( const vector< Mat > & img_lst, vector< Mat > & gradient_lst, const Size & size ) |
|
|
{ |
|
|
HOGDescriptor hog; |
|
|
hog.winSize = size; |
|
|
Mat gray; |
|
|
vector< Point > location; |
|
|
vector< float > descriptors; |
|
|
|
|
|
vector< Mat >::const_iterator img = img_lst.begin(); |
|
|
vector< Mat >::const_iterator end = img_lst.end(); |
|
|
for( ; img != end ; ++img ) |
|
|
{ |
|
|
cvtColor( *img, gray, COLOR_BGR2GRAY ); |
|
|
hog.compute( gray, descriptors, Size( 8, 8 ), Size( 0, 0 ), location ); |
|
|
gradient_lst.push_back( Mat( descriptors ).clone() ); |
|
|
#ifdef _DEBUG |
|
|
imshow( "gradient", get_hogdescriptor_visu( img->clone(), descriptors, size ) ); |
|
|
waitKey( 10 ); |
|
|
#endif |
|
|
} |
|
|
} |
|
|
|
|
|
void train_svm( const vector< Mat > & gradient_lst, const vector< int > & labels ) |
|
|
{ |
|
|
SVM svm; |
|
|
|
|
|
/* Default values to train SVM */ |
|
|
SVMParams params; |
|
|
params.coef0 = 0.0; |
|
|
params.degree = 3; |
|
|
params.term_crit.epsilon = 1e-3; |
|
|
params.gamma = 0; |
|
|
params.kernel_type = SVM::LINEAR; |
|
|
params.nu = 0.5; |
|
|
params.p = 0.1; // for EPSILON_SVR, epsilon in loss function? |
|
|
params.C = 0.01; // From paper, soft classifier |
|
|
params.svm_type = SVM::EPS_SVR; // C_SVC; // EPSILON_SVR; // may be also NU_SVR; // do regression task |
|
|
|
|
|
Mat train_data; |
|
|
convert_to_ml( gradient_lst, train_data ); |
|
|
|
|
|
clog << "Start training..."; |
|
|
svm.train( train_data, Mat( labels ), Mat(), Mat(), params ); |
|
|
clog << "...[done]" << endl; |
|
|
|
|
|
svm.save( "my_people_detector.yml" ); |
|
|
} |
|
|
|
|
|
void draw_locations( Mat & img, const vector< Rect > & locations, const Scalar & color ) |
|
|
{ |
|
|
if( !locations.empty() ) |
|
|
{ |
|
|
vector< Rect >::const_iterator loc = locations.begin(); |
|
|
vector< Rect >::const_iterator end = locations.end(); |
|
|
for( ; loc != end ; ++loc ) |
|
|
{ |
|
|
rectangle( img, *loc, color, 2 ); |
|
|
} |
|
|
} |
|
|
} |
|
|
|
|
|
void test_it( const Size & size ) |
|
|
{ |
|
|
char key = 27; |
|
|
Scalar reference( 0, 255, 0 ); |
|
|
Scalar trained( 0, 0, 255 ); |
|
|
Mat img, draw; |
|
|
SVM svm; |
|
|
HOGDescriptor hog; |
|
|
HOGDescriptor my_hog; |
|
|
my_hog.winSize = size; |
|
|
VideoCapture video; |
|
|
vector< Rect > locations; |
|
|
|
|
|
// Load the trained SVM. |
|
|
svm.load( "my_people_detector.yml" ); |
|
|
// Set the trained svm to my_hog |
|
|
vector< float > hog_detector; |
|
|
get_svm_detector( svm, hog_detector ); |
|
|
my_hog.setSVMDetector( hog_detector ); |
|
|
// Set the people detector. |
|
|
hog.setSVMDetector( hog.getDefaultPeopleDetector() ); |
|
|
// Open the camera. |
|
|
video.open(0); |
|
|
if( !video.isOpened() ) |
|
|
{ |
|
|
cerr << "Unable to open the device 0" << endl; |
|
|
exit( -1 ); |
|
|
} |
|
|
|
|
|
while( true ) |
|
|
{ |
|
|
video >> img; |
|
|
if( !img.data ) |
|
|
break; |
|
|
|
|
|
draw = img.clone(); |
|
|
|
|
|
locations.clear(); |
|
|
hog.detectMultiScale( img, locations ); |
|
|
draw_locations( draw, locations, reference ); |
|
|
|
|
|
locations.clear(); |
|
|
my_hog.detectMultiScale( img, locations ); |
|
|
draw_locations( draw, locations, trained ); |
|
|
|
|
|
imshow( "Video", draw ); |
|
|
key = waitKey( 10 ); |
|
|
if( 27 == key ) |
|
|
break; |
|
|
} |
|
|
} |
|
|
|
|
|
int main( int argc, char** argv ) |
|
|
{ |
|
|
if( argc != 4 ) |
|
|
{ |
|
|
cout << "Wrong number of parameters." << endl |
|
|
<< "Usage: " << argv[0] << " pos_dir pos.lst neg_dir neg.lst" << endl |
|
|
<< "example: " << argv[0] << " /INRIA_dataset/ Train/pos.lst /INRIA_dataset/ Train/neg.lst" << endl; |
|
|
exit( -1 ); |
|
|
} |
|
|
vector< Mat > pos_lst; |
|
|
vector< Mat > full_neg_lst; |
|
|
vector< Mat > neg_lst; |
|
|
vector< Mat > gradient_lst; |
|
|
vector< int > labels; |
|
|
|
|
|
load_images( argv[1], argv[2], pos_lst ); |
|
|
labels.assign( pos_lst.size(), +1 ); |
|
|
const unsigned int old = labels.size(); |
|
|
load_images( argv[3], argv[4], full_neg_lst ); |
|
|
sample_neg( full_neg_lst, neg_lst, Size( 96,160 ) ); |
|
|
labels.insert( labels.end(), neg_lst.size(), -1 ); |
|
|
CV_Assert( old < labels.size() ); |
|
|
|
|
|
compute_hog( pos_lst, gradient_lst, Size( 96, 160 ) ); |
|
|
compute_hog( neg_lst, gradient_lst, Size( 96, 160 ) ); |
|
|
|
|
|
train_svm( gradient_lst, labels ); |
|
|
|
|
|
test_it( Size( 96, 160 ) ); // change with your parameters |
|
|
|
|
|
return 0; |
|
|
}
|
|
|
|