mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
617 lines
14 KiB
617 lines
14 KiB
/* ssteqr.f -- translated by f2c (version 20061008). |
|
You must link the resulting object file with libf2c: |
|
on Microsoft Windows system, link with libf2c.lib; |
|
on Linux or Unix systems, link with .../path/to/libf2c.a -lm |
|
or, if you install libf2c.a in a standard place, with -lf2c -lm |
|
-- in that order, at the end of the command line, as in |
|
cc *.o -lf2c -lm |
|
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., |
|
|
|
http://www.netlib.org/f2c/libf2c.zip |
|
*/ |
|
|
|
#include "clapack.h" |
|
|
|
|
|
/* Table of constant values */ |
|
|
|
static real c_b9 = 0.f; |
|
static real c_b10 = 1.f; |
|
static integer c__0 = 0; |
|
static integer c__1 = 1; |
|
static integer c__2 = 2; |
|
|
|
/* Subroutine */ int ssteqr_(char *compz, integer *n, real *d__, real *e, |
|
real *z__, integer *ldz, real *work, integer *info) |
|
{ |
|
/* System generated locals */ |
|
integer z_dim1, z_offset, i__1, i__2; |
|
real r__1, r__2; |
|
|
|
/* Builtin functions */ |
|
double sqrt(doublereal), r_sign(real *, real *); |
|
|
|
/* Local variables */ |
|
real b, c__, f, g; |
|
integer i__, j, k, l, m; |
|
real p, r__, s; |
|
integer l1, ii, mm, lm1, mm1, nm1; |
|
real rt1, rt2, eps; |
|
integer lsv; |
|
real tst, eps2; |
|
integer lend, jtot; |
|
extern /* Subroutine */ int slae2_(real *, real *, real *, real *, real *) |
|
; |
|
extern logical lsame_(char *, char *); |
|
real anorm; |
|
extern /* Subroutine */ int slasr_(char *, char *, char *, integer *, |
|
integer *, real *, real *, real *, integer *), sswap_(integer *, real *, integer *, real *, integer *); |
|
integer lendm1, lendp1; |
|
extern /* Subroutine */ int slaev2_(real *, real *, real *, real *, real * |
|
, real *, real *); |
|
extern doublereal slapy2_(real *, real *); |
|
integer iscale; |
|
extern doublereal slamch_(char *); |
|
real safmin; |
|
extern /* Subroutine */ int xerbla_(char *, integer *); |
|
real safmax; |
|
extern /* Subroutine */ int slascl_(char *, integer *, integer *, real *, |
|
real *, integer *, integer *, real *, integer *, integer *); |
|
integer lendsv; |
|
extern /* Subroutine */ int slartg_(real *, real *, real *, real *, real * |
|
), slaset_(char *, integer *, integer *, real *, real *, real *, |
|
integer *); |
|
real ssfmin; |
|
integer nmaxit, icompz; |
|
real ssfmax; |
|
extern doublereal slanst_(char *, integer *, real *, real *); |
|
extern /* Subroutine */ int slasrt_(char *, integer *, real *, integer *); |
|
|
|
|
|
/* -- LAPACK routine (version 3.2) -- */ |
|
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ |
|
/* November 2006 */ |
|
|
|
/* .. Scalar Arguments .. */ |
|
/* .. */ |
|
/* .. Array Arguments .. */ |
|
/* .. */ |
|
|
|
/* Purpose */ |
|
/* ======= */ |
|
|
|
/* SSTEQR computes all eigenvalues and, optionally, eigenvectors of a */ |
|
/* symmetric tridiagonal matrix using the implicit QL or QR method. */ |
|
/* The eigenvectors of a full or band symmetric matrix can also be found */ |
|
/* if SSYTRD or SSPTRD or SSBTRD has been used to reduce this matrix to */ |
|
/* tridiagonal form. */ |
|
|
|
/* Arguments */ |
|
/* ========= */ |
|
|
|
/* COMPZ (input) CHARACTER*1 */ |
|
/* = 'N': Compute eigenvalues only. */ |
|
/* = 'V': Compute eigenvalues and eigenvectors of the original */ |
|
/* symmetric matrix. On entry, Z must contain the */ |
|
/* orthogonal matrix used to reduce the original matrix */ |
|
/* to tridiagonal form. */ |
|
/* = 'I': Compute eigenvalues and eigenvectors of the */ |
|
/* tridiagonal matrix. Z is initialized to the identity */ |
|
/* matrix. */ |
|
|
|
/* N (input) INTEGER */ |
|
/* The order of the matrix. N >= 0. */ |
|
|
|
/* D (input/output) REAL array, dimension (N) */ |
|
/* On entry, the diagonal elements of the tridiagonal matrix. */ |
|
/* On exit, if INFO = 0, the eigenvalues in ascending order. */ |
|
|
|
/* E (input/output) REAL array, dimension (N-1) */ |
|
/* On entry, the (n-1) subdiagonal elements of the tridiagonal */ |
|
/* matrix. */ |
|
/* On exit, E has been destroyed. */ |
|
|
|
/* Z (input/output) REAL array, dimension (LDZ, N) */ |
|
/* On entry, if COMPZ = 'V', then Z contains the orthogonal */ |
|
/* matrix used in the reduction to tridiagonal form. */ |
|
/* On exit, if INFO = 0, then if COMPZ = 'V', Z contains the */ |
|
/* orthonormal eigenvectors of the original symmetric matrix, */ |
|
/* and if COMPZ = 'I', Z contains the orthonormal eigenvectors */ |
|
/* of the symmetric tridiagonal matrix. */ |
|
/* If COMPZ = 'N', then Z is not referenced. */ |
|
|
|
/* LDZ (input) INTEGER */ |
|
/* The leading dimension of the array Z. LDZ >= 1, and if */ |
|
/* eigenvectors are desired, then LDZ >= max(1,N). */ |
|
|
|
/* WORK (workspace) REAL array, dimension (max(1,2*N-2)) */ |
|
/* If COMPZ = 'N', then WORK is not referenced. */ |
|
|
|
/* INFO (output) INTEGER */ |
|
/* = 0: successful exit */ |
|
/* < 0: if INFO = -i, the i-th argument had an illegal value */ |
|
/* > 0: the algorithm has failed to find all the eigenvalues in */ |
|
/* a total of 30*N iterations; if INFO = i, then i */ |
|
/* elements of E have not converged to zero; on exit, D */ |
|
/* and E contain the elements of a symmetric tridiagonal */ |
|
/* matrix which is orthogonally similar to the original */ |
|
/* matrix. */ |
|
|
|
/* ===================================================================== */ |
|
|
|
/* .. Parameters .. */ |
|
/* .. */ |
|
/* .. Local Scalars .. */ |
|
/* .. */ |
|
/* .. External Functions .. */ |
|
/* .. */ |
|
/* .. External Subroutines .. */ |
|
/* .. */ |
|
/* .. Intrinsic Functions .. */ |
|
/* .. */ |
|
/* .. Executable Statements .. */ |
|
|
|
/* Test the input parameters. */ |
|
|
|
/* Parameter adjustments */ |
|
--d__; |
|
--e; |
|
z_dim1 = *ldz; |
|
z_offset = 1 + z_dim1; |
|
z__ -= z_offset; |
|
--work; |
|
|
|
/* Function Body */ |
|
*info = 0; |
|
|
|
if (lsame_(compz, "N")) { |
|
icompz = 0; |
|
} else if (lsame_(compz, "V")) { |
|
icompz = 1; |
|
} else if (lsame_(compz, "I")) { |
|
icompz = 2; |
|
} else { |
|
icompz = -1; |
|
} |
|
if (icompz < 0) { |
|
*info = -1; |
|
} else if (*n < 0) { |
|
*info = -2; |
|
} else if (*ldz < 1 || icompz > 0 && *ldz < max(1,*n)) { |
|
*info = -6; |
|
} |
|
if (*info != 0) { |
|
i__1 = -(*info); |
|
xerbla_("SSTEQR", &i__1); |
|
return 0; |
|
} |
|
|
|
/* Quick return if possible */ |
|
|
|
if (*n == 0) { |
|
return 0; |
|
} |
|
|
|
if (*n == 1) { |
|
if (icompz == 2) { |
|
z__[z_dim1 + 1] = 1.f; |
|
} |
|
return 0; |
|
} |
|
|
|
/* Determine the unit roundoff and over/underflow thresholds. */ |
|
|
|
eps = slamch_("E"); |
|
/* Computing 2nd power */ |
|
r__1 = eps; |
|
eps2 = r__1 * r__1; |
|
safmin = slamch_("S"); |
|
safmax = 1.f / safmin; |
|
ssfmax = sqrt(safmax) / 3.f; |
|
ssfmin = sqrt(safmin) / eps2; |
|
|
|
/* Compute the eigenvalues and eigenvectors of the tridiagonal */ |
|
/* matrix. */ |
|
|
|
if (icompz == 2) { |
|
slaset_("Full", n, n, &c_b9, &c_b10, &z__[z_offset], ldz); |
|
} |
|
|
|
nmaxit = *n * 30; |
|
jtot = 0; |
|
|
|
/* Determine where the matrix splits and choose QL or QR iteration */ |
|
/* for each block, according to whether top or bottom diagonal */ |
|
/* element is smaller. */ |
|
|
|
l1 = 1; |
|
nm1 = *n - 1; |
|
|
|
L10: |
|
if (l1 > *n) { |
|
goto L160; |
|
} |
|
if (l1 > 1) { |
|
e[l1 - 1] = 0.f; |
|
} |
|
if (l1 <= nm1) { |
|
i__1 = nm1; |
|
for (m = l1; m <= i__1; ++m) { |
|
tst = (r__1 = e[m], dabs(r__1)); |
|
if (tst == 0.f) { |
|
goto L30; |
|
} |
|
if (tst <= sqrt((r__1 = d__[m], dabs(r__1))) * sqrt((r__2 = d__[m |
|
+ 1], dabs(r__2))) * eps) { |
|
e[m] = 0.f; |
|
goto L30; |
|
} |
|
/* L20: */ |
|
} |
|
} |
|
m = *n; |
|
|
|
L30: |
|
l = l1; |
|
lsv = l; |
|
lend = m; |
|
lendsv = lend; |
|
l1 = m + 1; |
|
if (lend == l) { |
|
goto L10; |
|
} |
|
|
|
/* Scale submatrix in rows and columns L to LEND */ |
|
|
|
i__1 = lend - l + 1; |
|
anorm = slanst_("I", &i__1, &d__[l], &e[l]); |
|
iscale = 0; |
|
if (anorm == 0.f) { |
|
goto L10; |
|
} |
|
if (anorm > ssfmax) { |
|
iscale = 1; |
|
i__1 = lend - l + 1; |
|
slascl_("G", &c__0, &c__0, &anorm, &ssfmax, &i__1, &c__1, &d__[l], n, |
|
info); |
|
i__1 = lend - l; |
|
slascl_("G", &c__0, &c__0, &anorm, &ssfmax, &i__1, &c__1, &e[l], n, |
|
info); |
|
} else if (anorm < ssfmin) { |
|
iscale = 2; |
|
i__1 = lend - l + 1; |
|
slascl_("G", &c__0, &c__0, &anorm, &ssfmin, &i__1, &c__1, &d__[l], n, |
|
info); |
|
i__1 = lend - l; |
|
slascl_("G", &c__0, &c__0, &anorm, &ssfmin, &i__1, &c__1, &e[l], n, |
|
info); |
|
} |
|
|
|
/* Choose between QL and QR iteration */ |
|
|
|
if ((r__1 = d__[lend], dabs(r__1)) < (r__2 = d__[l], dabs(r__2))) { |
|
lend = lsv; |
|
l = lendsv; |
|
} |
|
|
|
if (lend > l) { |
|
|
|
/* QL Iteration */ |
|
|
|
/* Look for small subdiagonal element. */ |
|
|
|
L40: |
|
if (l != lend) { |
|
lendm1 = lend - 1; |
|
i__1 = lendm1; |
|
for (m = l; m <= i__1; ++m) { |
|
/* Computing 2nd power */ |
|
r__2 = (r__1 = e[m], dabs(r__1)); |
|
tst = r__2 * r__2; |
|
if (tst <= eps2 * (r__1 = d__[m], dabs(r__1)) * (r__2 = d__[m |
|
+ 1], dabs(r__2)) + safmin) { |
|
goto L60; |
|
} |
|
/* L50: */ |
|
} |
|
} |
|
|
|
m = lend; |
|
|
|
L60: |
|
if (m < lend) { |
|
e[m] = 0.f; |
|
} |
|
p = d__[l]; |
|
if (m == l) { |
|
goto L80; |
|
} |
|
|
|
/* If remaining matrix is 2-by-2, use SLAE2 or SLAEV2 */ |
|
/* to compute its eigensystem. */ |
|
|
|
if (m == l + 1) { |
|
if (icompz > 0) { |
|
slaev2_(&d__[l], &e[l], &d__[l + 1], &rt1, &rt2, &c__, &s); |
|
work[l] = c__; |
|
work[*n - 1 + l] = s; |
|
slasr_("R", "V", "B", n, &c__2, &work[l], &work[*n - 1 + l], & |
|
z__[l * z_dim1 + 1], ldz); |
|
} else { |
|
slae2_(&d__[l], &e[l], &d__[l + 1], &rt1, &rt2); |
|
} |
|
d__[l] = rt1; |
|
d__[l + 1] = rt2; |
|
e[l] = 0.f; |
|
l += 2; |
|
if (l <= lend) { |
|
goto L40; |
|
} |
|
goto L140; |
|
} |
|
|
|
if (jtot == nmaxit) { |
|
goto L140; |
|
} |
|
++jtot; |
|
|
|
/* Form shift. */ |
|
|
|
g = (d__[l + 1] - p) / (e[l] * 2.f); |
|
r__ = slapy2_(&g, &c_b10); |
|
g = d__[m] - p + e[l] / (g + r_sign(&r__, &g)); |
|
|
|
s = 1.f; |
|
c__ = 1.f; |
|
p = 0.f; |
|
|
|
/* Inner loop */ |
|
|
|
mm1 = m - 1; |
|
i__1 = l; |
|
for (i__ = mm1; i__ >= i__1; --i__) { |
|
f = s * e[i__]; |
|
b = c__ * e[i__]; |
|
slartg_(&g, &f, &c__, &s, &r__); |
|
if (i__ != m - 1) { |
|
e[i__ + 1] = r__; |
|
} |
|
g = d__[i__ + 1] - p; |
|
r__ = (d__[i__] - g) * s + c__ * 2.f * b; |
|
p = s * r__; |
|
d__[i__ + 1] = g + p; |
|
g = c__ * r__ - b; |
|
|
|
/* If eigenvectors are desired, then save rotations. */ |
|
|
|
if (icompz > 0) { |
|
work[i__] = c__; |
|
work[*n - 1 + i__] = -s; |
|
} |
|
|
|
/* L70: */ |
|
} |
|
|
|
/* If eigenvectors are desired, then apply saved rotations. */ |
|
|
|
if (icompz > 0) { |
|
mm = m - l + 1; |
|
slasr_("R", "V", "B", n, &mm, &work[l], &work[*n - 1 + l], &z__[l |
|
* z_dim1 + 1], ldz); |
|
} |
|
|
|
d__[l] -= p; |
|
e[l] = g; |
|
goto L40; |
|
|
|
/* Eigenvalue found. */ |
|
|
|
L80: |
|
d__[l] = p; |
|
|
|
++l; |
|
if (l <= lend) { |
|
goto L40; |
|
} |
|
goto L140; |
|
|
|
} else { |
|
|
|
/* QR Iteration */ |
|
|
|
/* Look for small superdiagonal element. */ |
|
|
|
L90: |
|
if (l != lend) { |
|
lendp1 = lend + 1; |
|
i__1 = lendp1; |
|
for (m = l; m >= i__1; --m) { |
|
/* Computing 2nd power */ |
|
r__2 = (r__1 = e[m - 1], dabs(r__1)); |
|
tst = r__2 * r__2; |
|
if (tst <= eps2 * (r__1 = d__[m], dabs(r__1)) * (r__2 = d__[m |
|
- 1], dabs(r__2)) + safmin) { |
|
goto L110; |
|
} |
|
/* L100: */ |
|
} |
|
} |
|
|
|
m = lend; |
|
|
|
L110: |
|
if (m > lend) { |
|
e[m - 1] = 0.f; |
|
} |
|
p = d__[l]; |
|
if (m == l) { |
|
goto L130; |
|
} |
|
|
|
/* If remaining matrix is 2-by-2, use SLAE2 or SLAEV2 */ |
|
/* to compute its eigensystem. */ |
|
|
|
if (m == l - 1) { |
|
if (icompz > 0) { |
|
slaev2_(&d__[l - 1], &e[l - 1], &d__[l], &rt1, &rt2, &c__, &s) |
|
; |
|
work[m] = c__; |
|
work[*n - 1 + m] = s; |
|
slasr_("R", "V", "F", n, &c__2, &work[m], &work[*n - 1 + m], & |
|
z__[(l - 1) * z_dim1 + 1], ldz); |
|
} else { |
|
slae2_(&d__[l - 1], &e[l - 1], &d__[l], &rt1, &rt2); |
|
} |
|
d__[l - 1] = rt1; |
|
d__[l] = rt2; |
|
e[l - 1] = 0.f; |
|
l += -2; |
|
if (l >= lend) { |
|
goto L90; |
|
} |
|
goto L140; |
|
} |
|
|
|
if (jtot == nmaxit) { |
|
goto L140; |
|
} |
|
++jtot; |
|
|
|
/* Form shift. */ |
|
|
|
g = (d__[l - 1] - p) / (e[l - 1] * 2.f); |
|
r__ = slapy2_(&g, &c_b10); |
|
g = d__[m] - p + e[l - 1] / (g + r_sign(&r__, &g)); |
|
|
|
s = 1.f; |
|
c__ = 1.f; |
|
p = 0.f; |
|
|
|
/* Inner loop */ |
|
|
|
lm1 = l - 1; |
|
i__1 = lm1; |
|
for (i__ = m; i__ <= i__1; ++i__) { |
|
f = s * e[i__]; |
|
b = c__ * e[i__]; |
|
slartg_(&g, &f, &c__, &s, &r__); |
|
if (i__ != m) { |
|
e[i__ - 1] = r__; |
|
} |
|
g = d__[i__] - p; |
|
r__ = (d__[i__ + 1] - g) * s + c__ * 2.f * b; |
|
p = s * r__; |
|
d__[i__] = g + p; |
|
g = c__ * r__ - b; |
|
|
|
/* If eigenvectors are desired, then save rotations. */ |
|
|
|
if (icompz > 0) { |
|
work[i__] = c__; |
|
work[*n - 1 + i__] = s; |
|
} |
|
|
|
/* L120: */ |
|
} |
|
|
|
/* If eigenvectors are desired, then apply saved rotations. */ |
|
|
|
if (icompz > 0) { |
|
mm = l - m + 1; |
|
slasr_("R", "V", "F", n, &mm, &work[m], &work[*n - 1 + m], &z__[m |
|
* z_dim1 + 1], ldz); |
|
} |
|
|
|
d__[l] -= p; |
|
e[lm1] = g; |
|
goto L90; |
|
|
|
/* Eigenvalue found. */ |
|
|
|
L130: |
|
d__[l] = p; |
|
|
|
--l; |
|
if (l >= lend) { |
|
goto L90; |
|
} |
|
goto L140; |
|
|
|
} |
|
|
|
/* Undo scaling if necessary */ |
|
|
|
L140: |
|
if (iscale == 1) { |
|
i__1 = lendsv - lsv + 1; |
|
slascl_("G", &c__0, &c__0, &ssfmax, &anorm, &i__1, &c__1, &d__[lsv], |
|
n, info); |
|
i__1 = lendsv - lsv; |
|
slascl_("G", &c__0, &c__0, &ssfmax, &anorm, &i__1, &c__1, &e[lsv], n, |
|
info); |
|
} else if (iscale == 2) { |
|
i__1 = lendsv - lsv + 1; |
|
slascl_("G", &c__0, &c__0, &ssfmin, &anorm, &i__1, &c__1, &d__[lsv], |
|
n, info); |
|
i__1 = lendsv - lsv; |
|
slascl_("G", &c__0, &c__0, &ssfmin, &anorm, &i__1, &c__1, &e[lsv], n, |
|
info); |
|
} |
|
|
|
/* Check for no convergence to an eigenvalue after a total */ |
|
/* of N*MAXIT iterations. */ |
|
|
|
if (jtot < nmaxit) { |
|
goto L10; |
|
} |
|
i__1 = *n - 1; |
|
for (i__ = 1; i__ <= i__1; ++i__) { |
|
if (e[i__] != 0.f) { |
|
++(*info); |
|
} |
|
/* L150: */ |
|
} |
|
goto L190; |
|
|
|
/* Order eigenvalues and eigenvectors. */ |
|
|
|
L160: |
|
if (icompz == 0) { |
|
|
|
/* Use Quick Sort */ |
|
|
|
slasrt_("I", n, &d__[1], info); |
|
|
|
} else { |
|
|
|
/* Use Selection Sort to minimize swaps of eigenvectors */ |
|
|
|
i__1 = *n; |
|
for (ii = 2; ii <= i__1; ++ii) { |
|
i__ = ii - 1; |
|
k = i__; |
|
p = d__[i__]; |
|
i__2 = *n; |
|
for (j = ii; j <= i__2; ++j) { |
|
if (d__[j] < p) { |
|
k = j; |
|
p = d__[j]; |
|
} |
|
/* L170: */ |
|
} |
|
if (k != i__) { |
|
d__[k] = d__[i__]; |
|
d__[i__] = p; |
|
sswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[k * z_dim1 + 1], |
|
&c__1); |
|
} |
|
/* L180: */ |
|
} |
|
} |
|
|
|
L190: |
|
return 0; |
|
|
|
/* End of SSTEQR */ |
|
|
|
} /* ssteqr_ */
|
|
|