mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
198 lines
6.6 KiB
198 lines
6.6 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
#include "opencv2/videostab/outlier_rejection.hpp" |
|
|
|
namespace cv |
|
{ |
|
namespace videostab |
|
{ |
|
|
|
void NullOutlierRejector::process( |
|
Size /*frameSize*/, InputArray points0, InputArray points1, OutputArray mask) |
|
{ |
|
CV_Assert(points0.type() == points1.type()); |
|
CV_Assert(points0.getMat().checkVector(2) == points1.getMat().checkVector(2)); |
|
|
|
int npoints = points0.getMat().checkVector(2); |
|
mask.create(1, npoints, CV_8U); |
|
Mat mask_ = mask.getMat(); |
|
mask_.setTo(1); |
|
} |
|
|
|
TranslationBasedLocalOutlierRejector::TranslationBasedLocalOutlierRejector() |
|
{ |
|
setCellSize(Size(50, 50)); |
|
setRansacParams(RansacParams::default2dMotion(MM_TRANSLATION)); |
|
} |
|
|
|
|
|
void TranslationBasedLocalOutlierRejector::process( |
|
Size frameSize, InputArray points0, InputArray points1, OutputArray mask) |
|
{ |
|
CV_Assert(points0.type() == points1.type()); |
|
CV_Assert(points0.getMat().checkVector(2) == points1.getMat().checkVector(2)); |
|
|
|
int npoints = points0.getMat().checkVector(2); |
|
|
|
const Point2f* points0_ = points0.getMat().ptr<Point2f>(); |
|
const Point2f* points1_ = points1.getMat().ptr<Point2f>(); |
|
|
|
mask.create(1, npoints, CV_8U); |
|
uchar* mask_ = mask.getMat().ptr<uchar>(); |
|
|
|
Size ncells((frameSize.width + cellSize_.width - 1) / cellSize_.width, |
|
(frameSize.height + cellSize_.height - 1) / cellSize_.height); |
|
|
|
int cx, cy; |
|
|
|
// fill grid cells |
|
|
|
grid_.assign(ncells.area(), Cell()); |
|
|
|
for (int i = 0; i < npoints; ++i) |
|
{ |
|
cx = std::min(cvRound(points0_[i].x / cellSize_.width), ncells.width - 1); |
|
cy = std::min(cvRound(points0_[i].y / cellSize_.height), ncells.height - 1); |
|
grid_[cy * ncells.width + cx].push_back(i); |
|
} |
|
|
|
// process each cell |
|
|
|
RNG rng(0); |
|
int niters = ransacParams_.niters(); |
|
int ninliers, ninliersMax; |
|
std::vector<int> inliers; |
|
float dx, dy, dxBest, dyBest; |
|
float x1, y1; |
|
int idx; |
|
|
|
for (size_t ci = 0; ci < grid_.size(); ++ci) |
|
{ |
|
// estimate translation model at the current cell using RANSAC |
|
|
|
const Cell &cell = grid_[ci]; |
|
ninliersMax = 0; |
|
dxBest = dyBest = 0.f; |
|
|
|
// find the best hypothesis |
|
|
|
if (!cell.empty()) |
|
{ |
|
for (int iter = 0; iter < niters; ++iter) |
|
{ |
|
idx = cell[static_cast<unsigned>(rng) % cell.size()]; |
|
dx = points1_[idx].x - points0_[idx].x; |
|
dy = points1_[idx].y - points0_[idx].y; |
|
|
|
ninliers = 0; |
|
for (size_t i = 0; i < cell.size(); ++i) |
|
{ |
|
x1 = points0_[cell[i]].x + dx; |
|
y1 = points0_[cell[i]].y + dy; |
|
if (sqr(x1 - points1_[cell[i]].x) + sqr(y1 - points1_[cell[i]].y) < |
|
sqr(ransacParams_.thresh)) |
|
{ |
|
ninliers++; |
|
} |
|
} |
|
|
|
if (ninliers > ninliersMax) |
|
{ |
|
ninliersMax = ninliers; |
|
dxBest = dx; |
|
dyBest = dy; |
|
} |
|
} |
|
} |
|
|
|
// get the best hypothesis inliers |
|
|
|
ninliers = 0; |
|
inliers.resize(ninliersMax); |
|
for (size_t i = 0; i < cell.size(); ++i) |
|
{ |
|
x1 = points0_[cell[i]].x + dxBest; |
|
y1 = points0_[cell[i]].y + dyBest; |
|
if (sqr(x1 - points1_[cell[i]].x) + sqr(y1 - points1_[cell[i]].y) < |
|
sqr(ransacParams_.thresh)) |
|
{ |
|
inliers[ninliers++] = cell[i]; |
|
} |
|
} |
|
|
|
// refine the best hypothesis |
|
|
|
dxBest = dyBest = 0.f; |
|
for (size_t i = 0; i < inliers.size(); ++i) |
|
{ |
|
dxBest += points1_[inliers[i]].x - points0_[inliers[i]].x; |
|
dyBest += points1_[inliers[i]].y - points0_[inliers[i]].y; |
|
} |
|
if (!inliers.empty()) |
|
{ |
|
dxBest /= inliers.size(); |
|
dyBest /= inliers.size(); |
|
} |
|
|
|
// set mask elements for refined model inliers |
|
|
|
for (size_t i = 0; i < cell.size(); ++i) |
|
{ |
|
x1 = points0_[cell[i]].x + dxBest; |
|
y1 = points0_[cell[i]].y + dyBest; |
|
if (sqr(x1 - points1_[cell[i]].x) + sqr(y1 - points1_[cell[i]].y) < |
|
sqr(ransacParams_.thresh)) |
|
{ |
|
mask_[cell[i]] = 1; |
|
} |
|
else |
|
{ |
|
mask_[cell[i]] = 0; |
|
} |
|
} |
|
} |
|
} |
|
|
|
} // namespace videostab |
|
} // namespace cv
|
|
|