mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
718 lines
21 KiB
718 lines
21 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
#include "opencv2/videostab/motion_stabilizing.hpp" |
|
#include "opencv2/videostab/global_motion.hpp" |
|
#include "opencv2/videostab/ring_buffer.hpp" |
|
#include "clp.hpp" |
|
|
|
namespace cv |
|
{ |
|
namespace videostab |
|
{ |
|
|
|
void MotionStabilizationPipeline::stabilize( |
|
int size, const std::vector<Mat> &motions, std::pair<int,int> range, Mat *stabilizationMotions) |
|
{ |
|
std::vector<Mat> updatedMotions(motions.size()); |
|
for (size_t i = 0; i < motions.size(); ++i) |
|
updatedMotions[i] = motions[i].clone(); |
|
|
|
std::vector<Mat> stabilizationMotions_(size); |
|
|
|
for (int i = 0; i < size; ++i) |
|
stabilizationMotions[i] = Mat::eye(3, 3, CV_32F); |
|
|
|
for (size_t i = 0; i < stabilizers_.size(); ++i) |
|
{ |
|
stabilizers_[i]->stabilize(size, updatedMotions, range, &stabilizationMotions_[0]); |
|
|
|
for (int k = 0; k < size; ++k) |
|
stabilizationMotions[k] = stabilizationMotions_[k] * stabilizationMotions[k]; |
|
|
|
for (int j = 0; j + 1 < size; ++j) |
|
{ |
|
Mat S0 = stabilizationMotions[j]; |
|
Mat S1 = stabilizationMotions[j+1]; |
|
at(j, updatedMotions) = S1 * at(j, updatedMotions) * S0.inv(); |
|
} |
|
} |
|
} |
|
|
|
|
|
void MotionFilterBase::stabilize( |
|
int size, const std::vector<Mat> &motions, std::pair<int,int> range, Mat *stabilizationMotions) |
|
{ |
|
for (int i = 0; i < size; ++i) |
|
stabilizationMotions[i] = stabilize(i, motions, range); |
|
} |
|
|
|
|
|
void GaussianMotionFilter::setParams(int _radius, float _stdev) |
|
{ |
|
radius_ = _radius; |
|
stdev_ = _stdev > 0.f ? _stdev : std::sqrt(static_cast<float>(_radius)); |
|
|
|
float sum = 0; |
|
weight_.resize(2*radius_ + 1); |
|
for (int i = -radius_; i <= radius_; ++i) |
|
sum += weight_[radius_ + i] = std::exp(-i*i/(stdev_*stdev_)); |
|
for (int i = -radius_; i <= radius_; ++i) |
|
weight_[radius_ + i] /= sum; |
|
} |
|
|
|
|
|
Mat GaussianMotionFilter::stabilize(int idx, const std::vector<Mat> &motions, std::pair<int,int> range) |
|
{ |
|
const Mat &cur = at(idx, motions); |
|
Mat res = Mat::zeros(cur.size(), cur.type()); |
|
float sum = 0.f; |
|
int iMin = std::max(idx - radius_, range.first); |
|
int iMax = std::min(idx + radius_, range.second); |
|
for (int i = iMin; i <= iMax; ++i) |
|
{ |
|
res += weight_[radius_ + i - idx] * getMotion(idx, i, motions); |
|
sum += weight_[radius_ + i - idx]; |
|
} |
|
return sum > 0.f ? res / sum : Mat::eye(cur.size(), cur.type()); |
|
} |
|
|
|
|
|
LpMotionStabilizer::LpMotionStabilizer(MotionModel model) |
|
{ |
|
setMotionModel(model); |
|
setFrameSize(Size(0,0)); |
|
setTrimRatio(0.1f); |
|
setWeight1(1); |
|
setWeight2(10); |
|
setWeight3(100); |
|
setWeight4(100); |
|
} |
|
|
|
|
|
#ifndef HAVE_CLP |
|
|
|
void LpMotionStabilizer::stabilize(int, const std::vector<Mat>&, std::pair<int,int>, Mat*) |
|
{ |
|
CV_Error(Error::StsError, "The library is built without Clp support"); |
|
} |
|
|
|
#else |
|
|
|
void LpMotionStabilizer::stabilize( |
|
int size, const std::vector<Mat> &motions, std::pair<int,int> /*range*/, Mat *stabilizationMotions) |
|
{ |
|
CV_Assert(model_ <= MM_AFFINE); |
|
|
|
int N = size; |
|
const std::vector<Mat> &M = motions; |
|
Mat *S = stabilizationMotions; |
|
|
|
double w = frameSize_.width, h = frameSize_.height; |
|
double tw = w * trimRatio_, th = h * trimRatio_; |
|
|
|
int ncols = 4*N + 6*(N-1) + 6*(N-2) + 6*(N-3); |
|
int nrows = 8*N + 2*6*(N-1) + 2*6*(N-2) + 2*6*(N-3); |
|
|
|
rows_.clear(); |
|
cols_.clear(); |
|
elems_.clear(); |
|
|
|
obj_.assign(ncols, 0); |
|
collb_.assign(ncols, -INF); |
|
colub_.assign(ncols, INF); |
|
int c = 4*N; |
|
|
|
// for each slack variable e[t] (error bound) |
|
for (int t = 0; t < N-1; ++t, c += 6) |
|
{ |
|
// e[t](0,0) |
|
obj_[c] = w4_*w1_; |
|
collb_[c] = 0; |
|
|
|
// e[t](0,1) |
|
obj_[c+1] = w4_*w1_; |
|
collb_[c+1] = 0; |
|
|
|
// e[t](0,2) |
|
obj_[c+2] = w1_; |
|
collb_[c+2] = 0; |
|
|
|
// e[t](1,0) |
|
obj_[c+3] = w4_*w1_; |
|
collb_[c+3] = 0; |
|
|
|
// e[t](1,1) |
|
obj_[c+4] = w4_*w1_; |
|
collb_[c+4] = 0; |
|
|
|
// e[t](1,2) |
|
obj_[c+5] = w1_; |
|
collb_[c+5] = 0; |
|
} |
|
for (int t = 0; t < N-2; ++t, c += 6) |
|
{ |
|
// e[t](0,0) |
|
obj_[c] = w4_*w2_; |
|
collb_[c] = 0; |
|
|
|
// e[t](0,1) |
|
obj_[c+1] = w4_*w2_; |
|
collb_[c+1] = 0; |
|
|
|
// e[t](0,2) |
|
obj_[c+2] = w2_; |
|
collb_[c+2] = 0; |
|
|
|
// e[t](1,0) |
|
obj_[c+3] = w4_*w2_; |
|
collb_[c+3] = 0; |
|
|
|
// e[t](1,1) |
|
obj_[c+4] = w4_*w2_; |
|
collb_[c+4] = 0; |
|
|
|
// e[t](1,2) |
|
obj_[c+5] = w2_; |
|
collb_[c+5] = 0; |
|
} |
|
for (int t = 0; t < N-3; ++t, c += 6) |
|
{ |
|
// e[t](0,0) |
|
obj_[c] = w4_*w3_; |
|
collb_[c] = 0; |
|
|
|
// e[t](0,1) |
|
obj_[c+1] = w4_*w3_; |
|
collb_[c+1] = 0; |
|
|
|
// e[t](0,2) |
|
obj_[c+2] = w3_; |
|
collb_[c+2] = 0; |
|
|
|
// e[t](1,0) |
|
obj_[c+3] = w4_*w3_; |
|
collb_[c+3] = 0; |
|
|
|
// e[t](1,1) |
|
obj_[c+4] = w4_*w3_; |
|
collb_[c+4] = 0; |
|
|
|
// e[t](1,2) |
|
obj_[c+5] = w3_; |
|
collb_[c+5] = 0; |
|
} |
|
|
|
elems_.clear(); |
|
rowlb_.assign(nrows, -INF); |
|
rowub_.assign(nrows, INF); |
|
|
|
int r = 0; |
|
|
|
// frame corners |
|
const Point2d pt[] = {Point2d(0,0), Point2d(w,0), Point2d(w,h), Point2d(0,h)}; |
|
|
|
// for each frame |
|
for (int t = 0; t < N; ++t) |
|
{ |
|
c = 4*t; |
|
|
|
// for each frame corner |
|
for (int i = 0; i < 4; ++i, r += 2) |
|
{ |
|
set(r, c, pt[i].x); set(r, c+1, pt[i].y); set(r, c+2, 1); |
|
set(r+1, c, pt[i].y); set(r+1, c+1, -pt[i].x); set(r+1, c+3, 1); |
|
rowlb_[r] = pt[i].x-tw; |
|
rowub_[r] = pt[i].x+tw; |
|
rowlb_[r+1] = pt[i].y-th; |
|
rowub_[r+1] = pt[i].y+th; |
|
} |
|
} |
|
|
|
// for each S[t+1]M[t] - S[t] - e[t] <= 0 condition |
|
for (int t = 0; t < N-1; ++t, r += 6) |
|
{ |
|
Mat_<float> M0 = at(t,M); |
|
|
|
c = 4*t; |
|
set(r, c, -1); |
|
set(r+1, c+1, -1); |
|
set(r+2, c+2, -1); |
|
set(r+3, c+1, 1); |
|
set(r+4, c, -1); |
|
set(r+5, c+3, -1); |
|
|
|
c = 4*(t+1); |
|
set(r, c, M0(0,0)); set(r, c+1, M0(1,0)); |
|
set(r+1, c, M0(0,1)); set(r+1, c+1, M0(1,1)); |
|
set(r+2, c, M0(0,2)); set(r+2, c+1, M0(1,2)); set(r+2, c+2, 1); |
|
set(r+3, c, M0(1,0)); set(r+3, c+1, -M0(0,0)); |
|
set(r+4, c, M0(1,1)); set(r+4, c+1, -M0(0,1)); |
|
set(r+5, c, M0(1,2)); set(r+5, c+1, -M0(0,2)); set(r+5, c+3, 1); |
|
|
|
c = 4*N + 6*t; |
|
for (int i = 0; i < 6; ++i) |
|
set(r+i, c+i, -1); |
|
|
|
rowub_[r] = 0; |
|
rowub_[r+1] = 0; |
|
rowub_[r+2] = 0; |
|
rowub_[r+3] = 0; |
|
rowub_[r+4] = 0; |
|
rowub_[r+5] = 0; |
|
} |
|
|
|
// for each 0 <= S[t+1]M[t] - S[t] + e[t] condition |
|
for (int t = 0; t < N-1; ++t, r += 6) |
|
{ |
|
Mat_<float> M0 = at(t,M); |
|
|
|
c = 4*t; |
|
set(r, c, -1); |
|
set(r+1, c+1, -1); |
|
set(r+2, c+2, -1); |
|
set(r+3, c+1, 1); |
|
set(r+4, c, -1); |
|
set(r+5, c+3, -1); |
|
|
|
c = 4*(t+1); |
|
set(r, c, M0(0,0)); set(r, c+1, M0(1,0)); |
|
set(r+1, c, M0(0,1)); set(r+1, c+1, M0(1,1)); |
|
set(r+2, c, M0(0,2)); set(r+2, c+1, M0(1,2)); set(r+2, c+2, 1); |
|
set(r+3, c, M0(1,0)); set(r+3, c+1, -M0(0,0)); |
|
set(r+4, c, M0(1,1)); set(r+4, c+1, -M0(0,1)); |
|
set(r+5, c, M0(1,2)); set(r+5, c+1, -M0(0,2)); set(r+5, c+3, 1); |
|
|
|
c = 4*N + 6*t; |
|
for (int i = 0; i < 6; ++i) |
|
set(r+i, c+i, 1); |
|
|
|
rowlb_[r] = 0; |
|
rowlb_[r+1] = 0; |
|
rowlb_[r+2] = 0; |
|
rowlb_[r+3] = 0; |
|
rowlb_[r+4] = 0; |
|
rowlb_[r+5] = 0; |
|
} |
|
|
|
// for each S[t+2]M[t+1] - S[t+1]*(I+M[t]) + S[t] - e[t] <= 0 condition |
|
for (int t = 0; t < N-2; ++t, r += 6) |
|
{ |
|
Mat_<float> M0 = at(t,M), M1 = at(t+1,M); |
|
|
|
c = 4*t; |
|
set(r, c, 1); |
|
set(r+1, c+1, 1); |
|
set(r+2, c+2, 1); |
|
set(r+3, c+1, -1); |
|
set(r+4, c, 1); |
|
set(r+5, c+3, 1); |
|
|
|
c = 4*(t+1); |
|
set(r, c, -M0(0,0)-1); set(r, c+1, -M0(1,0)); |
|
set(r+1, c, -M0(0,1)); set(r+1, c+1, -M0(1,1)-1); |
|
set(r+2, c, -M0(0,2)); set(r+2, c+1, -M0(1,2)); set(r+2, c+2, -2); |
|
set(r+3, c, -M0(1,0)); set(r+3, c+1, M0(0,0)+1); |
|
set(r+4, c, -M0(1,1)-1); set(r+4, c+1, M0(0,1)); |
|
set(r+5, c, -M0(1,2)); set(r+5, c+1, M0(0,2)); set(r+5, c+3, -2); |
|
|
|
c = 4*(t+2); |
|
set(r, c, M1(0,0)); set(r, c+1, M1(1,0)); |
|
set(r+1, c, M1(0,1)); set(r+1, c+1, M1(1,1)); |
|
set(r+2, c, M1(0,2)); set(r+2, c+1, M1(1,2)); set(r+2, c+2, 1); |
|
set(r+3, c, M1(1,0)); set(r+3, c+1, -M1(0,0)); |
|
set(r+4, c, M1(1,1)); set(r+4, c+1, -M1(0,1)); |
|
set(r+5, c, M1(1,2)); set(r+5, c+1, -M1(0,2)); set(r+5, c+3, 1); |
|
|
|
c = 4*N + 6*(N-1) + 6*t; |
|
for (int i = 0; i < 6; ++i) |
|
set(r+i, c+i, -1); |
|
|
|
rowub_[r] = 0; |
|
rowub_[r+1] = 0; |
|
rowub_[r+2] = 0; |
|
rowub_[r+3] = 0; |
|
rowub_[r+4] = 0; |
|
rowub_[r+5] = 0; |
|
} |
|
|
|
// for each 0 <= S[t+2]M[t+1]] - S[t+1]*(I+M[t]) + S[t] + e[t] condition |
|
for (int t = 0; t < N-2; ++t, r += 6) |
|
{ |
|
Mat_<float> M0 = at(t,M), M1 = at(t+1,M); |
|
|
|
c = 4*t; |
|
set(r, c, 1); |
|
set(r+1, c+1, 1); |
|
set(r+2, c+2, 1); |
|
set(r+3, c+1, -1); |
|
set(r+4, c, 1); |
|
set(r+5, c+3, 1); |
|
|
|
c = 4*(t+1); |
|
set(r, c, -M0(0,0)-1); set(r, c+1, -M0(1,0)); |
|
set(r+1, c, -M0(0,1)); set(r+1, c+1, -M0(1,1)-1); |
|
set(r+2, c, -M0(0,2)); set(r+2, c+1, -M0(1,2)); set(r+2, c+2, -2); |
|
set(r+3, c, -M0(1,0)); set(r+3, c+1, M0(0,0)+1); |
|
set(r+4, c, -M0(1,1)-1); set(r+4, c+1, M0(0,1)); |
|
set(r+5, c, -M0(1,2)); set(r+5, c+1, M0(0,2)); set(r+5, c+3, -2); |
|
|
|
c = 4*(t+2); |
|
set(r, c, M1(0,0)); set(r, c+1, M1(1,0)); |
|
set(r+1, c, M1(0,1)); set(r+1, c+1, M1(1,1)); |
|
set(r+2, c, M1(0,2)); set(r+2, c+1, M1(1,2)); set(r+2, c+2, 1); |
|
set(r+3, c, M1(1,0)); set(r+3, c+1, -M1(0,0)); |
|
set(r+4, c, M1(1,1)); set(r+4, c+1, -M1(0,1)); |
|
set(r+5, c, M1(1,2)); set(r+5, c+1, -M1(0,2)); set(r+5, c+3, 1); |
|
|
|
c = 4*N + 6*(N-1) + 6*t; |
|
for (int i = 0; i < 6; ++i) |
|
set(r+i, c+i, 1); |
|
|
|
rowlb_[r] = 0; |
|
rowlb_[r+1] = 0; |
|
rowlb_[r+2] = 0; |
|
rowlb_[r+3] = 0; |
|
rowlb_[r+4] = 0; |
|
rowlb_[r+5] = 0; |
|
} |
|
|
|
// for each S[t+3]M[t+2] - S[t+2]*(I+2M[t+1]) + S[t+1]*(2*I+M[t]) - S[t] - e[t] <= 0 condition |
|
for (int t = 0; t < N-3; ++t, r += 6) |
|
{ |
|
Mat_<float> M0 = at(t,M), M1 = at(t+1,M), M2 = at(t+2,M); |
|
|
|
c = 4*t; |
|
set(r, c, -1); |
|
set(r+1, c+1, -1); |
|
set(r+2, c+2, -1); |
|
set(r+3, c+1, 1); |
|
set(r+4, c, -1); |
|
set(r+5, c+3, -1); |
|
|
|
c = 4*(t+1); |
|
set(r, c, M0(0,0)+2); set(r, c+1, M0(1,0)); |
|
set(r+1, c, M0(0,1)); set(r+1, c+1, M0(1,1)+2); |
|
set(r+2, c, M0(0,2)); set(r+2, c+1, M0(1,2)); set(r+2, c+2, 3); |
|
set(r+3, c, M0(1,0)); set(r+3, c+1, -M0(0,0)-2); |
|
set(r+4, c, M0(1,1)+2); set(r+4, c+1, -M0(0,1)); |
|
set(r+5, c, M0(1,2)); set(r+5, c+1, -M0(0,2)); set(r+5, c+3, 3); |
|
|
|
c = 4*(t+2); |
|
set(r, c, -2*M1(0,0)-1); set(r, c+1, -2*M1(1,0)); |
|
set(r+1, c, -2*M1(0,1)); set(r+1, c+1, -2*M1(1,1)-1); |
|
set(r+2, c, -2*M1(0,2)); set(r+2, c+1, -2*M1(1,2)); set(r+2, c+2, -3); |
|
set(r+3, c, -2*M1(1,0)); set(r+3, c+1, 2*M1(0,0)+1); |
|
set(r+4, c, -2*M1(1,1)-1); set(r+4, c+1, 2*M1(0,1)); |
|
set(r+5, c, -2*M1(1,2)); set(r+5, c+1, 2*M1(0,2)); set(r+5, c+3, -3); |
|
|
|
c = 4*(t+3); |
|
set(r, c, M2(0,0)); set(r, c+1, M2(1,0)); |
|
set(r+1, c, M2(0,1)); set(r+1, c+1, M2(1,1)); |
|
set(r+2, c, M2(0,2)); set(r+2, c+1, M2(1,2)); set(r+2, c+2, 1); |
|
set(r+3, c, M2(1,0)); set(r+3, c+1, -M2(0,0)); |
|
set(r+4, c, M2(1,1)); set(r+4, c+1, -M2(0,1)); |
|
set(r+5, c, M2(1,2)); set(r+5, c+1, -M2(0,2)); set(r+5, c+3, 1); |
|
|
|
c = 4*N + 6*(N-1) + 6*(N-2) + 6*t; |
|
for (int i = 0; i < 6; ++i) |
|
set(r+i, c+i, -1); |
|
|
|
rowub_[r] = 0; |
|
rowub_[r+1] = 0; |
|
rowub_[r+2] = 0; |
|
rowub_[r+3] = 0; |
|
rowub_[r+4] = 0; |
|
rowub_[r+5] = 0; |
|
} |
|
|
|
// for each 0 <= S[t+3]M[t+2] - S[t+2]*(I+2M[t+1]) + S[t+1]*(2*I+M[t]) + e[t] condition |
|
for (int t = 0; t < N-3; ++t, r += 6) |
|
{ |
|
Mat_<float> M0 = at(t,M), M1 = at(t+1,M), M2 = at(t+2,M); |
|
|
|
c = 4*t; |
|
set(r, c, -1); |
|
set(r+1, c+1, -1); |
|
set(r+2, c+2, -1); |
|
set(r+3, c+1, 1); |
|
set(r+4, c, -1); |
|
set(r+5, c+3, -1); |
|
|
|
c = 4*(t+1); |
|
set(r, c, M0(0,0)+2); set(r, c+1, M0(1,0)); |
|
set(r+1, c, M0(0,1)); set(r+1, c+1, M0(1,1)+2); |
|
set(r+2, c, M0(0,2)); set(r+2, c+1, M0(1,2)); set(r+2, c+2, 3); |
|
set(r+3, c, M0(1,0)); set(r+3, c+1, -M0(0,0)-2); |
|
set(r+4, c, M0(1,1)+2); set(r+4, c+1, -M0(0,1)); |
|
set(r+5, c, M0(1,2)); set(r+5, c+1, -M0(0,2)); set(r+5, c+3, 3); |
|
|
|
c = 4*(t+2); |
|
set(r, c, -2*M1(0,0)-1); set(r, c+1, -2*M1(1,0)); |
|
set(r+1, c, -2*M1(0,1)); set(r+1, c+1, -2*M1(1,1)-1); |
|
set(r+2, c, -2*M1(0,2)); set(r+2, c+1, -2*M1(1,2)); set(r+2, c+2, -3); |
|
set(r+3, c, -2*M1(1,0)); set(r+3, c+1, 2*M1(0,0)+1); |
|
set(r+4, c, -2*M1(1,1)-1); set(r+4, c+1, 2*M1(0,1)); |
|
set(r+5, c, -2*M1(1,2)); set(r+5, c+1, 2*M1(0,2)); set(r+5, c+3, -3); |
|
|
|
c = 4*(t+3); |
|
set(r, c, M2(0,0)); set(r, c+1, M2(1,0)); |
|
set(r+1, c, M2(0,1)); set(r+1, c+1, M2(1,1)); |
|
set(r+2, c, M2(0,2)); set(r+2, c+1, M2(1,2)); set(r+2, c+2, 1); |
|
set(r+3, c, M2(1,0)); set(r+3, c+1, -M2(0,0)); |
|
set(r+4, c, M2(1,1)); set(r+4, c+1, -M2(0,1)); |
|
set(r+5, c, M2(1,2)); set(r+5, c+1, -M2(0,2)); set(r+5, c+3, 1); |
|
|
|
c = 4*N + 6*(N-1) + 6*(N-2) + 6*t; |
|
for (int i = 0; i < 6; ++i) |
|
set(r+i, c+i, 1); |
|
|
|
rowlb_[r] = 0; |
|
rowlb_[r+1] = 0; |
|
rowlb_[r+2] = 0; |
|
rowlb_[r+3] = 0; |
|
rowlb_[r+4] = 0; |
|
rowlb_[r+5] = 0; |
|
} |
|
|
|
// solve |
|
|
|
CoinPackedMatrix A(true, &rows_[0], &cols_[0], &elems_[0], elems_.size()); |
|
A.setDimensions(nrows, ncols); |
|
|
|
ClpSimplex model(false); |
|
model.loadProblem(A, &collb_[0], &colub_[0], &obj_[0], &rowlb_[0], &rowub_[0]); |
|
|
|
ClpDualRowSteepest dualSteep(1); |
|
model.setDualRowPivotAlgorithm(dualSteep); |
|
|
|
ClpPrimalColumnSteepest primalSteep(1); |
|
model.setPrimalColumnPivotAlgorithm(primalSteep); |
|
|
|
model.scaling(1); |
|
|
|
ClpPresolve presolveInfo; |
|
Ptr<ClpSimplex> presolvedModel(presolveInfo.presolvedModel(model)); |
|
|
|
if (presolvedModel) |
|
{ |
|
presolvedModel->dual(); |
|
presolveInfo.postsolve(true); |
|
model.checkSolution(); |
|
model.primal(1); |
|
} |
|
else |
|
{ |
|
model.dual(); |
|
model.checkSolution(); |
|
model.primal(1); |
|
} |
|
|
|
// save results |
|
|
|
const double *sol = model.getColSolution(); |
|
c = 0; |
|
|
|
for (int t = 0; t < N; ++t, c += 4) |
|
{ |
|
Mat_<float> S0 = Mat::eye(3, 3, CV_32F); |
|
S0(1,1) = S0(0,0) = sol[c]; |
|
S0(0,1) = sol[c+1]; |
|
S0(1,0) = -sol[c+1]; |
|
S0(0,2) = sol[c+2]; |
|
S0(1,2) = sol[c+3]; |
|
S[t] = S0; |
|
} |
|
} |
|
#endif // #ifndef HAVE_CLP |
|
|
|
|
|
static inline int areaSign(Point2f a, Point2f b, Point2f c) |
|
{ |
|
double area = (b-a).cross(c-a); |
|
if (area < -1e-5) return -1; |
|
if (area > 1e-5) return 1; |
|
return 0; |
|
} |
|
|
|
|
|
static inline bool segmentsIntersect(Point2f a, Point2f b, Point2f c, Point2f d) |
|
{ |
|
return areaSign(a,b,c) * areaSign(a,b,d) < 0 && |
|
areaSign(c,d,a) * areaSign(c,d,b) < 0; |
|
} |
|
|
|
|
|
// Checks if rect a (with sides parallel to axis) is inside rect b (arbitrary). |
|
// Rects must be passed in the [(0,0), (w,0), (w,h), (0,h)] order. |
|
static inline bool isRectInside(const Point2f a[4], const Point2f b[4]) |
|
{ |
|
for (int i = 0; i < 4; ++i) |
|
if (b[i].x > a[0].x && b[i].x < a[2].x && b[i].y > a[0].y && b[i].y < a[2].y) |
|
return false; |
|
for (int i = 0; i < 4; ++i) |
|
for (int j = 0; j < 4; ++j) |
|
if (segmentsIntersect(a[i], a[(i+1)%4], b[j], b[(j+1)%4])) |
|
return false; |
|
return true; |
|
} |
|
|
|
|
|
static inline bool isGoodMotion(const float M[], float w, float h, float dx, float dy) |
|
{ |
|
Point2f pt[4] = {Point2f(0,0), Point2f(w,0), Point2f(w,h), Point2f(0,h)}; |
|
Point2f Mpt[4]; |
|
|
|
for (int i = 0; i < 4; ++i) |
|
{ |
|
Mpt[i].x = M[0]*pt[i].x + M[1]*pt[i].y + M[2]; |
|
Mpt[i].y = M[3]*pt[i].x + M[4]*pt[i].y + M[5]; |
|
float z = M[6]*pt[i].x + M[7]*pt[i].y + M[8]; |
|
Mpt[i].x /= z; |
|
Mpt[i].y /= z; |
|
} |
|
|
|
pt[0] = Point2f(dx, dy); |
|
pt[1] = Point2f(w - dx, dy); |
|
pt[2] = Point2f(w - dx, h - dy); |
|
pt[3] = Point2f(dx, h - dy); |
|
|
|
return isRectInside(pt, Mpt); |
|
} |
|
|
|
|
|
static inline void relaxMotion(const float M[], float t, float res[]) |
|
{ |
|
res[0] = M[0]*(1.f-t) + t; |
|
res[1] = M[1]*(1.f-t); |
|
res[2] = M[2]*(1.f-t); |
|
res[3] = M[3]*(1.f-t); |
|
res[4] = M[4]*(1.f-t) + t; |
|
res[5] = M[5]*(1.f-t); |
|
res[6] = M[6]*(1.f-t); |
|
res[7] = M[7]*(1.f-t); |
|
res[8] = M[8]*(1.f-t) + t; |
|
} |
|
|
|
|
|
Mat ensureInclusionConstraint(const Mat &M, Size size, float trimRatio) |
|
{ |
|
CV_INSTRUMENT_REGION() |
|
|
|
CV_Assert(M.size() == Size(3,3) && M.type() == CV_32F); |
|
|
|
const float w = static_cast<float>(size.width); |
|
const float h = static_cast<float>(size.height); |
|
const float dx = floor(w * trimRatio); |
|
const float dy = floor(h * trimRatio); |
|
const float srcM[] = |
|
{M.at<float>(0,0), M.at<float>(0,1), M.at<float>(0,2), |
|
M.at<float>(1,0), M.at<float>(1,1), M.at<float>(1,2), |
|
M.at<float>(2,0), M.at<float>(2,1), M.at<float>(2,2)}; |
|
|
|
float curM[9]; |
|
float t = 0; |
|
relaxMotion(srcM, t, curM); |
|
if (isGoodMotion(curM, w, h, dx, dy)) |
|
return M; |
|
|
|
float l = 0, r = 1; |
|
while (r - l > 1e-3f) |
|
{ |
|
t = (l + r) * 0.5f; |
|
relaxMotion(srcM, t, curM); |
|
if (isGoodMotion(curM, w, h, dx, dy)) |
|
r = t; |
|
else |
|
l = t; |
|
} |
|
|
|
return (1 - r) * M + r * Mat::eye(3, 3, CV_32F); |
|
} |
|
|
|
|
|
// TODO can be estimated for O(1) time |
|
float estimateOptimalTrimRatio(const Mat &M, Size size) |
|
{ |
|
CV_INSTRUMENT_REGION() |
|
|
|
CV_Assert(M.size() == Size(3,3) && M.type() == CV_32F); |
|
|
|
const float w = static_cast<float>(size.width); |
|
const float h = static_cast<float>(size.height); |
|
Mat_<float> M_(M); |
|
|
|
Point2f pt[4] = {Point2f(0,0), Point2f(w,0), Point2f(w,h), Point2f(0,h)}; |
|
Point2f Mpt[4]; |
|
float z; |
|
|
|
for (int i = 0; i < 4; ++i) |
|
{ |
|
Mpt[i].x = M_(0,0)*pt[i].x + M_(0,1)*pt[i].y + M_(0,2); |
|
Mpt[i].y = M_(1,0)*pt[i].x + M_(1,1)*pt[i].y + M_(1,2); |
|
z = M_(2,0)*pt[i].x + M_(2,1)*pt[i].y + M_(2,2); |
|
Mpt[i].x /= z; |
|
Mpt[i].y /= z; |
|
} |
|
|
|
float l = 0, r = 0.5f; |
|
while (r - l > 1e-3f) |
|
{ |
|
float t = (l + r) * 0.5f; |
|
float dx = floor(w * t); |
|
float dy = floor(h * t); |
|
pt[0] = Point2f(dx, dy); |
|
pt[1] = Point2f(w - dx, dy); |
|
pt[2] = Point2f(w - dx, h - dy); |
|
pt[3] = Point2f(dx, h - dy); |
|
if (isRectInside(pt, Mpt)) |
|
r = t; |
|
else |
|
l = t; |
|
} |
|
|
|
return r; |
|
} |
|
|
|
} // namespace videostab |
|
} // namespace cv
|
|
|