mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
81 lines
2.8 KiB
81 lines
2.8 KiB
// This file is part of OpenCV project. |
|
// It is subject to the license terms in the LICENSE file found in the top-level directory |
|
// of this distribution and at http://opencv.org/license.html. |
|
// |
|
// AUTHOR: Rahul Kavi rahulkavi[at]live[at]com |
|
|
|
// |
|
// Test data uses subset of data from the popular Iris Dataset (1936): |
|
// - http://archive.ics.uci.edu/ml/datasets/Iris |
|
// - https://en.wikipedia.org/wiki/Iris_flower_data_set |
|
// |
|
|
|
#include "test_precomp.hpp" |
|
|
|
namespace opencv_test { namespace { |
|
|
|
TEST(ML_LR, accuracy) |
|
{ |
|
std::string dataFileName = findDataFile("iris.data"); |
|
Ptr<TrainData> tdata = TrainData::loadFromCSV(dataFileName, 0); |
|
ASSERT_FALSE(tdata.empty()); |
|
|
|
Ptr<LogisticRegression> p = LogisticRegression::create(); |
|
p->setLearningRate(1.0); |
|
p->setIterations(10001); |
|
p->setRegularization(LogisticRegression::REG_L2); |
|
p->setTrainMethod(LogisticRegression::BATCH); |
|
p->setMiniBatchSize(10); |
|
p->train(tdata); |
|
|
|
Mat responses; |
|
p->predict(tdata->getSamples(), responses); |
|
|
|
float error = 1000; |
|
EXPECT_TRUE(calculateError(responses, tdata->getResponses(), error)); |
|
EXPECT_LE(error, 0.05f); |
|
} |
|
|
|
//================================================================================================== |
|
|
|
TEST(ML_LR, save_load) |
|
{ |
|
string dataFileName = findDataFile("iris.data"); |
|
Ptr<TrainData> tdata = TrainData::loadFromCSV(dataFileName, 0); |
|
ASSERT_FALSE(tdata.empty()); |
|
Mat responses1, responses2; |
|
Mat learnt_mat1, learnt_mat2; |
|
String filename = tempfile(".xml"); |
|
{ |
|
Ptr<LogisticRegression> lr1 = LogisticRegression::create(); |
|
lr1->setLearningRate(1.0); |
|
lr1->setIterations(10001); |
|
lr1->setRegularization(LogisticRegression::REG_L2); |
|
lr1->setTrainMethod(LogisticRegression::BATCH); |
|
lr1->setMiniBatchSize(10); |
|
ASSERT_NO_THROW(lr1->train(tdata)); |
|
ASSERT_NO_THROW(lr1->predict(tdata->getSamples(), responses1)); |
|
ASSERT_NO_THROW(lr1->save(filename)); |
|
learnt_mat1 = lr1->get_learnt_thetas(); |
|
} |
|
{ |
|
Ptr<LogisticRegression> lr2; |
|
ASSERT_NO_THROW(lr2 = Algorithm::load<LogisticRegression>(filename)); |
|
ASSERT_NO_THROW(lr2->predict(tdata->getSamples(), responses2)); |
|
learnt_mat2 = lr2->get_learnt_thetas(); |
|
} |
|
// compare difference in prediction outputs and stored inputs |
|
EXPECT_MAT_NEAR(responses1, responses2, 0.f); |
|
|
|
Mat comp_learnt_mats; |
|
comp_learnt_mats = (learnt_mat1 == learnt_mat2); |
|
comp_learnt_mats = comp_learnt_mats.reshape(1, comp_learnt_mats.rows*comp_learnt_mats.cols); |
|
comp_learnt_mats.convertTo(comp_learnt_mats, CV_32S); |
|
comp_learnt_mats = comp_learnt_mats/255; |
|
// check if there is any difference between computed learnt mat and retrieved mat |
|
EXPECT_EQ(comp_learnt_mats.rows, sum(comp_learnt_mats)[0]); |
|
|
|
remove( filename.c_str() ); |
|
} |
|
|
|
}} // namespace
|
|
|