mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
112 lines
4.1 KiB
112 lines
4.1 KiB
// This file is part of OpenCV project. |
|
// It is subject to the license terms in the LICENSE file found in the top-level directory |
|
// of this distribution and at http://opencv.org/license.html. |
|
|
|
#include "test_precomp.hpp" |
|
|
|
namespace opencv_test { namespace { |
|
|
|
using cv::ml::TrainData; |
|
using cv::ml::EM; |
|
using cv::ml::KNearest; |
|
|
|
TEST(ML_KNearest, accuracy) |
|
{ |
|
int sizesArr[] = { 500, 700, 800 }; |
|
int pointsCount = sizesArr[0]+ sizesArr[1] + sizesArr[2]; |
|
|
|
Mat trainData( pointsCount, 2, CV_32FC1 ), trainLabels; |
|
vector<int> sizes( sizesArr, sizesArr + sizeof(sizesArr) / sizeof(sizesArr[0]) ); |
|
Mat means; |
|
vector<Mat> covs; |
|
defaultDistribs( means, covs ); |
|
generateData( trainData, trainLabels, sizes, means, covs, CV_32FC1, CV_32FC1 ); |
|
|
|
Mat testData( pointsCount, 2, CV_32FC1 ); |
|
Mat testLabels; |
|
generateData( testData, testLabels, sizes, means, covs, CV_32FC1, CV_32FC1 ); |
|
|
|
{ |
|
SCOPED_TRACE("Default"); |
|
Mat bestLabels; |
|
float err = 1000; |
|
Ptr<KNearest> knn = KNearest::create(); |
|
knn->train(trainData, ml::ROW_SAMPLE, trainLabels); |
|
knn->findNearest(testData, 4, bestLabels); |
|
EXPECT_TRUE(calcErr( bestLabels, testLabels, sizes, err, true )); |
|
EXPECT_LE(err, 0.01f); |
|
} |
|
{ |
|
SCOPED_TRACE("KDTree"); |
|
Mat neighborIndexes; |
|
float err = 1000; |
|
Ptr<KNearest> knn = KNearest::create(); |
|
knn->setAlgorithmType(KNearest::KDTREE); |
|
knn->train(trainData, ml::ROW_SAMPLE, trainLabels); |
|
knn->findNearest(testData, 4, neighborIndexes); |
|
Mat bestLabels; |
|
// The output of the KDTree are the neighbor indexes, not actual class labels |
|
// so we need to do some extra work to get actual predictions |
|
for(int row_num = 0; row_num < neighborIndexes.rows; ++row_num){ |
|
vector<float> labels; |
|
for(int index = 0; index < neighborIndexes.row(row_num).cols; ++index) { |
|
labels.push_back(trainLabels.at<float>(neighborIndexes.row(row_num).at<int>(0, index) , 0)); |
|
} |
|
// computing the mode of the output class predictions to determine overall prediction |
|
std::vector<int> histogram(3,0); |
|
for( int i=0; i<3; ++i ) |
|
++histogram[ static_cast<int>(labels[i]) ]; |
|
int bestLabel = static_cast<int>(std::max_element( histogram.begin(), histogram.end() ) - histogram.begin()); |
|
bestLabels.push_back(bestLabel); |
|
} |
|
bestLabels.convertTo(bestLabels, testLabels.type()); |
|
EXPECT_TRUE(calcErr( bestLabels, testLabels, sizes, err, true )); |
|
EXPECT_LE(err, 0.01f); |
|
} |
|
} |
|
|
|
TEST(ML_KNearest, regression_12347) |
|
{ |
|
Mat xTrainData = (Mat_<float>(5,2) << 1, 1.1, 1.1, 1, 2, 2, 2.1, 2, 2.1, 2.1); |
|
Mat yTrainLabels = (Mat_<float>(5,1) << 1, 1, 2, 2, 2); |
|
Ptr<KNearest> knn = KNearest::create(); |
|
knn->train(xTrainData, ml::ROW_SAMPLE, yTrainLabels); |
|
|
|
Mat xTestData = (Mat_<float>(2,2) << 1.1, 1.1, 2, 2.2); |
|
Mat zBestLabels, neighbours, dist; |
|
// check output shapes: |
|
int K = 16, Kexp = std::min(K, xTrainData.rows); |
|
knn->findNearest(xTestData, K, zBestLabels, neighbours, dist); |
|
EXPECT_EQ(xTestData.rows, zBestLabels.rows); |
|
EXPECT_EQ(neighbours.cols, Kexp); |
|
EXPECT_EQ(dist.cols, Kexp); |
|
// see if the result is still correct: |
|
K = 2; |
|
knn->findNearest(xTestData, K, zBestLabels, neighbours, dist); |
|
EXPECT_EQ(1, zBestLabels.at<float>(0,0)); |
|
EXPECT_EQ(2, zBestLabels.at<float>(1,0)); |
|
} |
|
|
|
TEST(ML_KNearest, bug_11877) |
|
{ |
|
Mat trainData = (Mat_<float>(5,2) << 3, 3, 3, 3, 4, 4, 4, 4, 4, 4); |
|
Mat trainLabels = (Mat_<float>(5,1) << 0, 0, 1, 1, 1); |
|
|
|
Ptr<KNearest> knnKdt = KNearest::create(); |
|
knnKdt->setAlgorithmType(KNearest::KDTREE); |
|
knnKdt->setIsClassifier(true); |
|
|
|
knnKdt->train(trainData, ml::ROW_SAMPLE, trainLabels); |
|
|
|
Mat testData = (Mat_<float>(2,2) << 3.1, 3.1, 4, 4.1); |
|
Mat testLabels = (Mat_<int>(2,1) << 0, 1); |
|
Mat result; |
|
|
|
knnKdt->findNearest(testData, 1, result); |
|
|
|
EXPECT_EQ(1, int(result.at<int>(0, 0))); |
|
EXPECT_EQ(2, int(result.at<int>(1, 0))); |
|
EXPECT_EQ(0, trainLabels.at<int>(result.at<int>(0, 0), 0)); |
|
} |
|
|
|
}} // namespace
|
|
|