mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
92 lines
2.7 KiB
92 lines
2.7 KiB
#include "perf_precomp.hpp" |
|
|
|
using namespace std; |
|
using namespace cv; |
|
using namespace perf; |
|
using std::tr1::make_tuple; |
|
using std::tr1::get; |
|
|
|
CV_ENUM(ThreshType, THRESH_BINARY, THRESH_BINARY_INV, THRESH_TRUNC, THRESH_TOZERO, THRESH_TOZERO_INV) |
|
|
|
typedef std::tr1::tuple<Size, MatType, ThreshType> Size_MatType_ThreshType_t; |
|
typedef perf::TestBaseWithParam<Size_MatType_ThreshType_t> Size_MatType_ThreshType; |
|
|
|
PERF_TEST_P(Size_MatType_ThreshType, threshold, |
|
testing::Combine( |
|
testing::Values(TYPICAL_MAT_SIZES), |
|
testing::Values(CV_8UC1, CV_16SC1), |
|
ThreshType::all() |
|
) |
|
) |
|
{ |
|
|
|
Size sz = get<0>(GetParam()); |
|
int type = get<1>(GetParam()); |
|
ThreshType threshType = get<2>(GetParam()); |
|
|
|
Mat src(sz, type); |
|
Mat dst(sz, type); |
|
|
|
double thresh = theRNG().uniform(1, 254); |
|
double maxval = theRNG().uniform(1, 254); |
|
|
|
declare.in(src, WARMUP_RNG).out(dst); |
|
|
|
int runs = (sz.width <= 640) ? 40 : 1; |
|
TEST_CYCLE_MULTIRUN(runs) threshold(src, dst, thresh, maxval, threshType); |
|
|
|
SANITY_CHECK(dst); |
|
} |
|
|
|
typedef perf::TestBaseWithParam<Size> Size_Only; |
|
|
|
PERF_TEST_P(Size_Only, threshold_otsu, testing::Values(TYPICAL_MAT_SIZES)) |
|
{ |
|
Size sz = GetParam(); |
|
|
|
Mat src(sz, CV_8UC1); |
|
Mat dst(sz, CV_8UC1); |
|
|
|
double maxval = theRNG().uniform(1, 254); |
|
|
|
declare.in(src, WARMUP_RNG).out(dst); |
|
|
|
int runs = 15; |
|
TEST_CYCLE_MULTIRUN(runs) threshold(src, dst, 0, maxval, THRESH_BINARY|THRESH_OTSU); |
|
|
|
SANITY_CHECK(dst); |
|
} |
|
|
|
CV_ENUM(AdaptThreshType, THRESH_BINARY, THRESH_BINARY_INV) |
|
CV_ENUM(AdaptThreshMethod, ADAPTIVE_THRESH_MEAN_C, ADAPTIVE_THRESH_GAUSSIAN_C) |
|
|
|
typedef std::tr1::tuple<Size, AdaptThreshType, AdaptThreshMethod, int> Size_AdaptThreshType_AdaptThreshMethod_BlockSize_t; |
|
typedef perf::TestBaseWithParam<Size_AdaptThreshType_AdaptThreshMethod_BlockSize_t> Size_AdaptThreshType_AdaptThreshMethod_BlockSize; |
|
|
|
PERF_TEST_P(Size_AdaptThreshType_AdaptThreshMethod_BlockSize, adaptiveThreshold, |
|
testing::Combine( |
|
testing::Values(TYPICAL_MAT_SIZES), |
|
AdaptThreshType::all(), |
|
AdaptThreshMethod::all(), |
|
testing::Values(3, 5) |
|
) |
|
) |
|
{ |
|
Size sz = get<0>(GetParam()); |
|
AdaptThreshType adaptThreshType = get<1>(GetParam()); |
|
AdaptThreshMethod adaptThreshMethod = get<2>(GetParam()); |
|
int blockSize = get<3>(GetParam()); |
|
|
|
double maxValue = theRNG().uniform(1, 254); |
|
double C = 10.0; |
|
|
|
int type = CV_8UC1; |
|
Mat src(sz, type); |
|
Mat dst(sz, type); |
|
|
|
declare.in(src, WARMUP_RNG).out(dst); |
|
|
|
TEST_CYCLE() adaptiveThreshold(src, dst, maxValue, adaptThreshMethod, adaptThreshType, blockSize, C); |
|
|
|
SANITY_CHECK(dst); |
|
}
|
|
|