mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
988 lines
37 KiB
988 lines
37 KiB
/* dlarrv.f -- translated by f2c (version 20061008). |
|
You must link the resulting object file with libf2c: |
|
on Microsoft Windows system, link with libf2c.lib; |
|
on Linux or Unix systems, link with .../path/to/libf2c.a -lm |
|
or, if you install libf2c.a in a standard place, with -lf2c -lm |
|
-- in that order, at the end of the command line, as in |
|
cc *.o -lf2c -lm |
|
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., |
|
|
|
http://www.netlib.org/f2c/libf2c.zip |
|
*/ |
|
|
|
#include "clapack.h" |
|
|
|
|
|
/* Table of constant values */ |
|
|
|
static doublereal c_b5 = 0.; |
|
static integer c__1 = 1; |
|
static integer c__2 = 2; |
|
|
|
/* Subroutine */ int dlarrv_(integer *n, doublereal *vl, doublereal *vu, |
|
doublereal *d__, doublereal *l, doublereal *pivmin, integer *isplit, |
|
integer *m, integer *dol, integer *dou, doublereal *minrgp, |
|
doublereal *rtol1, doublereal *rtol2, doublereal *w, doublereal *werr, |
|
doublereal *wgap, integer *iblock, integer *indexw, doublereal *gers, |
|
doublereal *z__, integer *ldz, integer *isuppz, doublereal *work, |
|
integer *iwork, integer *info) |
|
{ |
|
/* System generated locals */ |
|
integer z_dim1, z_offset, i__1, i__2, i__3, i__4, i__5; |
|
doublereal d__1, d__2; |
|
logical L__1; |
|
|
|
/* Builtin functions */ |
|
double log(doublereal); |
|
|
|
/* Local variables */ |
|
integer minwsize, i__, j, k, p, q, miniwsize, ii; |
|
doublereal gl; |
|
integer im, in; |
|
doublereal gu, gap, eps, tau, tol, tmp; |
|
integer zto; |
|
doublereal ztz; |
|
integer iend, jblk; |
|
doublereal lgap; |
|
integer done; |
|
doublereal rgap, left; |
|
integer wend, iter; |
|
doublereal bstw; |
|
integer itmp1; |
|
extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, |
|
integer *); |
|
integer indld; |
|
doublereal fudge; |
|
integer idone; |
|
doublereal sigma; |
|
integer iinfo, iindr; |
|
doublereal resid; |
|
logical eskip; |
|
doublereal right; |
|
extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, |
|
doublereal *, integer *); |
|
integer nclus, zfrom; |
|
doublereal rqtol; |
|
integer iindc1, iindc2; |
|
extern /* Subroutine */ int dlar1v_(integer *, integer *, integer *, |
|
doublereal *, doublereal *, doublereal *, doublereal *, |
|
doublereal *, doublereal *, doublereal *, doublereal *, logical *, |
|
integer *, doublereal *, doublereal *, integer *, integer *, |
|
doublereal *, doublereal *, doublereal *, doublereal *); |
|
logical stp2ii; |
|
doublereal lambda; |
|
extern doublereal dlamch_(char *); |
|
integer ibegin, indeig; |
|
logical needbs; |
|
integer indlld; |
|
doublereal sgndef, mingma; |
|
extern /* Subroutine */ int dlarrb_(integer *, doublereal *, doublereal *, |
|
integer *, integer *, doublereal *, doublereal *, integer *, |
|
doublereal *, doublereal *, doublereal *, doublereal *, integer *, |
|
doublereal *, doublereal *, integer *, integer *); |
|
integer oldien, oldncl, wbegin; |
|
doublereal spdiam; |
|
integer negcnt; |
|
extern /* Subroutine */ int dlarrf_(integer *, doublereal *, doublereal *, |
|
doublereal *, integer *, integer *, doublereal *, doublereal *, |
|
doublereal *, doublereal *, doublereal *, doublereal *, |
|
doublereal *, doublereal *, doublereal *, doublereal *, |
|
doublereal *, integer *); |
|
integer oldcls; |
|
doublereal savgap; |
|
integer ndepth; |
|
doublereal ssigma; |
|
extern /* Subroutine */ int dlaset_(char *, integer *, integer *, |
|
doublereal *, doublereal *, doublereal *, integer *); |
|
logical usedbs; |
|
integer iindwk, offset; |
|
doublereal gaptol; |
|
integer newcls, oldfst, indwrk, windex, oldlst; |
|
logical usedrq; |
|
integer newfst, newftt, parity, windmn, windpl, isupmn, newlst, zusedl; |
|
doublereal bstres; |
|
integer newsiz, zusedu, zusedw; |
|
doublereal nrminv, rqcorr; |
|
logical tryrqc; |
|
integer isupmx; |
|
|
|
|
|
/* -- LAPACK auxiliary routine (version 3.2) -- */ |
|
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ |
|
/* November 2006 */ |
|
|
|
/* .. Scalar Arguments .. */ |
|
/* .. */ |
|
/* .. Array Arguments .. */ |
|
/* .. */ |
|
|
|
/* Purpose */ |
|
/* ======= */ |
|
|
|
/* DLARRV computes the eigenvectors of the tridiagonal matrix */ |
|
/* T = L D L^T given L, D and APPROXIMATIONS to the eigenvalues of L D L^T. */ |
|
/* The input eigenvalues should have been computed by DLARRE. */ |
|
|
|
/* Arguments */ |
|
/* ========= */ |
|
|
|
/* N (input) INTEGER */ |
|
/* The order of the matrix. N >= 0. */ |
|
|
|
/* VL (input) DOUBLE PRECISION */ |
|
/* VU (input) DOUBLE PRECISION */ |
|
/* Lower and upper bounds of the interval that contains the desired */ |
|
/* eigenvalues. VL < VU. Needed to compute gaps on the left or right */ |
|
/* end of the extremal eigenvalues in the desired RANGE. */ |
|
|
|
/* D (input/output) DOUBLE PRECISION array, dimension (N) */ |
|
/* On entry, the N diagonal elements of the diagonal matrix D. */ |
|
/* On exit, D may be overwritten. */ |
|
|
|
/* L (input/output) DOUBLE PRECISION array, dimension (N) */ |
|
/* On entry, the (N-1) subdiagonal elements of the unit */ |
|
/* bidiagonal matrix L are in elements 1 to N-1 of L */ |
|
/* (if the matrix is not splitted.) At the end of each block */ |
|
/* is stored the corresponding shift as given by DLARRE. */ |
|
/* On exit, L is overwritten. */ |
|
|
|
/* PIVMIN (in) DOUBLE PRECISION */ |
|
/* The minimum pivot allowed in the Sturm sequence. */ |
|
|
|
/* ISPLIT (input) INTEGER array, dimension (N) */ |
|
/* The splitting points, at which T breaks up into blocks. */ |
|
/* The first block consists of rows/columns 1 to */ |
|
/* ISPLIT( 1 ), the second of rows/columns ISPLIT( 1 )+1 */ |
|
/* through ISPLIT( 2 ), etc. */ |
|
|
|
/* M (input) INTEGER */ |
|
/* The total number of input eigenvalues. 0 <= M <= N. */ |
|
|
|
/* DOL (input) INTEGER */ |
|
/* DOU (input) INTEGER */ |
|
/* If the user wants to compute only selected eigenvectors from all */ |
|
/* the eigenvalues supplied, he can specify an index range DOL:DOU. */ |
|
/* Or else the setting DOL=1, DOU=M should be applied. */ |
|
/* Note that DOL and DOU refer to the order in which the eigenvalues */ |
|
/* are stored in W. */ |
|
/* If the user wants to compute only selected eigenpairs, then */ |
|
/* the columns DOL-1 to DOU+1 of the eigenvector space Z contain the */ |
|
/* computed eigenvectors. All other columns of Z are set to zero. */ |
|
|
|
/* MINRGP (input) DOUBLE PRECISION */ |
|
|
|
/* RTOL1 (input) DOUBLE PRECISION */ |
|
/* RTOL2 (input) DOUBLE PRECISION */ |
|
/* Parameters for bisection. */ |
|
/* An interval [LEFT,RIGHT] has converged if */ |
|
/* RIGHT-LEFT.LT.MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) ) */ |
|
|
|
/* W (input/output) DOUBLE PRECISION array, dimension (N) */ |
|
/* The first M elements of W contain the APPROXIMATE eigenvalues for */ |
|
/* which eigenvectors are to be computed. The eigenvalues */ |
|
/* should be grouped by split-off block and ordered from */ |
|
/* smallest to largest within the block ( The output array */ |
|
/* W from DLARRE is expected here ). Furthermore, they are with */ |
|
/* respect to the shift of the corresponding root representation */ |
|
/* for their block. On exit, W holds the eigenvalues of the */ |
|
/* UNshifted matrix. */ |
|
|
|
/* WERR (input/output) DOUBLE PRECISION array, dimension (N) */ |
|
/* The first M elements contain the semiwidth of the uncertainty */ |
|
/* interval of the corresponding eigenvalue in W */ |
|
|
|
/* WGAP (input/output) DOUBLE PRECISION array, dimension (N) */ |
|
/* The separation from the right neighbor eigenvalue in W. */ |
|
|
|
/* IBLOCK (input) INTEGER array, dimension (N) */ |
|
/* The indices of the blocks (submatrices) associated with the */ |
|
/* corresponding eigenvalues in W; IBLOCK(i)=1 if eigenvalue */ |
|
/* W(i) belongs to the first block from the top, =2 if W(i) */ |
|
/* belongs to the second block, etc. */ |
|
|
|
/* INDEXW (input) INTEGER array, dimension (N) */ |
|
/* The indices of the eigenvalues within each block (submatrix); */ |
|
/* for example, INDEXW(i)= 10 and IBLOCK(i)=2 imply that the */ |
|
/* i-th eigenvalue W(i) is the 10-th eigenvalue in the second block. */ |
|
|
|
/* GERS (input) DOUBLE PRECISION array, dimension (2*N) */ |
|
/* The N Gerschgorin intervals (the i-th Gerschgorin interval */ |
|
/* is (GERS(2*i-1), GERS(2*i)). The Gerschgorin intervals should */ |
|
/* be computed from the original UNshifted matrix. */ |
|
|
|
/* Z (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M) ) */ |
|
/* If INFO = 0, the first M columns of Z contain the */ |
|
/* orthonormal eigenvectors of the matrix T */ |
|
/* corresponding to the input eigenvalues, with the i-th */ |
|
/* column of Z holding the eigenvector associated with W(i). */ |
|
/* Note: the user must ensure that at least max(1,M) columns are */ |
|
/* supplied in the array Z. */ |
|
|
|
/* LDZ (input) INTEGER */ |
|
/* The leading dimension of the array Z. LDZ >= 1, and if */ |
|
/* JOBZ = 'V', LDZ >= max(1,N). */ |
|
|
|
/* ISUPPZ (output) INTEGER array, dimension ( 2*max(1,M) ) */ |
|
/* The support of the eigenvectors in Z, i.e., the indices */ |
|
/* indicating the nonzero elements in Z. The I-th eigenvector */ |
|
/* is nonzero only in elements ISUPPZ( 2*I-1 ) through */ |
|
/* ISUPPZ( 2*I ). */ |
|
|
|
/* WORK (workspace) DOUBLE PRECISION array, dimension (12*N) */ |
|
|
|
/* IWORK (workspace) INTEGER array, dimension (7*N) */ |
|
|
|
/* INFO (output) INTEGER */ |
|
/* = 0: successful exit */ |
|
|
|
/* > 0: A problem occured in DLARRV. */ |
|
/* < 0: One of the called subroutines signaled an internal problem. */ |
|
/* Needs inspection of the corresponding parameter IINFO */ |
|
/* for further information. */ |
|
|
|
/* =-1: Problem in DLARRB when refining a child's eigenvalues. */ |
|
/* =-2: Problem in DLARRF when computing the RRR of a child. */ |
|
/* When a child is inside a tight cluster, it can be difficult */ |
|
/* to find an RRR. A partial remedy from the user's point of */ |
|
/* view is to make the parameter MINRGP smaller and recompile. */ |
|
/* However, as the orthogonality of the computed vectors is */ |
|
/* proportional to 1/MINRGP, the user should be aware that */ |
|
/* he might be trading in precision when he decreases MINRGP. */ |
|
/* =-3: Problem in DLARRB when refining a single eigenvalue */ |
|
/* after the Rayleigh correction was rejected. */ |
|
/* = 5: The Rayleigh Quotient Iteration failed to converge to */ |
|
/* full accuracy in MAXITR steps. */ |
|
|
|
/* Further Details */ |
|
/* =============== */ |
|
|
|
/* Based on contributions by */ |
|
/* Beresford Parlett, University of California, Berkeley, USA */ |
|
/* Jim Demmel, University of California, Berkeley, USA */ |
|
/* Inderjit Dhillon, University of Texas, Austin, USA */ |
|
/* Osni Marques, LBNL/NERSC, USA */ |
|
/* Christof Voemel, University of California, Berkeley, USA */ |
|
|
|
/* ===================================================================== */ |
|
|
|
/* .. Parameters .. */ |
|
/* .. */ |
|
/* .. Local Scalars .. */ |
|
/* .. */ |
|
/* .. External Functions .. */ |
|
/* .. */ |
|
/* .. External Subroutines .. */ |
|
/* .. */ |
|
/* .. Intrinsic Functions .. */ |
|
/* .. */ |
|
/* .. Executable Statements .. */ |
|
/* .. */ |
|
/* The first N entries of WORK are reserved for the eigenvalues */ |
|
/* Parameter adjustments */ |
|
--d__; |
|
--l; |
|
--isplit; |
|
--w; |
|
--werr; |
|
--wgap; |
|
--iblock; |
|
--indexw; |
|
--gers; |
|
z_dim1 = *ldz; |
|
z_offset = 1 + z_dim1; |
|
z__ -= z_offset; |
|
--isuppz; |
|
--work; |
|
--iwork; |
|
|
|
/* Function Body */ |
|
indld = *n + 1; |
|
indlld = (*n << 1) + 1; |
|
indwrk = *n * 3 + 1; |
|
minwsize = *n * 12; |
|
i__1 = minwsize; |
|
for (i__ = 1; i__ <= i__1; ++i__) { |
|
work[i__] = 0.; |
|
/* L5: */ |
|
} |
|
/* IWORK(IINDR+1:IINDR+N) hold the twist indices R for the */ |
|
/* factorization used to compute the FP vector */ |
|
iindr = 0; |
|
/* IWORK(IINDC1+1:IINC2+N) are used to store the clusters of the current */ |
|
/* layer and the one above. */ |
|
iindc1 = *n; |
|
iindc2 = *n << 1; |
|
iindwk = *n * 3 + 1; |
|
miniwsize = *n * 7; |
|
i__1 = miniwsize; |
|
for (i__ = 1; i__ <= i__1; ++i__) { |
|
iwork[i__] = 0; |
|
/* L10: */ |
|
} |
|
zusedl = 1; |
|
if (*dol > 1) { |
|
/* Set lower bound for use of Z */ |
|
zusedl = *dol - 1; |
|
} |
|
zusedu = *m; |
|
if (*dou < *m) { |
|
/* Set lower bound for use of Z */ |
|
zusedu = *dou + 1; |
|
} |
|
/* The width of the part of Z that is used */ |
|
zusedw = zusedu - zusedl + 1; |
|
dlaset_("Full", n, &zusedw, &c_b5, &c_b5, &z__[zusedl * z_dim1 + 1], ldz); |
|
eps = dlamch_("Precision"); |
|
rqtol = eps * 2.; |
|
|
|
/* Set expert flags for standard code. */ |
|
tryrqc = TRUE_; |
|
if (*dol == 1 && *dou == *m) { |
|
} else { |
|
/* Only selected eigenpairs are computed. Since the other evalues */ |
|
/* are not refined by RQ iteration, bisection has to compute to full */ |
|
/* accuracy. */ |
|
*rtol1 = eps * 4.; |
|
*rtol2 = eps * 4.; |
|
} |
|
/* The entries WBEGIN:WEND in W, WERR, WGAP correspond to the */ |
|
/* desired eigenvalues. The support of the nonzero eigenvector */ |
|
/* entries is contained in the interval IBEGIN:IEND. */ |
|
/* Remark that if k eigenpairs are desired, then the eigenvectors */ |
|
/* are stored in k contiguous columns of Z. */ |
|
/* DONE is the number of eigenvectors already computed */ |
|
done = 0; |
|
ibegin = 1; |
|
wbegin = 1; |
|
i__1 = iblock[*m]; |
|
for (jblk = 1; jblk <= i__1; ++jblk) { |
|
iend = isplit[jblk]; |
|
sigma = l[iend]; |
|
/* Find the eigenvectors of the submatrix indexed IBEGIN */ |
|
/* through IEND. */ |
|
wend = wbegin - 1; |
|
L15: |
|
if (wend < *m) { |
|
if (iblock[wend + 1] == jblk) { |
|
++wend; |
|
goto L15; |
|
} |
|
} |
|
if (wend < wbegin) { |
|
ibegin = iend + 1; |
|
goto L170; |
|
} else if (wend < *dol || wbegin > *dou) { |
|
ibegin = iend + 1; |
|
wbegin = wend + 1; |
|
goto L170; |
|
} |
|
/* Find local spectral diameter of the block */ |
|
gl = gers[(ibegin << 1) - 1]; |
|
gu = gers[ibegin * 2]; |
|
i__2 = iend; |
|
for (i__ = ibegin + 1; i__ <= i__2; ++i__) { |
|
/* Computing MIN */ |
|
d__1 = gers[(i__ << 1) - 1]; |
|
gl = min(d__1,gl); |
|
/* Computing MAX */ |
|
d__1 = gers[i__ * 2]; |
|
gu = max(d__1,gu); |
|
/* L20: */ |
|
} |
|
spdiam = gu - gl; |
|
/* OLDIEN is the last index of the previous block */ |
|
oldien = ibegin - 1; |
|
/* Calculate the size of the current block */ |
|
in = iend - ibegin + 1; |
|
/* The number of eigenvalues in the current block */ |
|
im = wend - wbegin + 1; |
|
/* This is for a 1x1 block */ |
|
if (ibegin == iend) { |
|
++done; |
|
z__[ibegin + wbegin * z_dim1] = 1.; |
|
isuppz[(wbegin << 1) - 1] = ibegin; |
|
isuppz[wbegin * 2] = ibegin; |
|
w[wbegin] += sigma; |
|
work[wbegin] = w[wbegin]; |
|
ibegin = iend + 1; |
|
++wbegin; |
|
goto L170; |
|
} |
|
/* The desired (shifted) eigenvalues are stored in W(WBEGIN:WEND) */ |
|
/* Note that these can be approximations, in this case, the corresp. */ |
|
/* entries of WERR give the size of the uncertainty interval. */ |
|
/* The eigenvalue approximations will be refined when necessary as */ |
|
/* high relative accuracy is required for the computation of the */ |
|
/* corresponding eigenvectors. */ |
|
dcopy_(&im, &w[wbegin], &c__1, &work[wbegin], &c__1); |
|
/* We store in W the eigenvalue approximations w.r.t. the original */ |
|
/* matrix T. */ |
|
i__2 = im; |
|
for (i__ = 1; i__ <= i__2; ++i__) { |
|
w[wbegin + i__ - 1] += sigma; |
|
/* L30: */ |
|
} |
|
/* NDEPTH is the current depth of the representation tree */ |
|
ndepth = 0; |
|
/* PARITY is either 1 or 0 */ |
|
parity = 1; |
|
/* NCLUS is the number of clusters for the next level of the */ |
|
/* representation tree, we start with NCLUS = 1 for the root */ |
|
nclus = 1; |
|
iwork[iindc1 + 1] = 1; |
|
iwork[iindc1 + 2] = im; |
|
/* IDONE is the number of eigenvectors already computed in the current */ |
|
/* block */ |
|
idone = 0; |
|
/* loop while( IDONE.LT.IM ) */ |
|
/* generate the representation tree for the current block and */ |
|
/* compute the eigenvectors */ |
|
L40: |
|
if (idone < im) { |
|
/* This is a crude protection against infinitely deep trees */ |
|
if (ndepth > *m) { |
|
*info = -2; |
|
return 0; |
|
} |
|
/* breadth first processing of the current level of the representation */ |
|
/* tree: OLDNCL = number of clusters on current level */ |
|
oldncl = nclus; |
|
/* reset NCLUS to count the number of child clusters */ |
|
nclus = 0; |
|
|
|
parity = 1 - parity; |
|
if (parity == 0) { |
|
oldcls = iindc1; |
|
newcls = iindc2; |
|
} else { |
|
oldcls = iindc2; |
|
newcls = iindc1; |
|
} |
|
/* Process the clusters on the current level */ |
|
i__2 = oldncl; |
|
for (i__ = 1; i__ <= i__2; ++i__) { |
|
j = oldcls + (i__ << 1); |
|
/* OLDFST, OLDLST = first, last index of current cluster. */ |
|
/* cluster indices start with 1 and are relative */ |
|
/* to WBEGIN when accessing W, WGAP, WERR, Z */ |
|
oldfst = iwork[j - 1]; |
|
oldlst = iwork[j]; |
|
if (ndepth > 0) { |
|
/* Retrieve relatively robust representation (RRR) of cluster */ |
|
/* that has been computed at the previous level */ |
|
/* The RRR is stored in Z and overwritten once the eigenvectors */ |
|
/* have been computed or when the cluster is refined */ |
|
if (*dol == 1 && *dou == *m) { |
|
/* Get representation from location of the leftmost evalue */ |
|
/* of the cluster */ |
|
j = wbegin + oldfst - 1; |
|
} else { |
|
if (wbegin + oldfst - 1 < *dol) { |
|
/* Get representation from the left end of Z array */ |
|
j = *dol - 1; |
|
} else if (wbegin + oldfst - 1 > *dou) { |
|
/* Get representation from the right end of Z array */ |
|
j = *dou; |
|
} else { |
|
j = wbegin + oldfst - 1; |
|
} |
|
} |
|
dcopy_(&in, &z__[ibegin + j * z_dim1], &c__1, &d__[ibegin] |
|
, &c__1); |
|
i__3 = in - 1; |
|
dcopy_(&i__3, &z__[ibegin + (j + 1) * z_dim1], &c__1, &l[ |
|
ibegin], &c__1); |
|
sigma = z__[iend + (j + 1) * z_dim1]; |
|
/* Set the corresponding entries in Z to zero */ |
|
dlaset_("Full", &in, &c__2, &c_b5, &c_b5, &z__[ibegin + j |
|
* z_dim1], ldz); |
|
} |
|
/* Compute DL and DLL of current RRR */ |
|
i__3 = iend - 1; |
|
for (j = ibegin; j <= i__3; ++j) { |
|
tmp = d__[j] * l[j]; |
|
work[indld - 1 + j] = tmp; |
|
work[indlld - 1 + j] = tmp * l[j]; |
|
/* L50: */ |
|
} |
|
if (ndepth > 0) { |
|
/* P and Q are index of the first and last eigenvalue to compute */ |
|
/* within the current block */ |
|
p = indexw[wbegin - 1 + oldfst]; |
|
q = indexw[wbegin - 1 + oldlst]; |
|
/* Offset for the arrays WORK, WGAP and WERR, i.e., th P-OFFSET */ |
|
/* thru' Q-OFFSET elements of these arrays are to be used. */ |
|
/* OFFSET = P-OLDFST */ |
|
offset = indexw[wbegin] - 1; |
|
/* perform limited bisection (if necessary) to get approximate */ |
|
/* eigenvalues to the precision needed. */ |
|
dlarrb_(&in, &d__[ibegin], &work[indlld + ibegin - 1], &p, |
|
&q, rtol1, rtol2, &offset, &work[wbegin], &wgap[ |
|
wbegin], &werr[wbegin], &work[indwrk], &iwork[ |
|
iindwk], pivmin, &spdiam, &in, &iinfo); |
|
if (iinfo != 0) { |
|
*info = -1; |
|
return 0; |
|
} |
|
/* We also recompute the extremal gaps. W holds all eigenvalues */ |
|
/* of the unshifted matrix and must be used for computation */ |
|
/* of WGAP, the entries of WORK might stem from RRRs with */ |
|
/* different shifts. The gaps from WBEGIN-1+OLDFST to */ |
|
/* WBEGIN-1+OLDLST are correctly computed in DLARRB. */ |
|
/* However, we only allow the gaps to become greater since */ |
|
/* this is what should happen when we decrease WERR */ |
|
if (oldfst > 1) { |
|
/* Computing MAX */ |
|
d__1 = wgap[wbegin + oldfst - 2], d__2 = w[wbegin + |
|
oldfst - 1] - werr[wbegin + oldfst - 1] - w[ |
|
wbegin + oldfst - 2] - werr[wbegin + oldfst - |
|
2]; |
|
wgap[wbegin + oldfst - 2] = max(d__1,d__2); |
|
} |
|
if (wbegin + oldlst - 1 < wend) { |
|
/* Computing MAX */ |
|
d__1 = wgap[wbegin + oldlst - 1], d__2 = w[wbegin + |
|
oldlst] - werr[wbegin + oldlst] - w[wbegin + |
|
oldlst - 1] - werr[wbegin + oldlst - 1]; |
|
wgap[wbegin + oldlst - 1] = max(d__1,d__2); |
|
} |
|
/* Each time the eigenvalues in WORK get refined, we store */ |
|
/* the newly found approximation with all shifts applied in W */ |
|
i__3 = oldlst; |
|
for (j = oldfst; j <= i__3; ++j) { |
|
w[wbegin + j - 1] = work[wbegin + j - 1] + sigma; |
|
/* L53: */ |
|
} |
|
} |
|
/* Process the current node. */ |
|
newfst = oldfst; |
|
i__3 = oldlst; |
|
for (j = oldfst; j <= i__3; ++j) { |
|
if (j == oldlst) { |
|
/* we are at the right end of the cluster, this is also the */ |
|
/* boundary of the child cluster */ |
|
newlst = j; |
|
} else if (wgap[wbegin + j - 1] >= *minrgp * (d__1 = work[ |
|
wbegin + j - 1], abs(d__1))) { |
|
/* the right relative gap is big enough, the child cluster */ |
|
/* (NEWFST,..,NEWLST) is well separated from the following */ |
|
newlst = j; |
|
} else { |
|
/* inside a child cluster, the relative gap is not */ |
|
/* big enough. */ |
|
goto L140; |
|
} |
|
/* Compute size of child cluster found */ |
|
newsiz = newlst - newfst + 1; |
|
/* NEWFTT is the place in Z where the new RRR or the computed */ |
|
/* eigenvector is to be stored */ |
|
if (*dol == 1 && *dou == *m) { |
|
/* Store representation at location of the leftmost evalue */ |
|
/* of the cluster */ |
|
newftt = wbegin + newfst - 1; |
|
} else { |
|
if (wbegin + newfst - 1 < *dol) { |
|
/* Store representation at the left end of Z array */ |
|
newftt = *dol - 1; |
|
} else if (wbegin + newfst - 1 > *dou) { |
|
/* Store representation at the right end of Z array */ |
|
newftt = *dou; |
|
} else { |
|
newftt = wbegin + newfst - 1; |
|
} |
|
} |
|
if (newsiz > 1) { |
|
|
|
/* Current child is not a singleton but a cluster. */ |
|
/* Compute and store new representation of child. */ |
|
|
|
|
|
/* Compute left and right cluster gap. */ |
|
|
|
/* LGAP and RGAP are not computed from WORK because */ |
|
/* the eigenvalue approximations may stem from RRRs */ |
|
/* different shifts. However, W hold all eigenvalues */ |
|
/* of the unshifted matrix. Still, the entries in WGAP */ |
|
/* have to be computed from WORK since the entries */ |
|
/* in W might be of the same order so that gaps are not */ |
|
/* exhibited correctly for very close eigenvalues. */ |
|
if (newfst == 1) { |
|
/* Computing MAX */ |
|
d__1 = 0., d__2 = w[wbegin] - werr[wbegin] - *vl; |
|
lgap = max(d__1,d__2); |
|
} else { |
|
lgap = wgap[wbegin + newfst - 2]; |
|
} |
|
rgap = wgap[wbegin + newlst - 1]; |
|
|
|
/* Compute left- and rightmost eigenvalue of child */ |
|
/* to high precision in order to shift as close */ |
|
/* as possible and obtain as large relative gaps */ |
|
/* as possible */ |
|
|
|
for (k = 1; k <= 2; ++k) { |
|
if (k == 1) { |
|
p = indexw[wbegin - 1 + newfst]; |
|
} else { |
|
p = indexw[wbegin - 1 + newlst]; |
|
} |
|
offset = indexw[wbegin] - 1; |
|
dlarrb_(&in, &d__[ibegin], &work[indlld + ibegin |
|
- 1], &p, &p, &rqtol, &rqtol, &offset, & |
|
work[wbegin], &wgap[wbegin], &werr[wbegin] |
|
, &work[indwrk], &iwork[iindwk], pivmin, & |
|
spdiam, &in, &iinfo); |
|
/* L55: */ |
|
} |
|
|
|
if (wbegin + newlst - 1 < *dol || wbegin + newfst - 1 |
|
> *dou) { |
|
/* if the cluster contains no desired eigenvalues */ |
|
/* skip the computation of that branch of the rep. tree */ |
|
|
|
/* We could skip before the refinement of the extremal */ |
|
/* eigenvalues of the child, but then the representation */ |
|
/* tree could be different from the one when nothing is */ |
|
/* skipped. For this reason we skip at this place. */ |
|
idone = idone + newlst - newfst + 1; |
|
goto L139; |
|
} |
|
|
|
/* Compute RRR of child cluster. */ |
|
/* Note that the new RRR is stored in Z */ |
|
|
|
/* DLARRF needs LWORK = 2*N */ |
|
dlarrf_(&in, &d__[ibegin], &l[ibegin], &work[indld + |
|
ibegin - 1], &newfst, &newlst, &work[wbegin], |
|
&wgap[wbegin], &werr[wbegin], &spdiam, &lgap, |
|
&rgap, pivmin, &tau, &z__[ibegin + newftt * |
|
z_dim1], &z__[ibegin + (newftt + 1) * z_dim1], |
|
&work[indwrk], &iinfo); |
|
if (iinfo == 0) { |
|
/* a new RRR for the cluster was found by DLARRF */ |
|
/* update shift and store it */ |
|
ssigma = sigma + tau; |
|
z__[iend + (newftt + 1) * z_dim1] = ssigma; |
|
/* WORK() are the midpoints and WERR() the semi-width */ |
|
/* Note that the entries in W are unchanged. */ |
|
i__4 = newlst; |
|
for (k = newfst; k <= i__4; ++k) { |
|
fudge = eps * 3. * (d__1 = work[wbegin + k - |
|
1], abs(d__1)); |
|
work[wbegin + k - 1] -= tau; |
|
fudge += eps * 4. * (d__1 = work[wbegin + k - |
|
1], abs(d__1)); |
|
/* Fudge errors */ |
|
werr[wbegin + k - 1] += fudge; |
|
/* Gaps are not fudged. Provided that WERR is small */ |
|
/* when eigenvalues are close, a zero gap indicates */ |
|
/* that a new representation is needed for resolving */ |
|
/* the cluster. A fudge could lead to a wrong decision */ |
|
/* of judging eigenvalues 'separated' which in */ |
|
/* reality are not. This could have a negative impact */ |
|
/* on the orthogonality of the computed eigenvectors. */ |
|
/* L116: */ |
|
} |
|
++nclus; |
|
k = newcls + (nclus << 1); |
|
iwork[k - 1] = newfst; |
|
iwork[k] = newlst; |
|
} else { |
|
*info = -2; |
|
return 0; |
|
} |
|
} else { |
|
|
|
/* Compute eigenvector of singleton */ |
|
|
|
iter = 0; |
|
|
|
tol = log((doublereal) in) * 4. * eps; |
|
|
|
k = newfst; |
|
windex = wbegin + k - 1; |
|
/* Computing MAX */ |
|
i__4 = windex - 1; |
|
windmn = max(i__4,1); |
|
/* Computing MIN */ |
|
i__4 = windex + 1; |
|
windpl = min(i__4,*m); |
|
lambda = work[windex]; |
|
++done; |
|
/* Check if eigenvector computation is to be skipped */ |
|
if (windex < *dol || windex > *dou) { |
|
eskip = TRUE_; |
|
goto L125; |
|
} else { |
|
eskip = FALSE_; |
|
} |
|
left = work[windex] - werr[windex]; |
|
right = work[windex] + werr[windex]; |
|
indeig = indexw[windex]; |
|
/* Note that since we compute the eigenpairs for a child, */ |
|
/* all eigenvalue approximations are w.r.t the same shift. */ |
|
/* In this case, the entries in WORK should be used for */ |
|
/* computing the gaps since they exhibit even very small */ |
|
/* differences in the eigenvalues, as opposed to the */ |
|
/* entries in W which might "look" the same. */ |
|
if (k == 1) { |
|
/* In the case RANGE='I' and with not much initial */ |
|
/* accuracy in LAMBDA and VL, the formula */ |
|
/* LGAP = MAX( ZERO, (SIGMA - VL) + LAMBDA ) */ |
|
/* can lead to an overestimation of the left gap and */ |
|
/* thus to inadequately early RQI 'convergence'. */ |
|
/* Prevent this by forcing a small left gap. */ |
|
/* Computing MAX */ |
|
d__1 = abs(left), d__2 = abs(right); |
|
lgap = eps * max(d__1,d__2); |
|
} else { |
|
lgap = wgap[windmn]; |
|
} |
|
if (k == im) { |
|
/* In the case RANGE='I' and with not much initial */ |
|
/* accuracy in LAMBDA and VU, the formula */ |
|
/* can lead to an overestimation of the right gap and */ |
|
/* thus to inadequately early RQI 'convergence'. */ |
|
/* Prevent this by forcing a small right gap. */ |
|
/* Computing MAX */ |
|
d__1 = abs(left), d__2 = abs(right); |
|
rgap = eps * max(d__1,d__2); |
|
} else { |
|
rgap = wgap[windex]; |
|
} |
|
gap = min(lgap,rgap); |
|
if (k == 1 || k == im) { |
|
/* The eigenvector support can become wrong */ |
|
/* because significant entries could be cut off due to a */ |
|
/* large GAPTOL parameter in LAR1V. Prevent this. */ |
|
gaptol = 0.; |
|
} else { |
|
gaptol = gap * eps; |
|
} |
|
isupmn = in; |
|
isupmx = 1; |
|
/* Update WGAP so that it holds the minimum gap */ |
|
/* to the left or the right. This is crucial in the */ |
|
/* case where bisection is used to ensure that the */ |
|
/* eigenvalue is refined up to the required precision. */ |
|
/* The correct value is restored afterwards. */ |
|
savgap = wgap[windex]; |
|
wgap[windex] = gap; |
|
/* We want to use the Rayleigh Quotient Correction */ |
|
/* as often as possible since it converges quadratically */ |
|
/* when we are close enough to the desired eigenvalue. */ |
|
/* However, the Rayleigh Quotient can have the wrong sign */ |
|
/* and lead us away from the desired eigenvalue. In this */ |
|
/* case, the best we can do is to use bisection. */ |
|
usedbs = FALSE_; |
|
usedrq = FALSE_; |
|
/* Bisection is initially turned off unless it is forced */ |
|
needbs = ! tryrqc; |
|
L120: |
|
/* Check if bisection should be used to refine eigenvalue */ |
|
if (needbs) { |
|
/* Take the bisection as new iterate */ |
|
usedbs = TRUE_; |
|
itmp1 = iwork[iindr + windex]; |
|
offset = indexw[wbegin] - 1; |
|
d__1 = eps * 2.; |
|
dlarrb_(&in, &d__[ibegin], &work[indlld + ibegin |
|
- 1], &indeig, &indeig, &c_b5, &d__1, & |
|
offset, &work[wbegin], &wgap[wbegin], & |
|
werr[wbegin], &work[indwrk], &iwork[ |
|
iindwk], pivmin, &spdiam, &itmp1, &iinfo); |
|
if (iinfo != 0) { |
|
*info = -3; |
|
return 0; |
|
} |
|
lambda = work[windex]; |
|
/* Reset twist index from inaccurate LAMBDA to */ |
|
/* force computation of true MINGMA */ |
|
iwork[iindr + windex] = 0; |
|
} |
|
/* Given LAMBDA, compute the eigenvector. */ |
|
L__1 = ! usedbs; |
|
dlar1v_(&in, &c__1, &in, &lambda, &d__[ibegin], &l[ |
|
ibegin], &work[indld + ibegin - 1], &work[ |
|
indlld + ibegin - 1], pivmin, &gaptol, &z__[ |
|
ibegin + windex * z_dim1], &L__1, &negcnt, & |
|
ztz, &mingma, &iwork[iindr + windex], &isuppz[ |
|
(windex << 1) - 1], &nrminv, &resid, &rqcorr, |
|
&work[indwrk]); |
|
if (iter == 0) { |
|
bstres = resid; |
|
bstw = lambda; |
|
} else if (resid < bstres) { |
|
bstres = resid; |
|
bstw = lambda; |
|
} |
|
/* Computing MIN */ |
|
i__4 = isupmn, i__5 = isuppz[(windex << 1) - 1]; |
|
isupmn = min(i__4,i__5); |
|
/* Computing MAX */ |
|
i__4 = isupmx, i__5 = isuppz[windex * 2]; |
|
isupmx = max(i__4,i__5); |
|
++iter; |
|
/* sin alpha <= |resid|/gap */ |
|
/* Note that both the residual and the gap are */ |
|
/* proportional to the matrix, so ||T|| doesn't play */ |
|
/* a role in the quotient */ |
|
|
|
/* Convergence test for Rayleigh-Quotient iteration */ |
|
/* (omitted when Bisection has been used) */ |
|
|
|
if (resid > tol * gap && abs(rqcorr) > rqtol * abs( |
|
lambda) && ! usedbs) { |
|
/* We need to check that the RQCORR update doesn't */ |
|
/* move the eigenvalue away from the desired one and */ |
|
/* towards a neighbor. -> protection with bisection */ |
|
if (indeig <= negcnt) { |
|
/* The wanted eigenvalue lies to the left */ |
|
sgndef = -1.; |
|
} else { |
|
/* The wanted eigenvalue lies to the right */ |
|
sgndef = 1.; |
|
} |
|
/* We only use the RQCORR if it improves the */ |
|
/* the iterate reasonably. */ |
|
if (rqcorr * sgndef >= 0. && lambda + rqcorr <= |
|
right && lambda + rqcorr >= left) { |
|
usedrq = TRUE_; |
|
/* Store new midpoint of bisection interval in WORK */ |
|
if (sgndef == 1.) { |
|
/* The current LAMBDA is on the left of the true */ |
|
/* eigenvalue */ |
|
left = lambda; |
|
/* We prefer to assume that the error estimate */ |
|
/* is correct. We could make the interval not */ |
|
/* as a bracket but to be modified if the RQCORR */ |
|
/* chooses to. In this case, the RIGHT side should */ |
|
/* be modified as follows: */ |
|
/* RIGHT = MAX(RIGHT, LAMBDA + RQCORR) */ |
|
} else { |
|
/* The current LAMBDA is on the right of the true */ |
|
/* eigenvalue */ |
|
right = lambda; |
|
/* See comment about assuming the error estimate is */ |
|
/* correct above. */ |
|
/* LEFT = MIN(LEFT, LAMBDA + RQCORR) */ |
|
} |
|
work[windex] = (right + left) * .5; |
|
/* Take RQCORR since it has the correct sign and */ |
|
/* improves the iterate reasonably */ |
|
lambda += rqcorr; |
|
/* Update width of error interval */ |
|
werr[windex] = (right - left) * .5; |
|
} else { |
|
needbs = TRUE_; |
|
} |
|
if (right - left < rqtol * abs(lambda)) { |
|
/* The eigenvalue is computed to bisection accuracy */ |
|
/* compute eigenvector and stop */ |
|
usedbs = TRUE_; |
|
goto L120; |
|
} else if (iter < 10) { |
|
goto L120; |
|
} else if (iter == 10) { |
|
needbs = TRUE_; |
|
goto L120; |
|
} else { |
|
*info = 5; |
|
return 0; |
|
} |
|
} else { |
|
stp2ii = FALSE_; |
|
if (usedrq && usedbs && bstres <= resid) { |
|
lambda = bstw; |
|
stp2ii = TRUE_; |
|
} |
|
if (stp2ii) { |
|
/* improve error angle by second step */ |
|
L__1 = ! usedbs; |
|
dlar1v_(&in, &c__1, &in, &lambda, &d__[ibegin] |
|
, &l[ibegin], &work[indld + ibegin - |
|
1], &work[indlld + ibegin - 1], |
|
pivmin, &gaptol, &z__[ibegin + windex |
|
* z_dim1], &L__1, &negcnt, &ztz, & |
|
mingma, &iwork[iindr + windex], & |
|
isuppz[(windex << 1) - 1], &nrminv, & |
|
resid, &rqcorr, &work[indwrk]); |
|
} |
|
work[windex] = lambda; |
|
} |
|
|
|
/* Compute FP-vector support w.r.t. whole matrix */ |
|
|
|
isuppz[(windex << 1) - 1] += oldien; |
|
isuppz[windex * 2] += oldien; |
|
zfrom = isuppz[(windex << 1) - 1]; |
|
zto = isuppz[windex * 2]; |
|
isupmn += oldien; |
|
isupmx += oldien; |
|
/* Ensure vector is ok if support in the RQI has changed */ |
|
if (isupmn < zfrom) { |
|
i__4 = zfrom - 1; |
|
for (ii = isupmn; ii <= i__4; ++ii) { |
|
z__[ii + windex * z_dim1] = 0.; |
|
/* L122: */ |
|
} |
|
} |
|
if (isupmx > zto) { |
|
i__4 = isupmx; |
|
for (ii = zto + 1; ii <= i__4; ++ii) { |
|
z__[ii + windex * z_dim1] = 0.; |
|
/* L123: */ |
|
} |
|
} |
|
i__4 = zto - zfrom + 1; |
|
dscal_(&i__4, &nrminv, &z__[zfrom + windex * z_dim1], |
|
&c__1); |
|
L125: |
|
/* Update W */ |
|
w[windex] = lambda + sigma; |
|
/* Recompute the gaps on the left and right */ |
|
/* But only allow them to become larger and not */ |
|
/* smaller (which can only happen through "bad" */ |
|
/* cancellation and doesn't reflect the theory */ |
|
/* where the initial gaps are underestimated due */ |
|
/* to WERR being too crude.) */ |
|
if (! eskip) { |
|
if (k > 1) { |
|
/* Computing MAX */ |
|
d__1 = wgap[windmn], d__2 = w[windex] - werr[ |
|
windex] - w[windmn] - werr[windmn]; |
|
wgap[windmn] = max(d__1,d__2); |
|
} |
|
if (windex < wend) { |
|
/* Computing MAX */ |
|
d__1 = savgap, d__2 = w[windpl] - werr[windpl] |
|
- w[windex] - werr[windex]; |
|
wgap[windex] = max(d__1,d__2); |
|
} |
|
} |
|
++idone; |
|
} |
|
/* here ends the code for the current child */ |
|
|
|
L139: |
|
/* Proceed to any remaining child nodes */ |
|
newfst = j + 1; |
|
L140: |
|
; |
|
} |
|
/* L150: */ |
|
} |
|
++ndepth; |
|
goto L40; |
|
} |
|
ibegin = iend + 1; |
|
wbegin = wend + 1; |
|
L170: |
|
; |
|
} |
|
|
|
return 0; |
|
|
|
/* End of DLARRV */ |
|
|
|
} /* dlarrv_ */
|
|
|