mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
133 lines
4.2 KiB
133 lines
4.2 KiB
.. _cascade_classifier: |
|
|
|
Cascade Classifier |
|
******************* |
|
|
|
Goal |
|
===== |
|
|
|
In this tutorial you will learn how to: |
|
|
|
.. container:: enumeratevisibleitemswithsquare |
|
|
|
* Use the :cascade_classifier:`CascadeClassifier <>` class to detect objects in a video stream. Particularly, we will use the functions: |
|
|
|
* :cascade_classifier_load:`load <>` to load a .xml classifier file. It can be either a Haar or a LBP classifer |
|
* :cascade_classifier_detect_multiscale:`detectMultiScale <>` to perform the detection. |
|
|
|
|
|
Theory |
|
====== |
|
|
|
Code |
|
==== |
|
|
|
This tutorial code's is shown lines below. You can also download it from `here <https://github.com/opencv/opencv/tree/master/samples/cpp/tutorial_code/objectDetection/objectDetection.cpp>`_ . The second version (using LBP for face detection) can be `found here <https://github.com/opencv/opencv/tree/master/samples/cpp/tutorial_code/objectDetection/objectDetection2.cpp>`_ |
|
|
|
.. code-block:: cpp |
|
|
|
#include "opencv2/objdetect/objdetect.hpp" |
|
#include "opencv2/highgui/highgui.hpp" |
|
#include "opencv2/imgproc/imgproc.hpp" |
|
|
|
#include <iostream> |
|
#include <stdio.h> |
|
|
|
using namespace std; |
|
using namespace cv; |
|
|
|
/** Function Headers */ |
|
void detectAndDisplay( Mat frame ); |
|
|
|
/** Global variables */ |
|
String face_cascade_name = "haarcascade_frontalface_alt.xml"; |
|
String eyes_cascade_name = "haarcascade_eye_tree_eyeglasses.xml"; |
|
CascadeClassifier face_cascade; |
|
CascadeClassifier eyes_cascade; |
|
string window_name = "Capture - Face detection"; |
|
RNG rng(12345); |
|
|
|
/** @function main */ |
|
int main( int argc, const char** argv ) |
|
{ |
|
CvCapture* capture; |
|
Mat frame; |
|
|
|
//-- 1. Load the cascades |
|
if( !face_cascade.load( face_cascade_name ) ){ printf("--(!)Error loading\n"); return -1; }; |
|
if( !eyes_cascade.load( eyes_cascade_name ) ){ printf("--(!)Error loading\n"); return -1; }; |
|
|
|
//-- 2. Read the video stream |
|
capture = cvCaptureFromCAM( -1 ); |
|
if( capture ) |
|
{ |
|
while( true ) |
|
{ |
|
frame = cvQueryFrame( capture ); |
|
|
|
//-- 3. Apply the classifier to the frame |
|
if( !frame.empty() ) |
|
{ detectAndDisplay( frame ); } |
|
else |
|
{ printf(" --(!) No captured frame -- Break!"); break; } |
|
|
|
int c = waitKey(10); |
|
if( (char)c == 'c' ) { break; } |
|
} |
|
} |
|
return 0; |
|
} |
|
|
|
/** @function detectAndDisplay */ |
|
void detectAndDisplay( Mat frame ) |
|
{ |
|
std::vector<Rect> faces; |
|
Mat frame_gray; |
|
|
|
cvtColor( frame, frame_gray, CV_BGR2GRAY ); |
|
equalizeHist( frame_gray, frame_gray ); |
|
|
|
//-- Detect faces |
|
face_cascade.detectMultiScale( frame_gray, faces, 1.1, 2, 0|CV_HAAR_SCALE_IMAGE, Size(30, 30) ); |
|
|
|
for( size_t i = 0; i < faces.size(); i++ ) |
|
{ |
|
Point center( faces[i].x + faces[i].width*0.5, faces[i].y + faces[i].height*0.5 ); |
|
ellipse( frame, center, Size( faces[i].width*0.5, faces[i].height*0.5), 0, 0, 360, Scalar( 255, 0, 255 ), 4, 8, 0 ); |
|
|
|
Mat faceROI = frame_gray( faces[i] ); |
|
std::vector<Rect> eyes; |
|
|
|
//-- In each face, detect eyes |
|
eyes_cascade.detectMultiScale( faceROI, eyes, 1.1, 2, 0 |CV_HAAR_SCALE_IMAGE, Size(30, 30) ); |
|
|
|
for( size_t j = 0; j < eyes.size(); j++ ) |
|
{ |
|
Point center( faces[i].x + eyes[j].x + eyes[j].width*0.5, faces[i].y + eyes[j].y + eyes[j].height*0.5 ); |
|
int radius = cvRound( (eyes[j].width + eyes[j].height)*0.25 ); |
|
circle( frame, center, radius, Scalar( 255, 0, 0 ), 4, 8, 0 ); |
|
} |
|
} |
|
//-- Show what you got |
|
imshow( window_name, frame ); |
|
} |
|
|
|
Explanation |
|
============ |
|
|
|
Result |
|
====== |
|
|
|
#. Here is the result of running the code above and using as input the video stream of a build-in webcam: |
|
|
|
.. image:: images/Cascade_Classifier_Tutorial_Result_Haar.jpg |
|
:align: center |
|
:height: 300pt |
|
|
|
Remember to copy the files *haarcascade_frontalface_alt.xml* and *haarcascade_eye_tree_eyeglasses.xml* in your current directory. They are located in *opencv/data/haarcascades* |
|
|
|
#. This is the result of using the file *lbpcascade_frontalface.xml* (LBP trained) for the face detection. For the eyes we keep using the file used in the tutorial. |
|
|
|
.. image:: images/Cascade_Classifier_Tutorial_Result_LBP.jpg |
|
:align: center |
|
:height: 300pt
|
|
|