mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
125 lines
3.4 KiB
125 lines
3.4 KiB
/* dpotri.f -- translated by f2c (version 20061008). |
|
You must link the resulting object file with libf2c: |
|
on Microsoft Windows system, link with libf2c.lib; |
|
on Linux or Unix systems, link with .../path/to/libf2c.a -lm |
|
or, if you install libf2c.a in a standard place, with -lf2c -lm |
|
-- in that order, at the end of the command line, as in |
|
cc *.o -lf2c -lm |
|
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., |
|
|
|
http://www.netlib.org/f2c/libf2c.zip |
|
*/ |
|
|
|
#include "clapack.h" |
|
|
|
|
|
/* Subroutine */ int dpotri_(char *uplo, integer *n, doublereal *a, integer * |
|
lda, integer *info) |
|
{ |
|
/* System generated locals */ |
|
integer a_dim1, a_offset, i__1; |
|
|
|
/* Local variables */ |
|
extern logical lsame_(char *, char *); |
|
extern /* Subroutine */ int xerbla_(char *, integer *), dlauum_( |
|
char *, integer *, doublereal *, integer *, integer *), |
|
dtrtri_(char *, char *, integer *, doublereal *, integer *, |
|
integer *); |
|
|
|
|
|
/* -- LAPACK routine (version 3.2) -- */ |
|
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ |
|
/* November 2006 */ |
|
|
|
/* .. Scalar Arguments .. */ |
|
/* .. */ |
|
/* .. Array Arguments .. */ |
|
/* .. */ |
|
|
|
/* Purpose */ |
|
/* ======= */ |
|
|
|
/* DPOTRI computes the inverse of a real symmetric positive definite */ |
|
/* matrix A using the Cholesky factorization A = U**T*U or A = L*L**T */ |
|
/* computed by DPOTRF. */ |
|
|
|
/* Arguments */ |
|
/* ========= */ |
|
|
|
/* UPLO (input) CHARACTER*1 */ |
|
/* = 'U': Upper triangle of A is stored; */ |
|
/* = 'L': Lower triangle of A is stored. */ |
|
|
|
/* N (input) INTEGER */ |
|
/* The order of the matrix A. N >= 0. */ |
|
|
|
/* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) */ |
|
/* On entry, the triangular factor U or L from the Cholesky */ |
|
/* factorization A = U**T*U or A = L*L**T, as computed by */ |
|
/* DPOTRF. */ |
|
/* On exit, the upper or lower triangle of the (symmetric) */ |
|
/* inverse of A, overwriting the input factor U or L. */ |
|
|
|
/* LDA (input) INTEGER */ |
|
/* The leading dimension of the array A. LDA >= max(1,N). */ |
|
|
|
/* INFO (output) INTEGER */ |
|
/* = 0: successful exit */ |
|
/* < 0: if INFO = -i, the i-th argument had an illegal value */ |
|
/* > 0: if INFO = i, the (i,i) element of the factor U or L is */ |
|
/* zero, and the inverse could not be computed. */ |
|
|
|
/* ===================================================================== */ |
|
|
|
/* .. External Functions .. */ |
|
/* .. */ |
|
/* .. External Subroutines .. */ |
|
/* .. */ |
|
/* .. Intrinsic Functions .. */ |
|
/* .. */ |
|
/* .. Executable Statements .. */ |
|
|
|
/* Test the input parameters. */ |
|
|
|
/* Parameter adjustments */ |
|
a_dim1 = *lda; |
|
a_offset = 1 + a_dim1; |
|
a -= a_offset; |
|
|
|
/* Function Body */ |
|
*info = 0; |
|
if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) { |
|
*info = -1; |
|
} else if (*n < 0) { |
|
*info = -2; |
|
} else if (*lda < max(1,*n)) { |
|
*info = -4; |
|
} |
|
if (*info != 0) { |
|
i__1 = -(*info); |
|
xerbla_("DPOTRI", &i__1); |
|
return 0; |
|
} |
|
|
|
/* Quick return if possible */ |
|
|
|
if (*n == 0) { |
|
return 0; |
|
} |
|
|
|
/* Invert the triangular Cholesky factor U or L. */ |
|
|
|
dtrtri_(uplo, "Non-unit", n, &a[a_offset], lda, info); |
|
if (*info > 0) { |
|
return 0; |
|
} |
|
|
|
/* Form inv(U)*inv(U)' or inv(L)'*inv(L). */ |
|
|
|
dlauum_(uplo, n, &a[a_offset], lda, info); |
|
|
|
return 0; |
|
|
|
/* End of DPOTRI */ |
|
|
|
} /* dpotri_ */
|
|
|