mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
313 lines
9.0 KiB
313 lines
9.0 KiB
.. _remap: |
|
|
|
Remapping |
|
********* |
|
|
|
Goal |
|
==== |
|
|
|
In this tutorial you will learn how to: |
|
|
|
a. Use the OpenCV function :remap:`remap <>` to implement simple remapping routines. |
|
|
|
Theory |
|
====== |
|
|
|
What is remapping? |
|
------------------ |
|
|
|
* It is the process of taking pixels from one place in the image and locating them in another position in a new image. |
|
|
|
* To accomplish the mapping process, it might be necessary to do some interpolation for non-integer pixel locations, since there will not always be a one-to-one-pixel correspondence between source and destination images. |
|
|
|
* We can express the remap for every pixel location :math:`(x,y)` as: |
|
|
|
.. math:: |
|
|
|
g(x,y) = f ( h(x,y) ) |
|
|
|
where :math:`g()` is the remapped image, :math:`f()` the source image and :math:`h(x,y)` is the mapping function that operates on :math:`(x,y)`. |
|
|
|
* Let's think in a quick example. Imagine that we have an image :math:`I` and, say, we want to do a remap such that: |
|
|
|
.. math:: |
|
|
|
h(x,y) = (I.cols - x, y ) |
|
|
|
What would happen? It is easily seen that the image would flip in the :math:`x` direction. For instance, consider the input image: |
|
|
|
.. image:: images/Remap_Tutorial_Theory_0.jpg |
|
:alt: Original test image |
|
:width: 120pt |
|
:align: center |
|
|
|
observe how the red circle changes positions with respect to x (considering :math:`x` the horizontal direction): |
|
|
|
.. image:: images/Remap_Tutorial_Theory_1.jpg |
|
:alt: Original test image |
|
:width: 120pt |
|
:align: center |
|
|
|
* In OpenCV, the function :remap:`remap <>` offers a simple remapping implementation. |
|
|
|
Code |
|
==== |
|
|
|
#. **What does this program do?** |
|
|
|
* Loads an image |
|
* Each second, apply 1 of 4 different remapping processes to the image and display them indefinitely in a window. |
|
* Wait for the user to exit the program |
|
|
|
#. The tutorial code's is shown lines below. You can also download it from `here <https://github.com/opencv/opencv/tree/master/samples/cpp/tutorial_code/ImgTrans/Remap_Demo.cpp>`_ |
|
|
|
.. code-block:: cpp |
|
|
|
#include "opencv2/highgui/highgui.hpp" |
|
#include "opencv2/imgproc/imgproc.hpp" |
|
#include <iostream> |
|
#include <stdio.h> |
|
|
|
using namespace cv; |
|
|
|
/// Global variables |
|
Mat src, dst; |
|
Mat map_x, map_y; |
|
char* remap_window = "Remap demo"; |
|
int ind = 0; |
|
|
|
/// Function Headers |
|
void update_map( void ); |
|
|
|
/** |
|
* @function main |
|
*/ |
|
int main( int argc, char** argv ) |
|
{ |
|
/// Load the image |
|
src = imread( argv[1], 1 ); |
|
|
|
/// Create dst, map_x and map_y with the same size as src: |
|
dst.create( src.size(), src.type() ); |
|
map_x.create( src.size(), CV_32FC1 ); |
|
map_y.create( src.size(), CV_32FC1 ); |
|
|
|
/// Create window |
|
namedWindow( remap_window, CV_WINDOW_AUTOSIZE ); |
|
|
|
/// Loop |
|
while( true ) |
|
{ |
|
/// Each 1 sec. Press ESC to exit the program |
|
int c = waitKey( 1000 ); |
|
|
|
if( (char)c == 27 ) |
|
{ break; } |
|
|
|
/// Update map_x & map_y. Then apply remap |
|
update_map(); |
|
remap( src, dst, map_x, map_y, CV_INTER_LINEAR, BORDER_CONSTANT, Scalar(0,0, 0) ); |
|
|
|
/// Display results |
|
imshow( remap_window, dst ); |
|
} |
|
return 0; |
|
} |
|
|
|
/** |
|
* @function update_map |
|
* @brief Fill the map_x and map_y matrices with 4 types of mappings |
|
*/ |
|
void update_map( void ) |
|
{ |
|
ind = ind%4; |
|
|
|
for( int j = 0; j < src.rows; j++ ) |
|
{ for( int i = 0; i < src.cols; i++ ) |
|
{ |
|
switch( ind ) |
|
{ |
|
case 0: |
|
if( i > src.cols*0.25 && i < src.cols*0.75 && j > src.rows*0.25 && j < src.rows*0.75 ) |
|
{ |
|
map_x.at<float>(j,i) = 2*( i - src.cols*0.25 ) + 0.5 ; |
|
map_y.at<float>(j,i) = 2*( j - src.rows*0.25 ) + 0.5 ; |
|
} |
|
else |
|
{ map_x.at<float>(j,i) = 0 ; |
|
map_y.at<float>(j,i) = 0 ; |
|
} |
|
break; |
|
case 1: |
|
map_x.at<float>(j,i) = i ; |
|
map_y.at<float>(j,i) = src.rows - j ; |
|
break; |
|
case 2: |
|
map_x.at<float>(j,i) = src.cols - i ; |
|
map_y.at<float>(j,i) = j ; |
|
break; |
|
case 3: |
|
map_x.at<float>(j,i) = src.cols - i ; |
|
map_y.at<float>(j,i) = src.rows - j ; |
|
break; |
|
} // end of switch |
|
} |
|
} |
|
ind++; |
|
} |
|
|
|
Explanation |
|
=========== |
|
|
|
#. Create some variables we will use: |
|
|
|
.. code-block:: cpp |
|
|
|
Mat src, dst; |
|
Mat map_x, map_y; |
|
char* remap_window = "Remap demo"; |
|
int ind = 0; |
|
|
|
#. Load an image: |
|
|
|
.. code-block:: cpp |
|
|
|
src = imread( argv[1], 1 ); |
|
|
|
#. Create the destination image and the two mapping matrices (for x and y ) |
|
|
|
.. code-block:: cpp |
|
|
|
dst.create( src.size(), src.type() ); |
|
map_x.create( src.size(), CV_32FC1 ); |
|
map_y.create( src.size(), CV_32FC1 ); |
|
|
|
#. Create a window to display results |
|
|
|
.. code-block:: cpp |
|
|
|
namedWindow( remap_window, CV_WINDOW_AUTOSIZE ); |
|
|
|
#. Establish a loop. Each 1000 ms we update our mapping matrices (*mat_x* and *mat_y*) and apply them to our source image: |
|
|
|
.. code-block:: cpp |
|
|
|
while( true ) |
|
{ |
|
/// Each 1 sec. Press ESC to exit the program |
|
int c = waitKey( 1000 ); |
|
|
|
if( (char)c == 27 ) |
|
{ break; } |
|
|
|
/// Update map_x & map_y. Then apply remap |
|
update_map(); |
|
remap( src, dst, map_x, map_y, CV_INTER_LINEAR, BORDER_CONSTANT, Scalar(0,0, 0) ); |
|
|
|
/// Display results |
|
imshow( remap_window, dst ); |
|
} |
|
|
|
The function that applies the remapping is :remap:`remap <>`. We give the following arguments: |
|
|
|
* **src**: Source image |
|
* **dst**: Destination image of same size as *src* |
|
* **map_x**: The mapping function in the x direction. It is equivalent to the first component of :math:`h(i,j)` |
|
* **map_y**: Same as above, but in y direction. Note that *map_y* and *map_x* are both of the same size as *src* |
|
* **CV_INTER_LINEAR**: The type of interpolation to use for non-integer pixels. This is by default. |
|
* **BORDER_CONSTANT**: Default |
|
|
|
How do we update our mapping matrices *mat_x* and *mat_y*? Go on reading: |
|
|
|
#. **Updating the mapping matrices:** We are going to perform 4 different mappings: |
|
|
|
a. Reduce the picture to half its size and will display it in the middle: |
|
|
|
.. math:: |
|
|
|
h(i,j) = ( 2*i - src.cols/2 + 0.5, 2*j - src.rows/2 + 0.5) |
|
|
|
for all pairs :math:`(i,j)` such that: :math:`\dfrac{src.cols}{4}<i<\dfrac{3 \cdot src.cols}{4}` and :math:`\dfrac{src.rows}{4}<j<\dfrac{3 \cdot src.rows}{4}` |
|
|
|
b. Turn the image upside down: :math:`h( i, j ) = (i, src.rows - j)` |
|
|
|
c. Reflect the image from left to right: :math:`h(i,j) = ( src.cols - i, j )` |
|
|
|
d. Combination of b and c: :math:`h(i,j) = ( src.cols - i, src.rows - j )` |
|
|
|
This is expressed in the following snippet. Here, *map_x* represents the first coordinate of *h(i,j)* and *map_y* the second coordinate. |
|
|
|
.. code-block:: cpp |
|
|
|
for( int j = 0; j < src.rows; j++ ) |
|
{ for( int i = 0; i < src.cols; i++ ) |
|
{ |
|
switch( ind ) |
|
{ |
|
case 0: |
|
if( i > src.cols*0.25 && i < src.cols*0.75 && j > src.rows*0.25 && j < src.rows*0.75 ) |
|
{ |
|
map_x.at<float>(j,i) = 2*( i - src.cols*0.25 ) + 0.5 ; |
|
map_y.at<float>(j,i) = 2*( j - src.rows*0.25 ) + 0.5 ; |
|
} |
|
else |
|
{ map_x.at<float>(j,i) = 0 ; |
|
map_y.at<float>(j,i) = 0 ; |
|
} |
|
break; |
|
case 1: |
|
map_x.at<float>(j,i) = i ; |
|
map_y.at<float>(j,i) = src.rows - j ; |
|
break; |
|
case 2: |
|
map_x.at<float>(j,i) = src.cols - i ; |
|
map_y.at<float>(j,i) = j ; |
|
break; |
|
case 3: |
|
map_x.at<float>(j,i) = src.cols - i ; |
|
map_y.at<float>(j,i) = src.rows - j ; |
|
break; |
|
} // end of switch |
|
} |
|
} |
|
ind++; |
|
} |
|
|
|
|
|
Result |
|
====== |
|
|
|
#. After compiling the code above, you can execute it giving as argument an image path. For instance, by using the following image: |
|
|
|
.. image:: images/Remap_Tutorial_Original_Image.jpg |
|
:alt: Original test image |
|
:width: 250pt |
|
:align: center |
|
|
|
#. This is the result of reducing it to half the size and centering it: |
|
|
|
.. image:: images/Remap_Tutorial_Result_0.jpg |
|
:alt: Result 0 for remapping |
|
:width: 250pt |
|
:align: center |
|
|
|
#. Turning it upside down: |
|
|
|
.. image:: images/Remap_Tutorial_Result_1.jpg |
|
:alt: Result 0 for remapping |
|
:width: 250pt |
|
:align: center |
|
|
|
#. Reflecting it in the x direction: |
|
|
|
.. image:: images/Remap_Tutorial_Result_2.jpg |
|
:alt: Result 0 for remapping |
|
:width: 250pt |
|
:align: center |
|
|
|
#. Reflecting it in both directions: |
|
|
|
.. image:: images/Remap_Tutorial_Result_3.jpg |
|
:alt: Result 0 for remapping |
|
:width: 250pt |
|
:align: center
|
|
|