Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1047 lines
40 KiB
1047 lines
40 KiB
// This file is part of OpenCV project. |
|
// It is subject to the license terms in the LICENSE file found in the top-level directory |
|
// of this distribution and at http://opencv.org/license.html. |
|
|
|
// Copyright (C) 2018, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
|
|
#include "../precomp.hpp" |
|
#include <opencv2/dnn/shape_utils.hpp> |
|
|
|
#ifdef HAVE_PROTOBUF |
|
|
|
#include <iostream> |
|
#include <fstream> |
|
#include <string> |
|
#include <limits> |
|
#include <algorithm> |
|
|
|
|
|
#if defined(__GNUC__) && __GNUC__ >= 5 |
|
#pragma GCC diagnostic push |
|
#pragma GCC diagnostic ignored "-Wsuggest-override" |
|
#endif |
|
#include "opencv-onnx.pb.h" |
|
#if defined(__GNUC__) && __GNUC__ >= 5 |
|
#pragma GCC diagnostic pop |
|
#endif |
|
|
|
#include "onnx_graph_simplifier.hpp" |
|
|
|
namespace cv { |
|
namespace dnn { |
|
CV__DNN_INLINE_NS_BEGIN |
|
|
|
|
|
class ONNXImporter |
|
{ |
|
opencv_onnx::ModelProto model_proto; |
|
struct LayerInfo { |
|
int layerId; |
|
int outputId; |
|
LayerInfo(int _layerId, int _outputId) : layerId(_layerId), outputId(_outputId) {} |
|
}; |
|
|
|
std::map<std::string, Mat> getGraphTensors( |
|
const opencv_onnx::GraphProto& graph_proto); |
|
Mat getBlob(const opencv_onnx::NodeProto& node_proto, const std::map<std::string, Mat>& constBlobs, int index); |
|
|
|
LayerParams getLayerParams(const opencv_onnx::NodeProto& node_proto); |
|
bool isCeilMode(const LayerParams& layerParams); |
|
|
|
public: |
|
|
|
ONNXImporter(const char *onnxFile) |
|
{ |
|
std::fstream input(onnxFile, std::ios::in | std::ios::binary); |
|
|
|
if (!model_proto.ParseFromIstream(&input)) |
|
CV_Error(Error::StsUnsupportedFormat, "Failed to parse onnx model"); |
|
} |
|
|
|
ONNXImporter(const char* buffer, size_t sizeBuffer) |
|
{ |
|
struct _Buf : public std::streambuf |
|
{ |
|
_Buf(const char* buffer, size_t sizeBuffer) |
|
{ |
|
char* p = const_cast<char*>(buffer); |
|
setg(p, p, p + sizeBuffer); |
|
} |
|
}; |
|
|
|
_Buf buf(buffer, sizeBuffer); |
|
std::istream input(&buf); |
|
|
|
if (!model_proto.ParseFromIstream(&input)) |
|
CV_Error(Error::StsUnsupportedFormat, "Failed to parse onnx model from in-memory byte array."); |
|
} |
|
|
|
void populateNet(Net dstNet); |
|
}; |
|
|
|
inline void replaceLayerParam(LayerParams& layerParams, const String& oldKey, const String& newKey) |
|
{ |
|
if (layerParams.has(oldKey)) { |
|
layerParams.set(newKey, layerParams.get(oldKey)); |
|
layerParams.erase(oldKey); |
|
} |
|
} |
|
|
|
void releaseONNXTensor(opencv_onnx::TensorProto& tensor_proto) |
|
{ |
|
if (!tensor_proto.raw_data().empty()) { |
|
delete tensor_proto.release_raw_data(); |
|
} |
|
} |
|
|
|
void runLayer(LayerParams& params, const std::vector<Mat>& inputs, |
|
std::vector<Mat>& outputs) |
|
{ |
|
Ptr<Layer> layer = LayerFactory::createLayerInstance(params.type, params); |
|
CV_Assert((bool)layer); |
|
|
|
std::vector<MatShape> inpShapes(inputs.size()); |
|
int ddepth = CV_32F; |
|
for (size_t i = 0; i < inputs.size(); ++i) |
|
{ |
|
inpShapes[i] = shape(inputs[i]); |
|
if (i > 0 && ddepth != inputs[i].depth()) |
|
CV_Error(Error::StsNotImplemented, "Mixed input data types."); |
|
ddepth = inputs[i].depth(); |
|
} |
|
|
|
std::vector<MatShape> outShapes, internalShapes; |
|
layer->getMemoryShapes(inpShapes, 0, outShapes, internalShapes); |
|
|
|
std::vector<Mat> internals(internalShapes.size()); |
|
outputs.resize(outShapes.size()); |
|
for (size_t i = 0; i < outShapes.size(); ++i) |
|
outputs[i].create(outShapes[i], ddepth); |
|
for (size_t i = 0; i < internalShapes.size(); ++i) |
|
internals[i].create(internalShapes[i], ddepth); |
|
|
|
layer->finalize(inputs, outputs); |
|
layer->forward(inputs, outputs, internals); |
|
} |
|
|
|
std::map<std::string, Mat> ONNXImporter::getGraphTensors( |
|
const opencv_onnx::GraphProto& graph_proto) |
|
{ |
|
opencv_onnx::TensorProto tensor_proto; |
|
std::map<std::string, Mat> layers_weights; |
|
|
|
for (int i = 0; i < graph_proto.initializer_size(); i++) |
|
{ |
|
tensor_proto = graph_proto.initializer(i); |
|
Mat mat = getMatFromTensor(tensor_proto); |
|
releaseONNXTensor(tensor_proto); |
|
layers_weights.insert(std::make_pair(tensor_proto.name(), mat)); |
|
} |
|
return layers_weights; |
|
} |
|
|
|
static DictValue parse(const ::google::protobuf::RepeatedField< ::google::protobuf::int64>& src) { |
|
std::vector<int32_t> dst(src.size()); |
|
convertInt64ToInt32(src, dst, src.size()); |
|
return DictValue::arrayInt(&dst[0], src.size()); |
|
} |
|
|
|
LayerParams ONNXImporter::getLayerParams(const opencv_onnx::NodeProto& node_proto) |
|
{ |
|
LayerParams lp; |
|
for(int i = 0; i < node_proto.attribute_size(); i++) |
|
{ |
|
opencv_onnx::AttributeProto attribute_proto = node_proto.attribute(i); |
|
std::string attribute_name = attribute_proto.name(); |
|
|
|
if(attribute_name == "kernel_shape") |
|
{ |
|
CV_Assert(attribute_proto.ints_size() == 2 || attribute_proto.ints_size() == 3); |
|
lp.set("kernel_size", parse(attribute_proto.ints())); |
|
} |
|
else if(attribute_name == "strides") |
|
{ |
|
CV_Assert(attribute_proto.ints_size() == 2 || attribute_proto.ints_size() == 3); |
|
lp.set("stride", parse(attribute_proto.ints())); |
|
} |
|
else if(attribute_name == "pads") |
|
{ |
|
if (node_proto.op_type() == "Pad") |
|
{ |
|
// Padding layer. |
|
// Paddings are in order begin0, begin1, .. beginN, end0, end1, ..., endN. |
|
// We need to shuffle it to begin0, end0, begin1, end1, ... |
|
CV_Assert(attribute_proto.ints_size() % 2 == 0); |
|
const int dims = attribute_proto.ints_size() / 2; |
|
std::vector<int32_t> paddings; |
|
paddings.reserve(attribute_proto.ints_size()); |
|
for (int i = 0; i < dims; ++i) |
|
{ |
|
paddings.push_back(attribute_proto.ints(i)); |
|
paddings.push_back(attribute_proto.ints(dims + i)); |
|
} |
|
lp.set("paddings", DictValue::arrayInt(&paddings[0], paddings.size())); |
|
} |
|
else |
|
{ |
|
// Convolution or pooling. |
|
CV_Assert(attribute_proto.ints_size() == 4 || attribute_proto.ints_size() == 6); |
|
lp.set("pad", parse(attribute_proto.ints())); |
|
} |
|
} |
|
else if(attribute_name == "auto_pad") |
|
{ |
|
if (attribute_proto.s() == "SAME_UPPER" || attribute_proto.s() == "SAME_LOWER") { |
|
lp.set("pad_mode", "SAME"); |
|
} |
|
else if (attribute_proto.s() == "VALID") { |
|
lp.set("pad_mode", "VALID"); |
|
} |
|
} |
|
else if(attribute_name == "dilations") |
|
{ |
|
CV_Assert(attribute_proto.ints_size() == 2 || attribute_proto.ints_size() == 3); |
|
lp.set("dilation", parse(attribute_proto.ints())); |
|
} |
|
else if (attribute_proto.has_i()) |
|
{ |
|
::google::protobuf::int64 src = attribute_proto.i(); |
|
if (src < std::numeric_limits<int32_t>::min() || src > std::numeric_limits<int32_t>::max()) |
|
CV_Error(Error::StsOutOfRange, "Input is out of OpenCV 32S range"); |
|
else |
|
lp.set(attribute_name, saturate_cast<int32_t>(src)); |
|
} |
|
else if (attribute_proto.has_f()) |
|
{ |
|
lp.set(attribute_name, attribute_proto.f()); |
|
} |
|
else if (attribute_proto.has_s()) |
|
{ |
|
lp.set(attribute_name, attribute_proto.s()); |
|
} |
|
else if (attribute_proto.floats_size() > 0) |
|
{ |
|
lp.set(attribute_name, DictValue::arrayReal( |
|
attribute_proto.floats().data(), attribute_proto.floats_size())); |
|
} |
|
else if (attribute_proto.ints_size() > 0) |
|
{ |
|
lp.set(attribute_proto.name(), parse(attribute_proto.ints())); |
|
} |
|
else if (attribute_proto.has_t()) |
|
{ |
|
opencv_onnx::TensorProto tensor = attribute_proto.t(); |
|
Mat blob = getMatFromTensor(tensor); |
|
lp.blobs.push_back(blob); |
|
} |
|
else if (attribute_proto.has_g() || attribute_proto.strings_size() > 0 || |
|
attribute_proto.tensors_size() > 0 || attribute_proto.graphs_size() > 0) |
|
{ |
|
CV_Error(Error::StsNotImplemented, "Unexpected attribute type"); |
|
} |
|
else |
|
CV_Error(Error::StsNotImplemented, "Unsupported attribute type"); |
|
} |
|
return lp; |
|
} |
|
|
|
Mat ONNXImporter::getBlob(const opencv_onnx::NodeProto& node_proto, |
|
const std::map<std::string, Mat>& constBlobs, int index) |
|
{ |
|
CV_Assert(index < node_proto.input_size()); |
|
std::map<std::string, Mat>::const_iterator constBlob; |
|
constBlob = constBlobs.find(node_proto.input(index)); |
|
if (constBlob == constBlobs.end()) { |
|
CV_Error(Error::StsObjectNotFound, |
|
"Blob " + node_proto.input(index) + " not found in const blobs"); |
|
} |
|
return constBlob->second; |
|
} |
|
|
|
void ONNXImporter::populateNet(Net dstNet) |
|
{ |
|
CV_Assert(model_proto.has_graph()); |
|
opencv_onnx::GraphProto graph_proto = model_proto.graph(); |
|
|
|
simplifySubgraphs(graph_proto); |
|
|
|
std::map<std::string, Mat> constBlobs = getGraphTensors(graph_proto); |
|
// List of internal blobs shapes. |
|
std::map<std::string, MatShape> outShapes; |
|
// Add all the inputs shapes. It includes as constant blobs as network's inputs shapes. |
|
for (int i = 0; i < graph_proto.input_size(); ++i) |
|
{ |
|
opencv_onnx::ValueInfoProto valueInfoProto = graph_proto.input(i); |
|
CV_Assert(valueInfoProto.has_type()); |
|
opencv_onnx::TypeProto typeProto = valueInfoProto.type(); |
|
CV_Assert(typeProto.has_tensor_type()); |
|
opencv_onnx::TypeProto::Tensor tensor = typeProto.tensor_type(); |
|
CV_Assert(tensor.has_shape()); |
|
opencv_onnx::TensorShapeProto tensorShape = tensor.shape(); |
|
|
|
MatShape inpShape(tensorShape.dim_size()); |
|
for (int j = 0; j < inpShape.size(); ++j) |
|
{ |
|
inpShape[j] = tensorShape.dim(j).dim_value(); |
|
} |
|
outShapes[valueInfoProto.name()] = inpShape; |
|
} |
|
|
|
std::string framework_name; |
|
if (model_proto.has_producer_name()) { |
|
framework_name = model_proto.producer_name(); |
|
} |
|
|
|
// create map with network inputs (without const blobs) |
|
std::map<std::string, LayerInfo> layer_id; |
|
std::map<std::string, LayerInfo>::iterator layerId; |
|
std::map<std::string, MatShape>::iterator shapeIt; |
|
// fill map: push layer name, layer id and output id |
|
std::vector<String> netInputs; |
|
for (int j = 0; j < graph_proto.input_size(); j++) |
|
{ |
|
const std::string& name = graph_proto.input(j).name(); |
|
if (constBlobs.find(name) == constBlobs.end()) { |
|
netInputs.push_back(name); |
|
layer_id.insert(std::make_pair(name, LayerInfo(0, netInputs.size() - 1))); |
|
} |
|
} |
|
dstNet.setInputsNames(netInputs); |
|
|
|
int layersSize = graph_proto.node_size(); |
|
LayerParams layerParams; |
|
opencv_onnx::NodeProto node_proto; |
|
|
|
for(int li = 0; li < layersSize; li++) |
|
{ |
|
node_proto = graph_proto.node(li); |
|
layerParams = getLayerParams(node_proto); |
|
CV_Assert(node_proto.output_size() >= 1); |
|
layerParams.name = node_proto.output(0); |
|
|
|
std::string layer_type = node_proto.op_type(); |
|
layerParams.type = layer_type; |
|
|
|
|
|
if (layer_type == "MaxPool") |
|
{ |
|
layerParams.type = "Pooling"; |
|
layerParams.set("pool", "MAX"); |
|
layerParams.set("ceil_mode", layerParams.has("pad_mode")); |
|
} |
|
else if (layer_type == "AveragePool") |
|
{ |
|
layerParams.type = "Pooling"; |
|
layerParams.set("pool", "AVE"); |
|
layerParams.set("ceil_mode", layerParams.has("pad_mode")); |
|
layerParams.set("ave_pool_padded_area", framework_name == "pytorch"); |
|
} |
|
else if (layer_type == "GlobalAveragePool" || layer_type == "GlobalMaxPool" || layer_type == "ReduceMean") |
|
{ |
|
CV_Assert(node_proto.input_size() == 1); |
|
layerParams.type = "Pooling"; |
|
layerParams.set("pool", layer_type == "GlobalMaxPool"? "MAX" : "AVE"); |
|
layerParams.set("global_pooling", layer_type == "GlobalAveragePool" || layer_type == "GlobalMaxPool"); |
|
|
|
if (layer_type == "ReduceMean") |
|
{ |
|
if (layerParams.get<int>("keepdims") == 0 || !layerParams.has("axes")) |
|
CV_Error(Error::StsNotImplemented, "Unsupported mode of ReduceMean operation."); |
|
|
|
MatShape inpShape = outShapes[node_proto.input(0)]; |
|
if (inpShape.size() != 4 && inpShape.size() != 5) |
|
CV_Error(Error::StsNotImplemented, "Unsupported input shape of reduce_mean operation."); |
|
|
|
DictValue axes = layerParams.get("axes"); |
|
CV_Assert(axes.size() <= inpShape.size() - 2); |
|
std::vector<int> kernel_size(inpShape.size() - 2, 1); |
|
for (int i = 0; i < axes.size(); i++) { |
|
int axis = axes.get<int>(i); |
|
CV_Assert_N(axis >= 2 + i, axis < inpShape.size()); |
|
kernel_size[axis - 2] = inpShape[axis]; |
|
} |
|
|
|
layerParams.set("kernel_size", DictValue::arrayInt(&kernel_size[0], kernel_size.size())); |
|
} |
|
} |
|
else if (layer_type == "Slice") |
|
{ |
|
if (layerParams.has("steps")) { |
|
DictValue steps = layerParams.get("steps"); |
|
for (int i = 0; i < steps.size(); ++i) { |
|
if (steps.get<int>(i) != 1) |
|
CV_Error(Error::StsNotImplemented, |
|
"Slice layer only supports steps = 1"); |
|
} |
|
} |
|
|
|
int axis = 0; |
|
if (layerParams.has("axes")) { |
|
DictValue axes = layerParams.get("axes"); |
|
for (int i = 1; i < axes.size(); ++i) { |
|
CV_Assert(axes.get<int>(i - 1) == axes.get<int>(i) - 1); |
|
} |
|
axis = axes.get<int>(0); |
|
} |
|
layerParams.set("axis", axis); |
|
|
|
DictValue starts = layerParams.get("starts"); |
|
DictValue ends = layerParams.get("ends"); |
|
CV_Assert(starts.size() == ends.size()); |
|
|
|
std::vector<int> begin; |
|
std::vector<int> end; |
|
if (axis > 0) { |
|
begin.resize(axis, 0); |
|
end.resize(axis, -1); |
|
} |
|
|
|
for (int i = 0; i < starts.size(); ++i) |
|
{ |
|
begin.push_back(starts.get<int>(i)); |
|
int finish = ends.get<int>(i); |
|
end.push_back((finish < 0) ? --finish : finish); // numpy doesn't include last dim |
|
} |
|
layerParams.set("begin", DictValue::arrayInt(&begin[0], begin.size())); |
|
layerParams.set("end", DictValue::arrayInt(&end[0], end.size())); |
|
} |
|
else if (layer_type == "Split") |
|
{ |
|
if (layerParams.has("split")) |
|
{ |
|
DictValue splits = layerParams.get("split"); |
|
const int numSplits = splits.size(); |
|
CV_Assert(numSplits > 1); |
|
|
|
std::vector<int> slicePoints(numSplits - 1, splits.get<int>(0)); |
|
for (int i = 1; i < splits.size() - 1; ++i) |
|
{ |
|
slicePoints[i] = slicePoints[i - 1] + splits.get<int>(i - 1); |
|
} |
|
layerParams.set("slice_point", DictValue::arrayInt(&slicePoints[0], slicePoints.size())); |
|
} |
|
else |
|
{ |
|
layerParams.set("num_split", node_proto.output_size()); |
|
} |
|
layerParams.type = "Slice"; |
|
} |
|
else if (layer_type == "Add" || layer_type == "Sum" || layer_type == "Sub") |
|
{ |
|
bool isSub = layer_type == "Sub"; |
|
CV_CheckEQ(node_proto.input_size(), 2, ""); |
|
if (layer_id.find(node_proto.input(1)) == layer_id.end()) |
|
{ |
|
Mat blob = getBlob(node_proto, constBlobs, 1); |
|
blob = blob.reshape(1, 1); |
|
if (blob.total() == 1) { |
|
layerParams.type = "Power"; |
|
layerParams.set("shift", (isSub ? -1 : 1) * blob.at<float>(0)); |
|
} |
|
else { |
|
layerParams.type = "Scale"; |
|
layerParams.set("bias_term", true); |
|
layerParams.blobs.push_back((isSub ? -1 : 1) * blob); |
|
} |
|
} |
|
else if (outShapes[node_proto.input(0)] == outShapes[node_proto.input(1)]) |
|
{ |
|
layerParams.type = "Eltwise"; |
|
if (isSub) |
|
{ |
|
static float subCoeffs[] = {1.f, -1.f}; |
|
layerParams.set("coeff", DictValue::arrayReal<float*>(subCoeffs, 2)); |
|
} |
|
} |
|
else |
|
{ |
|
if (isSub) |
|
{ |
|
LayerParams powerParams; |
|
powerParams.name = layerParams.name + "/neg"; |
|
powerParams.type = "Power"; |
|
powerParams.set("scale", -1); |
|
|
|
//Create Power layer |
|
int id = dstNet.addLayer(powerParams.name, powerParams.type, powerParams); |
|
//Connect to input |
|
layerId = layer_id.find(node_proto.input(1)); |
|
CV_Assert(layerId != layer_id.end()); |
|
dstNet.connect(layerId->second.layerId, layerId->second.outputId, id, 0); |
|
//Add shape |
|
layer_id.insert(std::make_pair(powerParams.name, LayerInfo(id, 0))); |
|
outShapes[powerParams.name] = outShapes[node_proto.input(1)]; |
|
|
|
//Replace input to Power |
|
node_proto.set_input(1, powerParams.name); |
|
} |
|
layerParams.type = "Scale"; |
|
layerParams.set("bias_term", true); |
|
} |
|
} |
|
else if (layer_type == "Max") |
|
{ |
|
layerParams.type = "Eltwise"; |
|
layerParams.set("operation", "max"); |
|
} |
|
else if (layer_type == "Neg") |
|
{ |
|
layerParams.type = "Power"; |
|
layerParams.set("scale", -1); |
|
} |
|
else if (layer_type == "Constant") |
|
{ |
|
CV_Assert(node_proto.input_size() == 0); |
|
CV_Assert(layerParams.blobs.size() == 1); |
|
constBlobs.insert(std::make_pair(layerParams.name, layerParams.blobs[0])); |
|
continue; |
|
} |
|
else if (layer_type == "ImageScaler") |
|
{ |
|
const float scale = layerParams.has("scale") ? layerParams.get<float>("scale") : 1.0f; |
|
layerParams.erase("scale"); |
|
|
|
if (layerParams.has("bias")) |
|
{ |
|
layerParams.type = "Scale"; |
|
layerParams.blobs.push_back( |
|
Mat(Size(1, layerParams.get("bias").size()), CV_32FC1, scale)); |
|
|
|
layerParams.set("bias_term", true); |
|
Mat bias(1, layerParams.get("bias").size(), CV_32FC1); |
|
for (int j = 0; j < bias.total(); j++) { |
|
bias.at<float>(0, j) = layerParams.get("bias").getRealValue(j); |
|
} |
|
layerParams.blobs.push_back(bias); |
|
layerParams.erase("bias"); |
|
} |
|
else { |
|
layerParams.set("scale", scale); |
|
layerParams.type = "Power"; |
|
} |
|
} |
|
else if (layer_type == "Clip") |
|
{ |
|
layerParams.type = "ReLU6"; |
|
replaceLayerParam(layerParams, "min", "min_value"); |
|
replaceLayerParam(layerParams, "max", "max_value"); |
|
|
|
} |
|
else if (layer_type == "LeakyRelu") |
|
{ |
|
layerParams.type = "ReLU"; |
|
replaceLayerParam(layerParams, "alpha", "negative_slope"); |
|
} |
|
else if (layer_type == "LRN") |
|
{ |
|
replaceLayerParam(layerParams, "size", "local_size"); |
|
} |
|
else if (layer_type == "InstanceNormalization") |
|
{ |
|
if (node_proto.input_size() != 3) |
|
CV_Error(Error::StsNotImplemented, |
|
"Expected input, scale, bias"); |
|
|
|
layerParams.blobs.resize(4); |
|
layerParams.blobs[2] = getBlob(node_proto, constBlobs, 1); // weightData |
|
layerParams.blobs[3] = getBlob(node_proto, constBlobs, 2); // biasData |
|
layerParams.set("has_bias", true); |
|
layerParams.set("has_weight", true); |
|
|
|
// Get number of channels in input |
|
int size = layerParams.blobs[2].total(); |
|
layerParams.blobs[0] = Mat::zeros(size, 1, CV_32F); // mean |
|
layerParams.blobs[1] = Mat::ones(size, 1, CV_32F); // std |
|
|
|
LayerParams mvnParams; |
|
mvnParams.name = layerParams.name + "/MVN"; |
|
mvnParams.type = "MVN"; |
|
mvnParams.set("eps", layerParams.get<float>("epsilon")); |
|
layerParams.erase("epsilon"); |
|
|
|
//Create MVN layer |
|
int id = dstNet.addLayer(mvnParams.name, mvnParams.type, mvnParams); |
|
//Connect to input |
|
layerId = layer_id.find(node_proto.input(0)); |
|
CV_Assert(layerId != layer_id.end()); |
|
dstNet.connect(layerId->second.layerId, layerId->second.outputId, id, 0); |
|
//Add shape |
|
layer_id.insert(std::make_pair(mvnParams.name, LayerInfo(id, 0))); |
|
outShapes[mvnParams.name] = outShapes[node_proto.input(0)]; |
|
|
|
//Replace Batch Norm's input to MVN |
|
node_proto.set_input(0, mvnParams.name); |
|
layerParams.type = "BatchNorm"; |
|
} |
|
else if (layer_type == "BatchNormalization") |
|
{ |
|
if (node_proto.input_size() != 5) |
|
CV_Error(Error::StsNotImplemented, |
|
"Expected input, scale, bias, mean and var"); |
|
|
|
layerParams.type = "BatchNorm"; |
|
replaceLayerParam(layerParams, "epsilon", "eps"); |
|
replaceLayerParam(layerParams, "spatial", "use_global_stats"); |
|
|
|
Mat meanData = getBlob(node_proto, constBlobs, 3); |
|
Mat stdData = getBlob(node_proto, constBlobs, 4); |
|
|
|
layerParams.blobs.push_back(meanData); |
|
layerParams.blobs.push_back(stdData); |
|
|
|
if (!node_proto.input(1).empty()) { |
|
layerParams.set("has_weight", true); |
|
layerParams.blobs.push_back(getBlob(node_proto, constBlobs, 1)); // weightData |
|
} else { |
|
layerParams.set("has_weight", false); |
|
} |
|
|
|
if (!node_proto.input(2).empty()) { |
|
layerParams.set("has_bias", true); |
|
layerParams.blobs.push_back(getBlob(node_proto, constBlobs, 2)); // biasData |
|
} else { |
|
layerParams.set("has_bias", false); |
|
} |
|
} |
|
else if (layer_type == "Gemm") |
|
{ |
|
CV_Assert(node_proto.input_size() >= 2); |
|
layerParams.type = "InnerProduct"; |
|
Mat weights = getBlob(node_proto, constBlobs, 1); |
|
int ind_num_out = 0; |
|
if (layerParams.has("transB") && !layerParams.get<int>("transB")) { |
|
transpose(weights, weights); |
|
ind_num_out = 1; |
|
} |
|
layerParams.blobs.push_back(weights); |
|
|
|
if (node_proto.input_size() == 3) { |
|
Mat bias = getBlob(node_proto, constBlobs, 2); |
|
layerParams.blobs.push_back(bias); |
|
} |
|
|
|
layerParams.set("num_output", layerParams.blobs[0].size[ind_num_out]); |
|
layerParams.set("bias_term", node_proto.input_size() == 3); |
|
} |
|
else if (layer_type == "MatMul") |
|
{ |
|
CV_Assert(node_proto.input_size() == 2); |
|
layerParams.type = "InnerProduct"; |
|
Mat blob = getBlob(node_proto, constBlobs, 1); |
|
layerParams.blobs.push_back(blob.t()); |
|
layerParams.set("bias_term", false); |
|
layerParams.set("num_output", layerParams.blobs[0].size[0]); |
|
} |
|
else if (layer_type == "Mul" || layer_type == "Div") |
|
{ |
|
CV_Assert(node_proto.input_size() == 2); |
|
|
|
bool isDiv = layer_type == "Div"; |
|
int constId = -1; |
|
bool haveVariables = false; |
|
for (int i = 0; i < 2; ++i) |
|
{ |
|
if (constBlobs.find(node_proto.input(i)) != constBlobs.end()) |
|
constId = i; |
|
else |
|
haveVariables = true; |
|
} |
|
if (constId != -1 && haveVariables) |
|
{ |
|
Mat blob = getBlob(node_proto, constBlobs, constId); |
|
blob = blob.reshape(1, 1); |
|
if (blob.total() == 1) { |
|
float coeff = isDiv ? 1.0 / blob.at<float>(0) : blob.at<float>(0); |
|
layerParams.set("scale", coeff); |
|
layerParams.type = "Power"; |
|
} |
|
else { |
|
if (isDiv) |
|
divide(1.0, blob, blob); |
|
layerParams.blobs.push_back(blob); |
|
layerParams.type = "Scale"; |
|
} |
|
} |
|
else if (outShapes[node_proto.input(0)] == outShapes[node_proto.input(1)]) |
|
{ |
|
layerParams.type = "Eltwise"; |
|
layerParams.set("operation", isDiv ? "div" : "prod"); |
|
} |
|
else |
|
{ |
|
if (isDiv) |
|
{ |
|
LayerParams powerParams; |
|
powerParams.name = layerParams.name + "/inv"; |
|
powerParams.type = "Power"; |
|
powerParams.set("power", -1); |
|
|
|
//Create Power layer |
|
int id = dstNet.addLayer(powerParams.name, powerParams.type, powerParams); |
|
//Connect to input |
|
layerId = layer_id.find(node_proto.input(1)); |
|
CV_Assert(layerId != layer_id.end()); |
|
dstNet.connect(layerId->second.layerId, layerId->second.outputId, id, 0); |
|
//Add shape |
|
layer_id.insert(std::make_pair(powerParams.name, LayerInfo(id, 0))); |
|
outShapes[powerParams.name] = outShapes[node_proto.input(1)]; |
|
|
|
//Replace input to Power |
|
node_proto.set_input(1, powerParams.name); |
|
} |
|
layerParams.type = "Scale"; |
|
} |
|
|
|
if (!haveVariables) |
|
{ |
|
Mat inp0 = getBlob(node_proto, constBlobs, 0); |
|
Mat inp1 = getBlob(node_proto, constBlobs, 1); |
|
if (inp0.size != inp1.size) |
|
CV_Error(Error::StsNotImplemented, "Constant multiply with different shapes"); |
|
|
|
Mat out; |
|
if (isDiv) |
|
divide(inp0, inp1, out); |
|
else |
|
multiply(inp0, inp1, out); |
|
|
|
out = out.reshape(1, inp0.dims, inp0.size); |
|
out.dims = inp0.dims; // to workaround dims == 1 |
|
constBlobs.insert(std::make_pair(layerParams.name, out)); |
|
continue; |
|
} |
|
} |
|
else if (layer_type == "Conv") |
|
{ |
|
CV_Assert(node_proto.input_size() >= 2); |
|
layerParams.type = "Convolution"; |
|
for (int j = 1; j < node_proto.input_size(); j++) { |
|
layerParams.blobs.push_back(getBlob(node_proto, constBlobs, j)); |
|
} |
|
layerParams.set("num_output", layerParams.blobs[0].size[0]); |
|
layerParams.set("bias_term", node_proto.input_size() == 3); |
|
} |
|
else if (layer_type == "ConvTranspose") |
|
{ |
|
CV_Assert(node_proto.input_size() >= 2); |
|
layerParams.type = "Deconvolution"; |
|
for (int j = 1; j < node_proto.input_size(); j++) { |
|
layerParams.blobs.push_back(getBlob(node_proto, constBlobs, j)); |
|
} |
|
layerParams.set("num_output", layerParams.blobs[0].size[1] * layerParams.get<int>("group", 1)); |
|
layerParams.set("bias_term", node_proto.input_size() == 3); |
|
|
|
if (!layerParams.has("kernel_size")) |
|
CV_Error(Error::StsNotImplemented, |
|
"Required attribute 'kernel_size' is not present."); |
|
|
|
if (layerParams.has("output_shape")) |
|
{ |
|
const DictValue& outShape = layerParams.get("output_shape"); |
|
DictValue strides = layerParams.get("stride"); |
|
DictValue kernel = layerParams.get("kernel_size"); |
|
|
|
String padMode; |
|
std::vector<int> adjust_pads; |
|
if (layerParams.has("pad_mode")) |
|
{ |
|
padMode = toUpperCase(layerParams.get<String>("pad_mode")); |
|
if (padMode != "SAME" && padMode != "VALID") |
|
CV_Error(Error::StsError, "Unsupported padding mode " + padMode); |
|
|
|
for (int i = 0; i < strides.size(); i++) |
|
{ |
|
int sz = outShape.get<int>(2 + i); |
|
int stride = strides.get<int>(i); |
|
adjust_pads.push_back(padMode == "SAME"? (sz - 1) % stride : |
|
(sz - kernel.get<int>(i)) % stride); |
|
} |
|
layerParams.set("adj", DictValue::arrayInt(&adjust_pads[0], adjust_pads.size())); |
|
} |
|
} |
|
else if (layerParams.has("output_padding")) |
|
{ |
|
replaceLayerParam(layerParams, "output_padding", "adj"); |
|
} |
|
} |
|
else if (layer_type == "Transpose") |
|
{ |
|
layerParams.type = "Permute"; |
|
replaceLayerParam(layerParams, "perm", "order"); |
|
|
|
CV_Assert(node_proto.input_size() == 1); |
|
if (constBlobs.find(node_proto.input(0)) != constBlobs.end()) |
|
{ |
|
std::vector<Mat> inputs(1, getBlob(node_proto, constBlobs, 0)), transposed; |
|
runLayer(layerParams, inputs, transposed); |
|
CV_Assert(transposed.size() == 1); |
|
constBlobs.insert(std::make_pair(layerParams.name, transposed[0])); |
|
continue; |
|
} |
|
} |
|
else if (layer_type == "ReduceL2") |
|
{ |
|
CV_Assert_N(node_proto.input_size() == 1, layerParams.has("axes")); |
|
CV_Assert(graph_proto.node_size() > li + 1 && graph_proto.node(li + 1).op_type() == "Div"); |
|
++li; |
|
node_proto = graph_proto.node(li); |
|
layerParams.name = node_proto.output(0); |
|
layerParams.type = "Normalize"; |
|
|
|
DictValue axes_dict = layerParams.get("axes"); |
|
if (axes_dict.size() != 1) |
|
CV_Error(Error::StsNotImplemented, "Multidimensional reduceL2"); |
|
int axis = axes_dict.getIntValue(0); |
|
layerParams.set("axis",axis); |
|
layerParams.set("end_axis", axis); |
|
} |
|
else if (layer_type == "Squeeze") |
|
{ |
|
CV_Assert_N(node_proto.input_size() == 1, layerParams.has("axes")); |
|
DictValue axes_dict = layerParams.get("axes"); |
|
if (axes_dict.size() != 1) |
|
CV_Error(Error::StsNotImplemented, "Multidimensional squeeze"); |
|
|
|
int axis = axes_dict.getIntValue(0); |
|
layerParams.set("axis", axis - 1); |
|
layerParams.set("end_axis", axis); |
|
layerParams.type = "Flatten"; |
|
} |
|
else if (layer_type == "Unsqueeze") |
|
{ |
|
CV_Assert(node_proto.input_size() == 1); |
|
DictValue axes = layerParams.get("axes"); |
|
if (constBlobs.find(node_proto.input(0)) != constBlobs.end()) |
|
{ |
|
// Constant input. |
|
Mat input = getBlob(node_proto, constBlobs, 0); |
|
|
|
std::vector<int> dims; |
|
for (int j = 0; j < input.dims; j++) { |
|
dims.push_back(input.size[j]); |
|
} |
|
CV_Assert(axes.getIntValue(axes.size()-1) <= dims.size()); |
|
for (int j = 0; j < axes.size(); j++) { |
|
dims.insert(dims.begin() + axes.getIntValue(j), 1); |
|
} |
|
|
|
Mat out = input.reshape(0, dims); |
|
constBlobs.insert(std::make_pair(layerParams.name, out)); |
|
continue; |
|
} |
|
|
|
// Variable input. |
|
if (axes.size() != 1) |
|
CV_Error(Error::StsNotImplemented, "Multidimensional unsqueeze"); |
|
|
|
MatShape inpShape = outShapes[node_proto.input(0)]; |
|
int axis = axes.getIntValue(0); |
|
CV_Assert(0 <= axis && axis <= inpShape.size()); |
|
std::vector<int> outShape = inpShape; |
|
outShape.insert(outShape.begin() + axis, 1); |
|
layerParams.type = "Reshape"; |
|
layerParams.set("dim", DictValue::arrayInt(&outShape[0], outShape.size())); |
|
} |
|
else if (layer_type == "Reshape") |
|
{ |
|
CV_Assert(node_proto.input_size() == 2 || layerParams.has("shape")); |
|
|
|
if (node_proto.input_size() == 2) { |
|
Mat blob = getBlob(node_proto, constBlobs, 1); |
|
CV_Assert(blob.type() == CV_32SC1); |
|
|
|
layerParams.set("dim", DictValue::arrayInt<int*>( |
|
blob.ptr<int>(), blob.total() )); |
|
|
|
if (layer_id.find(node_proto.input(0)) == layer_id.end()) { |
|
std::vector<Mat> inputs(1, getBlob(node_proto, constBlobs, 0)), outputs; |
|
runLayer(layerParams, inputs, outputs); |
|
constBlobs.insert(std::make_pair(layerParams.name, outputs[0])); |
|
continue; |
|
} |
|
} |
|
else { |
|
DictValue shape = layerParams.get("shape"); |
|
std::vector<int> dim; |
|
for (int j = 0; j < shape.size(); j++) { |
|
dim.push_back(shape.getIntValue(j)); |
|
} |
|
|
|
if (layer_id.find(node_proto.input(0)) == layer_id.end()) { |
|
Mat input = getBlob(node_proto, constBlobs, 0); |
|
Mat out = input.reshape(0, dim); |
|
constBlobs.insert(std::make_pair(layerParams.name, out)); |
|
continue; |
|
} |
|
replaceLayerParam(layerParams, "shape", "dim"); |
|
} |
|
} |
|
else if (layer_type == "Pad") |
|
{ |
|
layerParams.type = "Padding"; |
|
} |
|
else if (layer_type == "Shape") |
|
{ |
|
CV_Assert(node_proto.input_size() == 1); |
|
shapeIt = outShapes.find(node_proto.input(0)); |
|
CV_Assert(shapeIt != outShapes.end()); |
|
MatShape inpShape = shapeIt->second; |
|
|
|
Mat shapeMat(inpShape.size(), 1, CV_32S); |
|
for (int j = 0; j < inpShape.size(); ++j) |
|
shapeMat.at<int>(j) = inpShape[j]; |
|
shapeMat.dims = 1; |
|
|
|
constBlobs.insert(std::make_pair(layerParams.name, shapeMat)); |
|
continue; |
|
} |
|
else if (layer_type == "Gather") |
|
{ |
|
CV_Assert(node_proto.input_size() == 2); |
|
CV_Assert(layerParams.has("axis")); |
|
Mat input = getBlob(node_proto, constBlobs, 0); |
|
Mat indexMat = getBlob(node_proto, constBlobs, 1); |
|
CV_Assert_N(indexMat.type() == CV_32S, indexMat.total() == 1); |
|
int index = indexMat.at<int>(0); |
|
int axis = layerParams.get<int>("axis"); |
|
|
|
std::vector<cv::Range> ranges(input.dims, Range::all()); |
|
ranges[axis] = Range(index, index + 1); |
|
|
|
Mat out = input(ranges); |
|
constBlobs.insert(std::make_pair(layerParams.name, out)); |
|
continue; |
|
} |
|
else if (layer_type == "Concat") |
|
{ |
|
bool hasVariableInps = false; |
|
for (int i = 0; i < node_proto.input_size(); ++i) |
|
{ |
|
if (layer_id.find(node_proto.input(i)) != layer_id.end()) |
|
{ |
|
hasVariableInps = true; |
|
break; |
|
} |
|
} |
|
|
|
if (!hasVariableInps) |
|
{ |
|
std::vector<Mat> inputs(node_proto.input_size()), concatenated; |
|
for (size_t i = 0; i < inputs.size(); ++i) |
|
{ |
|
inputs[i] = getBlob(node_proto, constBlobs, i); |
|
} |
|
runLayer(layerParams, inputs, concatenated); |
|
|
|
CV_Assert(concatenated.size() == 1); |
|
constBlobs.insert(std::make_pair(layerParams.name, concatenated[0])); |
|
continue; |
|
} |
|
} |
|
else if (layer_type == "Upsample") |
|
{ |
|
layerParams.type = "Resize"; |
|
if (layerParams.has("scales")) |
|
{ |
|
// Pytorch layer |
|
DictValue scales = layerParams.get("scales"); |
|
CV_Assert(scales.size() == 4); |
|
layerParams.set("zoom_factor_y", scales.getIntValue(2)); |
|
layerParams.set("zoom_factor_x", scales.getIntValue(3)); |
|
} |
|
else |
|
{ |
|
// Caffe2 layer |
|
replaceLayerParam(layerParams, "height_scale", "zoom_factor_y"); |
|
replaceLayerParam(layerParams, "width_scale", "zoom_factor_x"); |
|
} |
|
replaceLayerParam(layerParams, "mode", "interpolation"); |
|
|
|
if (layerParams.get<String>("interpolation") == "linear" && framework_name == "pytorch") { |
|
layerParams.type = "Resize"; |
|
Mat scales = getBlob(node_proto, constBlobs, 1); |
|
CV_Assert(scales.total() == 4); |
|
layerParams.set("interpolation", "opencv_linear"); |
|
layerParams.set("zoom_factor_y", scales.at<float>(2)); |
|
layerParams.set("zoom_factor_x", scales.at<float>(3)); |
|
} |
|
} |
|
else if (layer_type == "LogSoftmax") |
|
{ |
|
layerParams.type = "Softmax"; |
|
layerParams.set("log_softmax", true); |
|
} |
|
else |
|
{ |
|
for (int j = 0; j < node_proto.input_size(); j++) { |
|
if (layer_id.find(node_proto.input(j)) == layer_id.end()) |
|
layerParams.blobs.push_back(getBlob(node_proto, constBlobs, j)); |
|
} |
|
} |
|
|
|
int id = dstNet.addLayer(layerParams.name, layerParams.type, layerParams); |
|
for (int i = 0; i < node_proto.output_size(); ++i) |
|
{ |
|
layer_id.insert(std::make_pair(node_proto.output(i), LayerInfo(id, i))); |
|
} |
|
|
|
std::vector<MatShape> layerInpShapes, layerOutShapes, layerInternalShapes; |
|
for (int j = 0; j < node_proto.input_size(); j++) { |
|
layerId = layer_id.find(node_proto.input(j)); |
|
if (layerId != layer_id.end()) { |
|
dstNet.connect(layerId->second.layerId, layerId->second.outputId, id, j); |
|
// Collect input shapes. |
|
shapeIt = outShapes.find(node_proto.input(j)); |
|
CV_Assert(shapeIt != outShapes.end()); |
|
layerInpShapes.push_back(shapeIt->second); |
|
} |
|
} |
|
|
|
// Compute shape of output blob for this layer. |
|
Ptr<Layer> layer = dstNet.getLayer(id); |
|
layer->getMemoryShapes(layerInpShapes, 0, layerOutShapes, layerInternalShapes); |
|
for (int i = 0; i < node_proto.output_size() && i < (int)layerOutShapes.size(); ++i) |
|
{ |
|
outShapes[node_proto.output(i)] = layerOutShapes[i]; |
|
} |
|
} |
|
} |
|
|
|
Net readNetFromONNX(const String& onnxFile) |
|
{ |
|
ONNXImporter onnxImporter(onnxFile.c_str()); |
|
Net net; |
|
onnxImporter.populateNet(net); |
|
return net; |
|
} |
|
|
|
Net readNetFromONNX(const char* buffer, size_t sizeBuffer) |
|
{ |
|
ONNXImporter onnxImporter(buffer, sizeBuffer); |
|
Net net; |
|
onnxImporter.populateNet(net); |
|
return net; |
|
} |
|
|
|
Net readNetFromONNX(const std::vector<uchar>& buffer) |
|
{ |
|
return readNetFromONNX(reinterpret_cast<const char*>(buffer.data()), buffer.size()); |
|
} |
|
|
|
Mat readTensorFromONNX(const String& path) |
|
{ |
|
opencv_onnx::TensorProto tensor_proto = opencv_onnx::TensorProto(); |
|
std::fstream input(path.c_str(), std::ios::in | std::ios::binary); |
|
if (!tensor_proto.ParseFromIstream(&input)) { |
|
CV_Error(Error::StsUnsupportedFormat, "Failed to parse data"); |
|
} |
|
Mat mat = getMatFromTensor(tensor_proto); |
|
releaseONNXTensor(tensor_proto); |
|
return mat; |
|
} |
|
|
|
CV__DNN_INLINE_NS_END |
|
}} // namespace |
|
|
|
#endif
|
|
|