mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
599 lines
15 KiB
599 lines
15 KiB
/* slasq2.f -- translated by f2c (version 20061008). |
|
You must link the resulting object file with libf2c: |
|
on Microsoft Windows system, link with libf2c.lib; |
|
on Linux or Unix systems, link with .../path/to/libf2c.a -lm |
|
or, if you install libf2c.a in a standard place, with -lf2c -lm |
|
-- in that order, at the end of the command line, as in |
|
cc *.o -lf2c -lm |
|
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., |
|
|
|
http://www.netlib.org/f2c/libf2c.zip |
|
*/ |
|
|
|
#include "clapack.h" |
|
|
|
|
|
/* Table of constant values */ |
|
|
|
static integer c__1 = 1; |
|
static integer c__2 = 2; |
|
|
|
/* Subroutine */ int slasq2_(integer *n, real *z__, integer *info) |
|
{ |
|
/* System generated locals */ |
|
integer i__1, i__2, i__3; |
|
real r__1, r__2; |
|
|
|
/* Builtin functions */ |
|
double sqrt(doublereal); |
|
|
|
/* Local variables */ |
|
real d__, e, g; |
|
integer k; |
|
real s, t; |
|
integer i0, i4, n0; |
|
real dn; |
|
integer pp; |
|
real dn1, dn2, dee, eps, tau, tol; |
|
integer ipn4; |
|
real tol2; |
|
logical ieee; |
|
integer nbig; |
|
real dmin__, emin, emax; |
|
integer kmin, ndiv, iter; |
|
real qmin, temp, qmax, zmax; |
|
integer splt; |
|
real dmin1, dmin2; |
|
integer nfail; |
|
real desig, trace, sigma; |
|
integer iinfo, ttype; |
|
extern /* Subroutine */ int slasq3_(integer *, integer *, real *, integer |
|
*, real *, real *, real *, real *, integer *, integer *, integer * |
|
, logical *, integer *, real *, real *, real *, real *, real *, |
|
real *, real *); |
|
real deemin; |
|
extern doublereal slamch_(char *); |
|
integer iwhila, iwhilb; |
|
real oldemn, safmin; |
|
extern /* Subroutine */ int xerbla_(char *, integer *), slasrt_( |
|
char *, integer *, real *, integer *); |
|
|
|
|
|
/* -- LAPACK routine (version 3.2) -- */ |
|
|
|
/* -- Contributed by Osni Marques of the Lawrence Berkeley National -- */ |
|
/* -- Laboratory and Beresford Parlett of the Univ. of California at -- */ |
|
/* -- Berkeley -- */ |
|
/* -- November 2008 -- */ |
|
|
|
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */ |
|
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */ |
|
|
|
/* .. Scalar Arguments .. */ |
|
/* .. */ |
|
/* .. Array Arguments .. */ |
|
/* .. */ |
|
|
|
/* Purpose */ |
|
/* ======= */ |
|
|
|
/* SLASQ2 computes all the eigenvalues of the symmetric positive */ |
|
/* definite tridiagonal matrix associated with the qd array Z to high */ |
|
/* relative accuracy are computed to high relative accuracy, in the */ |
|
/* absence of denormalization, underflow and overflow. */ |
|
|
|
/* To see the relation of Z to the tridiagonal matrix, let L be a */ |
|
/* unit lower bidiagonal matrix with subdiagonals Z(2,4,6,,..) and */ |
|
/* let U be an upper bidiagonal matrix with 1's above and diagonal */ |
|
/* Z(1,3,5,,..). The tridiagonal is L*U or, if you prefer, the */ |
|
/* symmetric tridiagonal to which it is similar. */ |
|
|
|
/* Note : SLASQ2 defines a logical variable, IEEE, which is true */ |
|
/* on machines which follow ieee-754 floating-point standard in their */ |
|
/* handling of infinities and NaNs, and false otherwise. This variable */ |
|
/* is passed to SLASQ3. */ |
|
|
|
/* Arguments */ |
|
/* ========= */ |
|
|
|
/* N (input) INTEGER */ |
|
/* The number of rows and columns in the matrix. N >= 0. */ |
|
|
|
/* Z (input/output) REAL array, dimension ( 4*N ) */ |
|
/* On entry Z holds the qd array. On exit, entries 1 to N hold */ |
|
/* the eigenvalues in decreasing order, Z( 2*N+1 ) holds the */ |
|
/* trace, and Z( 2*N+2 ) holds the sum of the eigenvalues. If */ |
|
/* N > 2, then Z( 2*N+3 ) holds the iteration count, Z( 2*N+4 ) */ |
|
/* holds NDIVS/NIN^2, and Z( 2*N+5 ) holds the percentage of */ |
|
/* shifts that failed. */ |
|
|
|
/* INFO (output) INTEGER */ |
|
/* = 0: successful exit */ |
|
/* < 0: if the i-th argument is a scalar and had an illegal */ |
|
/* value, then INFO = -i, if the i-th argument is an */ |
|
/* array and the j-entry had an illegal value, then */ |
|
/* INFO = -(i*100+j) */ |
|
/* > 0: the algorithm failed */ |
|
/* = 1, a split was marked by a positive value in E */ |
|
/* = 2, current block of Z not diagonalized after 30*N */ |
|
/* iterations (in inner while loop) */ |
|
/* = 3, termination criterion of outer while loop not met */ |
|
/* (program created more than N unreduced blocks) */ |
|
|
|
/* Further Details */ |
|
/* =============== */ |
|
/* Local Variables: I0:N0 defines a current unreduced segment of Z. */ |
|
/* The shifts are accumulated in SIGMA. Iteration count is in ITER. */ |
|
/* Ping-pong is controlled by PP (alternates between 0 and 1). */ |
|
|
|
/* ===================================================================== */ |
|
|
|
/* .. Parameters .. */ |
|
/* .. */ |
|
/* .. Local Scalars .. */ |
|
/* .. */ |
|
/* .. External Subroutines .. */ |
|
/* .. */ |
|
/* .. External Functions .. */ |
|
/* .. */ |
|
/* .. Intrinsic Functions .. */ |
|
/* .. */ |
|
/* .. Executable Statements .. */ |
|
|
|
/* Test the input arguments. */ |
|
/* (in case SLASQ2 is not called by SLASQ1) */ |
|
|
|
/* Parameter adjustments */ |
|
--z__; |
|
|
|
/* Function Body */ |
|
*info = 0; |
|
eps = slamch_("Precision"); |
|
safmin = slamch_("Safe minimum"); |
|
tol = eps * 100.f; |
|
/* Computing 2nd power */ |
|
r__1 = tol; |
|
tol2 = r__1 * r__1; |
|
|
|
if (*n < 0) { |
|
*info = -1; |
|
xerbla_("SLASQ2", &c__1); |
|
return 0; |
|
} else if (*n == 0) { |
|
return 0; |
|
} else if (*n == 1) { |
|
|
|
/* 1-by-1 case. */ |
|
|
|
if (z__[1] < 0.f) { |
|
*info = -201; |
|
xerbla_("SLASQ2", &c__2); |
|
} |
|
return 0; |
|
} else if (*n == 2) { |
|
|
|
/* 2-by-2 case. */ |
|
|
|
if (z__[2] < 0.f || z__[3] < 0.f) { |
|
*info = -2; |
|
xerbla_("SLASQ2", &c__2); |
|
return 0; |
|
} else if (z__[3] > z__[1]) { |
|
d__ = z__[3]; |
|
z__[3] = z__[1]; |
|
z__[1] = d__; |
|
} |
|
z__[5] = z__[1] + z__[2] + z__[3]; |
|
if (z__[2] > z__[3] * tol2) { |
|
t = (z__[1] - z__[3] + z__[2]) * .5f; |
|
s = z__[3] * (z__[2] / t); |
|
if (s <= t) { |
|
s = z__[3] * (z__[2] / (t * (sqrt(s / t + 1.f) + 1.f))); |
|
} else { |
|
s = z__[3] * (z__[2] / (t + sqrt(t) * sqrt(t + s))); |
|
} |
|
t = z__[1] + (s + z__[2]); |
|
z__[3] *= z__[1] / t; |
|
z__[1] = t; |
|
} |
|
z__[2] = z__[3]; |
|
z__[6] = z__[2] + z__[1]; |
|
return 0; |
|
} |
|
|
|
/* Check for negative data and compute sums of q's and e's. */ |
|
|
|
z__[*n * 2] = 0.f; |
|
emin = z__[2]; |
|
qmax = 0.f; |
|
zmax = 0.f; |
|
d__ = 0.f; |
|
e = 0.f; |
|
|
|
i__1 = *n - 1 << 1; |
|
for (k = 1; k <= i__1; k += 2) { |
|
if (z__[k] < 0.f) { |
|
*info = -(k + 200); |
|
xerbla_("SLASQ2", &c__2); |
|
return 0; |
|
} else if (z__[k + 1] < 0.f) { |
|
*info = -(k + 201); |
|
xerbla_("SLASQ2", &c__2); |
|
return 0; |
|
} |
|
d__ += z__[k]; |
|
e += z__[k + 1]; |
|
/* Computing MAX */ |
|
r__1 = qmax, r__2 = z__[k]; |
|
qmax = dmax(r__1,r__2); |
|
/* Computing MIN */ |
|
r__1 = emin, r__2 = z__[k + 1]; |
|
emin = dmin(r__1,r__2); |
|
/* Computing MAX */ |
|
r__1 = max(qmax,zmax), r__2 = z__[k + 1]; |
|
zmax = dmax(r__1,r__2); |
|
/* L10: */ |
|
} |
|
if (z__[(*n << 1) - 1] < 0.f) { |
|
*info = -((*n << 1) + 199); |
|
xerbla_("SLASQ2", &c__2); |
|
return 0; |
|
} |
|
d__ += z__[(*n << 1) - 1]; |
|
/* Computing MAX */ |
|
r__1 = qmax, r__2 = z__[(*n << 1) - 1]; |
|
qmax = dmax(r__1,r__2); |
|
zmax = dmax(qmax,zmax); |
|
|
|
/* Check for diagonality. */ |
|
|
|
if (e == 0.f) { |
|
i__1 = *n; |
|
for (k = 2; k <= i__1; ++k) { |
|
z__[k] = z__[(k << 1) - 1]; |
|
/* L20: */ |
|
} |
|
slasrt_("D", n, &z__[1], &iinfo); |
|
z__[(*n << 1) - 1] = d__; |
|
return 0; |
|
} |
|
|
|
trace = d__ + e; |
|
|
|
/* Check for zero data. */ |
|
|
|
if (trace == 0.f) { |
|
z__[(*n << 1) - 1] = 0.f; |
|
return 0; |
|
} |
|
|
|
/* Check whether the machine is IEEE conformable. */ |
|
|
|
/* IEEE = ILAENV( 10, 'SLASQ2', 'N', 1, 2, 3, 4 ).EQ.1 .AND. */ |
|
/* $ ILAENV( 11, 'SLASQ2', 'N', 1, 2, 3, 4 ).EQ.1 */ |
|
|
|
/* [11/15/2008] The case IEEE=.TRUE. has a problem in single precision with */ |
|
/* some the test matrices of type 16. The double precision code is fine. */ |
|
|
|
ieee = FALSE_; |
|
|
|
/* Rearrange data for locality: Z=(q1,qq1,e1,ee1,q2,qq2,e2,ee2,...). */ |
|
|
|
for (k = *n << 1; k >= 2; k += -2) { |
|
z__[k * 2] = 0.f; |
|
z__[(k << 1) - 1] = z__[k]; |
|
z__[(k << 1) - 2] = 0.f; |
|
z__[(k << 1) - 3] = z__[k - 1]; |
|
/* L30: */ |
|
} |
|
|
|
i0 = 1; |
|
n0 = *n; |
|
|
|
/* Reverse the qd-array, if warranted. */ |
|
|
|
if (z__[(i0 << 2) - 3] * 1.5f < z__[(n0 << 2) - 3]) { |
|
ipn4 = i0 + n0 << 2; |
|
i__1 = i0 + n0 - 1 << 1; |
|
for (i4 = i0 << 2; i4 <= i__1; i4 += 4) { |
|
temp = z__[i4 - 3]; |
|
z__[i4 - 3] = z__[ipn4 - i4 - 3]; |
|
z__[ipn4 - i4 - 3] = temp; |
|
temp = z__[i4 - 1]; |
|
z__[i4 - 1] = z__[ipn4 - i4 - 5]; |
|
z__[ipn4 - i4 - 5] = temp; |
|
/* L40: */ |
|
} |
|
} |
|
|
|
/* Initial split checking via dqd and Li's test. */ |
|
|
|
pp = 0; |
|
|
|
for (k = 1; k <= 2; ++k) { |
|
|
|
d__ = z__[(n0 << 2) + pp - 3]; |
|
i__1 = (i0 << 2) + pp; |
|
for (i4 = (n0 - 1 << 2) + pp; i4 >= i__1; i4 += -4) { |
|
if (z__[i4 - 1] <= tol2 * d__) { |
|
z__[i4 - 1] = -0.f; |
|
d__ = z__[i4 - 3]; |
|
} else { |
|
d__ = z__[i4 - 3] * (d__ / (d__ + z__[i4 - 1])); |
|
} |
|
/* L50: */ |
|
} |
|
|
|
/* dqd maps Z to ZZ plus Li's test. */ |
|
|
|
emin = z__[(i0 << 2) + pp + 1]; |
|
d__ = z__[(i0 << 2) + pp - 3]; |
|
i__1 = (n0 - 1 << 2) + pp; |
|
for (i4 = (i0 << 2) + pp; i4 <= i__1; i4 += 4) { |
|
z__[i4 - (pp << 1) - 2] = d__ + z__[i4 - 1]; |
|
if (z__[i4 - 1] <= tol2 * d__) { |
|
z__[i4 - 1] = -0.f; |
|
z__[i4 - (pp << 1) - 2] = d__; |
|
z__[i4 - (pp << 1)] = 0.f; |
|
d__ = z__[i4 + 1]; |
|
} else if (safmin * z__[i4 + 1] < z__[i4 - (pp << 1) - 2] && |
|
safmin * z__[i4 - (pp << 1) - 2] < z__[i4 + 1]) { |
|
temp = z__[i4 + 1] / z__[i4 - (pp << 1) - 2]; |
|
z__[i4 - (pp << 1)] = z__[i4 - 1] * temp; |
|
d__ *= temp; |
|
} else { |
|
z__[i4 - (pp << 1)] = z__[i4 + 1] * (z__[i4 - 1] / z__[i4 - ( |
|
pp << 1) - 2]); |
|
d__ = z__[i4 + 1] * (d__ / z__[i4 - (pp << 1) - 2]); |
|
} |
|
/* Computing MIN */ |
|
r__1 = emin, r__2 = z__[i4 - (pp << 1)]; |
|
emin = dmin(r__1,r__2); |
|
/* L60: */ |
|
} |
|
z__[(n0 << 2) - pp - 2] = d__; |
|
|
|
/* Now find qmax. */ |
|
|
|
qmax = z__[(i0 << 2) - pp - 2]; |
|
i__1 = (n0 << 2) - pp - 2; |
|
for (i4 = (i0 << 2) - pp + 2; i4 <= i__1; i4 += 4) { |
|
/* Computing MAX */ |
|
r__1 = qmax, r__2 = z__[i4]; |
|
qmax = dmax(r__1,r__2); |
|
/* L70: */ |
|
} |
|
|
|
/* Prepare for the next iteration on K. */ |
|
|
|
pp = 1 - pp; |
|
/* L80: */ |
|
} |
|
|
|
/* Initialise variables to pass to SLASQ3. */ |
|
|
|
ttype = 0; |
|
dmin1 = 0.f; |
|
dmin2 = 0.f; |
|
dn = 0.f; |
|
dn1 = 0.f; |
|
dn2 = 0.f; |
|
g = 0.f; |
|
tau = 0.f; |
|
|
|
iter = 2; |
|
nfail = 0; |
|
ndiv = n0 - i0 << 1; |
|
|
|
i__1 = *n + 1; |
|
for (iwhila = 1; iwhila <= i__1; ++iwhila) { |
|
if (n0 < 1) { |
|
goto L170; |
|
} |
|
|
|
/* While array unfinished do */ |
|
|
|
/* E(N0) holds the value of SIGMA when submatrix in I0:N0 */ |
|
/* splits from the rest of the array, but is negated. */ |
|
|
|
desig = 0.f; |
|
if (n0 == *n) { |
|
sigma = 0.f; |
|
} else { |
|
sigma = -z__[(n0 << 2) - 1]; |
|
} |
|
if (sigma < 0.f) { |
|
*info = 1; |
|
return 0; |
|
} |
|
|
|
/* Find last unreduced submatrix's top index I0, find QMAX and */ |
|
/* EMIN. Find Gershgorin-type bound if Q's much greater than E's. */ |
|
|
|
emax = 0.f; |
|
if (n0 > i0) { |
|
emin = (r__1 = z__[(n0 << 2) - 5], dabs(r__1)); |
|
} else { |
|
emin = 0.f; |
|
} |
|
qmin = z__[(n0 << 2) - 3]; |
|
qmax = qmin; |
|
for (i4 = n0 << 2; i4 >= 8; i4 += -4) { |
|
if (z__[i4 - 5] <= 0.f) { |
|
goto L100; |
|
} |
|
if (qmin >= emax * 4.f) { |
|
/* Computing MIN */ |
|
r__1 = qmin, r__2 = z__[i4 - 3]; |
|
qmin = dmin(r__1,r__2); |
|
/* Computing MAX */ |
|
r__1 = emax, r__2 = z__[i4 - 5]; |
|
emax = dmax(r__1,r__2); |
|
} |
|
/* Computing MAX */ |
|
r__1 = qmax, r__2 = z__[i4 - 7] + z__[i4 - 5]; |
|
qmax = dmax(r__1,r__2); |
|
/* Computing MIN */ |
|
r__1 = emin, r__2 = z__[i4 - 5]; |
|
emin = dmin(r__1,r__2); |
|
/* L90: */ |
|
} |
|
i4 = 4; |
|
|
|
L100: |
|
i0 = i4 / 4; |
|
pp = 0; |
|
|
|
if (n0 - i0 > 1) { |
|
dee = z__[(i0 << 2) - 3]; |
|
deemin = dee; |
|
kmin = i0; |
|
i__2 = (n0 << 2) - 3; |
|
for (i4 = (i0 << 2) + 1; i4 <= i__2; i4 += 4) { |
|
dee = z__[i4] * (dee / (dee + z__[i4 - 2])); |
|
if (dee <= deemin) { |
|
deemin = dee; |
|
kmin = (i4 + 3) / 4; |
|
} |
|
/* L110: */ |
|
} |
|
if (kmin - i0 << 1 < n0 - kmin && deemin <= z__[(n0 << 2) - 3] * |
|
.5f) { |
|
ipn4 = i0 + n0 << 2; |
|
pp = 2; |
|
i__2 = i0 + n0 - 1 << 1; |
|
for (i4 = i0 << 2; i4 <= i__2; i4 += 4) { |
|
temp = z__[i4 - 3]; |
|
z__[i4 - 3] = z__[ipn4 - i4 - 3]; |
|
z__[ipn4 - i4 - 3] = temp; |
|
temp = z__[i4 - 2]; |
|
z__[i4 - 2] = z__[ipn4 - i4 - 2]; |
|
z__[ipn4 - i4 - 2] = temp; |
|
temp = z__[i4 - 1]; |
|
z__[i4 - 1] = z__[ipn4 - i4 - 5]; |
|
z__[ipn4 - i4 - 5] = temp; |
|
temp = z__[i4]; |
|
z__[i4] = z__[ipn4 - i4 - 4]; |
|
z__[ipn4 - i4 - 4] = temp; |
|
/* L120: */ |
|
} |
|
} |
|
} |
|
|
|
/* Put -(initial shift) into DMIN. */ |
|
|
|
/* Computing MAX */ |
|
r__1 = 0.f, r__2 = qmin - sqrt(qmin) * 2.f * sqrt(emax); |
|
dmin__ = -dmax(r__1,r__2); |
|
|
|
/* Now I0:N0 is unreduced. */ |
|
/* PP = 0 for ping, PP = 1 for pong. */ |
|
/* PP = 2 indicates that flipping was applied to the Z array and */ |
|
/* and that the tests for deflation upon entry in SLASQ3 */ |
|
/* should not be performed. */ |
|
|
|
nbig = (n0 - i0 + 1) * 30; |
|
i__2 = nbig; |
|
for (iwhilb = 1; iwhilb <= i__2; ++iwhilb) { |
|
if (i0 > n0) { |
|
goto L150; |
|
} |
|
|
|
/* While submatrix unfinished take a good dqds step. */ |
|
|
|
slasq3_(&i0, &n0, &z__[1], &pp, &dmin__, &sigma, &desig, &qmax, & |
|
nfail, &iter, &ndiv, &ieee, &ttype, &dmin1, &dmin2, &dn, & |
|
dn1, &dn2, &g, &tau); |
|
|
|
pp = 1 - pp; |
|
|
|
/* When EMIN is very small check for splits. */ |
|
|
|
if (pp == 0 && n0 - i0 >= 3) { |
|
if (z__[n0 * 4] <= tol2 * qmax || z__[(n0 << 2) - 1] <= tol2 * |
|
sigma) { |
|
splt = i0 - 1; |
|
qmax = z__[(i0 << 2) - 3]; |
|
emin = z__[(i0 << 2) - 1]; |
|
oldemn = z__[i0 * 4]; |
|
i__3 = n0 - 3 << 2; |
|
for (i4 = i0 << 2; i4 <= i__3; i4 += 4) { |
|
if (z__[i4] <= tol2 * z__[i4 - 3] || z__[i4 - 1] <= |
|
tol2 * sigma) { |
|
z__[i4 - 1] = -sigma; |
|
splt = i4 / 4; |
|
qmax = 0.f; |
|
emin = z__[i4 + 3]; |
|
oldemn = z__[i4 + 4]; |
|
} else { |
|
/* Computing MAX */ |
|
r__1 = qmax, r__2 = z__[i4 + 1]; |
|
qmax = dmax(r__1,r__2); |
|
/* Computing MIN */ |
|
r__1 = emin, r__2 = z__[i4 - 1]; |
|
emin = dmin(r__1,r__2); |
|
/* Computing MIN */ |
|
r__1 = oldemn, r__2 = z__[i4]; |
|
oldemn = dmin(r__1,r__2); |
|
} |
|
/* L130: */ |
|
} |
|
z__[(n0 << 2) - 1] = emin; |
|
z__[n0 * 4] = oldemn; |
|
i0 = splt + 1; |
|
} |
|
} |
|
|
|
/* L140: */ |
|
} |
|
|
|
*info = 2; |
|
return 0; |
|
|
|
/* end IWHILB */ |
|
|
|
L150: |
|
|
|
/* L160: */ |
|
; |
|
} |
|
|
|
*info = 3; |
|
return 0; |
|
|
|
/* end IWHILA */ |
|
|
|
L170: |
|
|
|
/* Move q's to the front. */ |
|
|
|
i__1 = *n; |
|
for (k = 2; k <= i__1; ++k) { |
|
z__[k] = z__[(k << 2) - 3]; |
|
/* L180: */ |
|
} |
|
|
|
/* Sort and compute sum of eigenvalues. */ |
|
|
|
slasrt_("D", n, &z__[1], &iinfo); |
|
|
|
e = 0.f; |
|
for (k = *n; k >= 1; --k) { |
|
e += z__[k]; |
|
/* L190: */ |
|
} |
|
|
|
/* Store trace, sum(eigenvalues) and information on performance. */ |
|
|
|
z__[(*n << 1) + 1] = trace; |
|
z__[(*n << 1) + 2] = e; |
|
z__[(*n << 1) + 3] = (real) iter; |
|
/* Computing 2nd power */ |
|
i__1 = *n; |
|
z__[(*n << 1) + 4] = (real) ndiv / (real) (i__1 * i__1); |
|
z__[(*n << 1) + 5] = nfail * 100.f / (real) iter; |
|
return 0; |
|
|
|
/* End of SLASQ2 */ |
|
|
|
} /* slasq2_ */
|
|
|