mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
266 lines
7.6 KiB
266 lines
7.6 KiB
// This file is part of OpenCV project. |
|
// It is subject to the license terms in the LICENSE file found in the top-level directory |
|
// of this distribution and at http://opencv.org/license.html. |
|
|
|
#include "precomp.hpp" |
|
|
|
namespace cv { |
|
namespace dnn { |
|
CV__DNN_INLINE_NS_BEGIN |
|
|
|
|
|
Layer::Layer() { preferableTarget = DNN_TARGET_CPU; } |
|
|
|
Layer::Layer(const LayerParams& params) |
|
: blobs(params.blobs) |
|
, name(params.name) |
|
, type(params.type) |
|
{ |
|
preferableTarget = DNN_TARGET_CPU; |
|
} |
|
|
|
void Layer::setParamsFrom(const LayerParams& params) |
|
{ |
|
blobs = params.blobs; |
|
name = params.name; |
|
type = params.type; |
|
} |
|
|
|
int Layer::inputNameToIndex(String) |
|
{ |
|
return -1; |
|
} |
|
|
|
int Layer::outputNameToIndex(const String&) |
|
{ |
|
return 0; |
|
} |
|
|
|
bool Layer::supportBackend(int backendId) |
|
{ |
|
return backendId == DNN_BACKEND_OPENCV; |
|
} |
|
|
|
Ptr<BackendNode> Layer::initCUDA( |
|
void*, |
|
const std::vector<Ptr<BackendWrapper>>&, |
|
const std::vector<Ptr<BackendWrapper>>&) |
|
{ |
|
CV_Error(Error::StsNotImplemented, "CUDA pipeline of " + type + " layers is not defined."); |
|
return Ptr<BackendNode>(); |
|
} |
|
|
|
Ptr<BackendNode> Layer::initVkCom(const std::vector<Ptr<BackendWrapper> > &inputs, |
|
std::vector<Ptr<BackendWrapper> > &outputs) |
|
{ |
|
CV_Error(Error::StsNotImplemented, "VkCom pipeline of " + type + " layers is not defined."); |
|
return Ptr<BackendNode>(); |
|
} |
|
|
|
Ptr<BackendNode> Layer::initHalide(const std::vector<Ptr<BackendWrapper>>&) |
|
{ |
|
CV_Error(Error::StsNotImplemented, "Halide pipeline of " + type + " layers is not defined."); |
|
return Ptr<BackendNode>(); |
|
} |
|
|
|
Ptr<BackendNode> Layer::initNgraph(const std::vector<Ptr<BackendWrapper>>& inputs, const std::vector<Ptr<BackendNode>>& nodes) |
|
{ |
|
CV_Error(Error::StsNotImplemented, "Inference Engine pipeline of " + type + " layers is not defined."); |
|
return Ptr<BackendNode>(); |
|
} |
|
|
|
Ptr<BackendNode> Layer::initWebnn(const std::vector<Ptr<BackendWrapper>>& inputs, const std::vector<Ptr<BackendNode>>& nodes) |
|
{ |
|
CV_Error(Error::StsNotImplemented, "WebNN pipeline of " + type + " layers is not defined."); |
|
return Ptr<BackendNode>(); |
|
} |
|
|
|
Ptr<BackendNode> Layer::initTimVX(void* timVxInfo, |
|
const std::vector<Ptr<BackendWrapper> > & inputsWrapper, |
|
const std::vector<Ptr<BackendWrapper> > & outputsWrapper, |
|
bool isLast) |
|
{ |
|
CV_Error(Error::StsNotImplemented, "TimVX pipeline of " + type + |
|
" layers is not defined."); |
|
return Ptr<BackendNode>(); |
|
} |
|
|
|
Ptr<BackendNode> Layer::initCann(const std::vector<Ptr<BackendWrapper> > &inputs, |
|
const std::vector<Ptr<BackendWrapper> > &outputs, |
|
const std::vector<Ptr<BackendNode> >& nodes) |
|
{ |
|
CV_Error(Error::StsNotImplemented, "CANN pipeline of " + type + " layers is not defined."); |
|
return Ptr<BackendNode>(); |
|
} |
|
|
|
Ptr<BackendNode> Layer::tryAttach(const Ptr<BackendNode>& node) |
|
{ |
|
return Ptr<BackendNode>(); |
|
} |
|
|
|
bool Layer::setActivation(const Ptr<ActivationLayer>&) { return false; } |
|
bool Layer::tryFuse(Ptr<Layer>&) { return false; } |
|
void Layer::getScaleShift(Mat& scale, Mat& shift) const |
|
{ |
|
scale = Mat(); |
|
shift = Mat(); |
|
} |
|
|
|
void Layer::getScaleZeropoint(float& scale, int& zeropoint) const |
|
{ |
|
scale = 1.f; |
|
zeropoint = 0; |
|
} |
|
|
|
void Layer::unsetAttached() |
|
{ |
|
setActivation(Ptr<ActivationLayer>()); |
|
} |
|
|
|
template <typename T> |
|
static void vecToPVec(const std::vector<T>& v, std::vector<T*>& pv) |
|
{ |
|
pv.resize(v.size()); |
|
for (size_t i = 0; i < v.size(); i++) |
|
pv[i] = const_cast<T*>(&v[i]); |
|
} |
|
|
|
void Layer::finalize(const std::vector<Mat>& inputs, std::vector<Mat>& outputs) |
|
{ |
|
CV_TRACE_FUNCTION(); |
|
this->finalize((InputArrayOfArrays)inputs, (OutputArrayOfArrays)outputs); |
|
} |
|
|
|
void Layer::finalize(const std::vector<Mat*>& input, std::vector<Mat>& output) |
|
{ |
|
CV_UNUSED(input); |
|
CV_UNUSED(output); |
|
} |
|
|
|
void Layer::finalize(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr) |
|
{ |
|
CV_TRACE_FUNCTION(); |
|
std::vector<Mat> inputs, outputs; |
|
inputs_arr.getMatVector(inputs); |
|
outputs_arr.getMatVector(outputs); |
|
|
|
std::vector<Mat*> inputsp; |
|
vecToPVec(inputs, inputsp); |
|
this->finalize(inputsp, outputs); |
|
} |
|
|
|
std::vector<Mat> Layer::finalize(const std::vector<Mat>& inputs) |
|
{ |
|
CV_TRACE_FUNCTION(); |
|
|
|
std::vector<Mat> outputs; |
|
this->finalize(inputs, outputs); |
|
return outputs; |
|
} |
|
|
|
void Layer::forward(std::vector<Mat*>& input, std::vector<Mat>& output, std::vector<Mat>& internals) |
|
{ |
|
// We kept this method for compatibility. DNN calls it now only to support users' implementations. |
|
} |
|
|
|
void Layer::forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) |
|
{ |
|
CV_TRACE_FUNCTION(); |
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str()); |
|
|
|
Layer::forward_fallback(inputs_arr, outputs_arr, internals_arr); |
|
} |
|
|
|
void Layer::forward_fallback(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) |
|
{ |
|
CV_TRACE_FUNCTION(); |
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str()); |
|
|
|
if (preferableTarget == DNN_TARGET_OPENCL_FP16 && inputs_arr.depth() == CV_16S) |
|
{ |
|
std::vector<UMat> inputs; |
|
std::vector<UMat> outputs; |
|
std::vector<UMat> internals; |
|
|
|
std::vector<UMat> orig_inputs; |
|
std::vector<UMat> orig_outputs; |
|
std::vector<UMat> orig_internals; |
|
|
|
inputs_arr.getUMatVector(orig_inputs); |
|
outputs_arr.getUMatVector(orig_outputs); |
|
internals_arr.getUMatVector(orig_internals); |
|
|
|
inputs.resize(orig_inputs.size()); |
|
for (size_t i = 0; i < orig_inputs.size(); i++) |
|
convertFp16(orig_inputs[i], inputs[i]); |
|
|
|
outputs.resize(orig_outputs.size()); |
|
for (size_t i = 0; i < orig_outputs.size(); i++) |
|
outputs[i].create(shape(orig_outputs[i]), CV_32F); |
|
|
|
internals.resize(orig_internals.size()); |
|
for (size_t i = 0; i < orig_internals.size(); i++) |
|
internals[i].create(shape(orig_internals[i]), CV_32F); |
|
|
|
forward(inputs, outputs, internals); |
|
|
|
for (size_t i = 0; i < outputs.size(); i++) |
|
convertFp16(outputs[i], orig_outputs[i]); |
|
|
|
// sync results back |
|
outputs_arr.assign(orig_outputs); |
|
internals_arr.assign(orig_internals); |
|
return; |
|
} |
|
std::vector<Mat> inpvec; |
|
std::vector<Mat> outputs; |
|
std::vector<Mat> internals; |
|
|
|
inputs_arr.getMatVector(inpvec); |
|
outputs_arr.getMatVector(outputs); |
|
internals_arr.getMatVector(internals); |
|
|
|
std::vector<Mat*> inputs(inpvec.size()); |
|
for (int i = 0; i < inpvec.size(); i++) |
|
inputs[i] = &inpvec[i]; |
|
|
|
this->forward(inputs, outputs, internals); |
|
|
|
// sync results back |
|
outputs_arr.assign(outputs); |
|
internals_arr.assign(internals); |
|
} |
|
|
|
void Layer::run(const std::vector<Mat>& inputs, std::vector<Mat>& outputs, std::vector<Mat>& internals) |
|
{ |
|
CV_TRACE_FUNCTION(); |
|
|
|
this->finalize(inputs, outputs); |
|
this->forward(inputs, outputs, internals); |
|
} |
|
|
|
bool Layer::tryQuantize(const std::vector<std::vector<float>>& scales, |
|
const std::vector<std::vector<int>>& zeropoints, LayerParams& params) |
|
{ |
|
return false; |
|
} |
|
|
|
Layer::~Layer() {} |
|
|
|
bool Layer::getMemoryShapes(const std::vector<MatShape>& inputs, |
|
const int requiredOutputs, |
|
std::vector<MatShape>& outputs, |
|
std::vector<MatShape>& internals) const |
|
{ |
|
CV_Assert(inputs.size()); |
|
outputs.assign(std::max(requiredOutputs, (int)inputs.size()), inputs[0]); |
|
return false; |
|
} |
|
|
|
bool Layer::updateMemoryShapes(const std::vector<MatShape>& inputs) |
|
{ |
|
return true; |
|
} |
|
|
|
CV__DNN_INLINE_NS_END |
|
}} // namespace cv::dnn
|
|
|