Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

397 lines
13 KiB

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "test_precomp.hpp"
namespace opencv_test { namespace {
/// phase correlation
class CV_PhaseCorrelatorTest : public cvtest::ArrayTest
{
public:
CV_PhaseCorrelatorTest();
protected:
void run( int );
};
CV_PhaseCorrelatorTest::CV_PhaseCorrelatorTest() {}
void CV_PhaseCorrelatorTest::run( int )
{
ts->set_failed_test_info(cvtest::TS::OK);
Mat r1 = Mat::ones(Size(129, 128), CV_64F);
Mat r2 = Mat::ones(Size(129, 128), CV_64F);
double expectedShiftX = -10.0;
double expectedShiftY = -20.0;
// draw 10x10 rectangles @ (100, 100) and (90, 80) should see ~(-10, -20) shift here...
cv::rectangle(r1, Point(100, 100), Point(110, 110), Scalar(0, 0, 0), cv::FILLED);
cv::rectangle(r2, Point(90, 80), Point(100, 90), Scalar(0, 0, 0), cv::FILLED);
Mat hann;
createHanningWindow(hann, r1.size(), CV_64F);
Point2d phaseShift = phaseCorrelate(r1, r2, hann);
// test accuracy should be less than 1 pixel...
if(std::abs(expectedShiftX - phaseShift.x) >= 1 || std::abs(expectedShiftY - phaseShift.y) >= 1)
{
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
}
}
TEST(Imgproc_PhaseCorrelatorTest, accuracy) { CV_PhaseCorrelatorTest test; test.safe_run(); }
TEST(Imgproc_PhaseCorrelatorTest, accuracy_real_img)
{
Mat img = imread(cvtest::TS::ptr()->get_data_path() + "shared/airplane.png", IMREAD_GRAYSCALE);
img.convertTo(img, CV_64FC1);
const int xLen = 129;
const int yLen = 129;
const int xShift = 40;
const int yShift = 14;
Mat roi1 = img(Rect(xShift, yShift, xLen, yLen));
Mat roi2 = img(Rect(0, 0, xLen, yLen));
Mat hann;
createHanningWindow(hann, roi1.size(), CV_64F);
Point2d phaseShift = phaseCorrelate(roi1, roi2, hann);
ASSERT_NEAR(phaseShift.x, (double)xShift, 1.);
ASSERT_NEAR(phaseShift.y, (double)yShift, 1.);
}
TEST(Imgproc_PhaseCorrelatorTest, accuracy_1d_odd_fft) {
Mat r1 = Mat::ones(Size(129, 1), CV_64F)*255; // 129 will be completed to 135 before FFT
Mat r2 = Mat::ones(Size(129, 1), CV_64F)*255;
const int xShift = 10;
for(int i = 6; i < 20; i++)
{
r1.at<double>(i) = 1;
r2.at<double>(i + xShift) = 1;
}
Point2d phaseShift = phaseCorrelate(r1, r2);
ASSERT_NEAR(phaseShift.x, (double)xShift, 1.);
}
////////////////////// DivSpectrums ////////////////////////
class CV_DivSpectrumsTest : public cvtest::ArrayTest
{
public:
CV_DivSpectrumsTest();
protected:
void run_func();
void get_test_array_types_and_sizes( int, vector<vector<Size> >& sizes, vector<vector<int> >& types );
void prepare_to_validation( int test_case_idx );
int flags;
};
CV_DivSpectrumsTest::CV_DivSpectrumsTest() : flags(0)
{
// Allocate test matrices.
test_array[INPUT].push_back(NULL); // first input DFT as a CCS-packed array or complex matrix.
test_array[INPUT].push_back(NULL); // second input DFT as a CCS-packed array or complex matrix.
test_array[OUTPUT].push_back(NULL); // output DFT as a complex matrix.
test_array[REF_OUTPUT].push_back(NULL); // reference output DFT as a complex matrix.
test_array[TEMP].push_back(NULL); // first input DFT converted to a complex matrix.
test_array[TEMP].push_back(NULL); // second input DFT converted to a complex matrix.
test_array[TEMP].push_back(NULL); // output DFT as a CCV-packed array.
}
void CV_DivSpectrumsTest::get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types )
{
cvtest::ArrayTest::get_test_array_types_and_sizes(test_case_idx, sizes, types);
RNG& rng = ts->get_rng();
// Get the flag of the input.
const int rand_int_flags = cvtest::randInt(rng);
flags = rand_int_flags & (CV_DXT_MUL_CONJ | CV_DXT_ROWS);
// Get input type.
const int rand_int_type = cvtest::randInt(rng);
int type;
if (rand_int_type % 4)
{
type = CV_32FC1;
}
else if (rand_int_type % 4 == 1)
{
type = CV_32FC2;
}
else if (rand_int_type % 4 == 2)
{
type = CV_64FC1;
}
else
{
type = CV_64FC2;
}
for( size_t i = 0; i < types.size(); i++ )
{
for( size_t j = 0; j < types[i].size(); j++ )
{
types[i][j] = type;
}
}
// Inputs are CCS-packed arrays. Prepare outputs and temporary inputs as complex matrices.
if( type == CV_32FC1 || type == CV_64FC1 )
{
types[OUTPUT][0] += 8;
types[REF_OUTPUT][0] += 8;
types[TEMP][0] += 8;
types[TEMP][1] += 8;
}
}
/// Helper function to convert a ccs array of depth_t into a complex matrix.
template<typename depth_t>
static void convert_from_ccs_helper( const Mat& src0, const Mat& src1, Mat& dst )
{
const int cn = src0.channels();
int srcstep = cn;
int dststep = 1;
if( !dst.isContinuous() )
dststep = (int)(dst.step/dst.elemSize());
if( !src0.isContinuous() )
srcstep = (int)(src0.step/src0.elemSize1());
Complex<depth_t> *dst_data = dst.ptr<Complex<depth_t> >();
const depth_t* src0_data = src0.ptr<depth_t>();
const depth_t* src1_data = src1.ptr<depth_t>();
dst_data->re = src0_data[0];
dst_data->im = 0;
const int n = dst.cols + dst.rows - 1;
const int n2 = (n+1) >> 1;
if( (n & 1) == 0 )
{
dst_data[n2*dststep].re = src0_data[(cn == 1 ? n-1 : n2)*srcstep];
dst_data[n2*dststep].im = 0;
}
int delta0 = srcstep;
int delta1 = delta0 + (cn == 1 ? srcstep : 1);
if( cn == 1 )
srcstep *= 2;
for( int i = 1; i < n2; i++, delta0 += srcstep, delta1 += srcstep )
{
depth_t t0 = src0_data[delta0];
depth_t t1 = src0_data[delta1];
dst_data[i*dststep].re = t0;
dst_data[i*dststep].im = t1;
t0 = src1_data[delta0];
t1 = -src1_data[delta1];
dst_data[(n-i)*dststep].re = t0;
dst_data[(n-i)*dststep].im = t1;
}
}
/// Helper function to convert a ccs array into a complex matrix.
static void convert_from_ccs( const Mat& src0, const Mat& src1, Mat& dst, const int flags )
{
if( dst.rows > 1 && (dst.cols > 1 || (flags & DFT_ROWS)) )
{
const int count = dst.rows;
const int len = dst.cols;
const bool is2d = (flags & DFT_ROWS) == 0;
for( int i = 0; i < count; i++ )
{
const int j = !is2d || i == 0 ? i : count - i;
const Mat& src0row = src0.row(i);
const Mat& src1row = src1.row(j);
Mat dstrow = dst.row(i);
convert_from_ccs( src0row, src1row, dstrow, 0 );
}
if( is2d )
{
const Mat& src0row = src0.col(0);
Mat dstrow = dst.col(0);
convert_from_ccs( src0row, src0row, dstrow, 0 );
if( (len & 1) == 0 )
{
const Mat& src0row_even = src0.col(src0.cols - 1);
Mat dstrow_even = dst.col(len/2);
convert_from_ccs( src0row_even, src0row_even, dstrow_even, 0 );
}
}
}
else
{
if( dst.depth() == CV_32F )
{
convert_from_ccs_helper<float>( src0, src1, dst );
}
else
{
convert_from_ccs_helper<double>( src0, src1, dst );
}
}
}
/// Helper function to compute complex number (nu_re + nu_im * i) / (de_re + de_im * i).
static std::pair<double, double> divide_complex_numbers( const double nu_re, const double nu_im,
const double de_re, const double de_im,
const bool conj_de )
{
if ( conj_de )
{
return divide_complex_numbers( nu_re, nu_im, de_re, -de_im, false /* conj_de */ );
}
const double result_de = de_re * de_re + de_im * de_im + DBL_EPSILON;
const double result_re = nu_re * de_re + nu_im * de_im;
const double result_im = nu_re * (-de_im) + nu_im * de_re;
return std::pair<double, double>(result_re / result_de, result_im / result_de);
}
/// Helper function to divide a DFT in src1 by a DFT in src2 with depths depth_t. The DFTs are
/// complex matrices.
template <typename depth_t>
static void div_complex_helper( const Mat& src1, const Mat& src2, Mat& dst, int flags )
{
CV_Assert( src1.size == src2.size && src1.type() == src2.type() );
dst.create( src1.rows, src1.cols, src1.type() );
const int cn = src1.channels();
int cols = src1.cols * cn;
for( int i = 0; i < dst.rows; i++ )
{
const depth_t *src1_data = src1.ptr<depth_t>(i);
const depth_t *src2_data = src2.ptr<depth_t>(i);
depth_t *dst_data = dst.ptr<depth_t>(i);
for( int j = 0; j < cols; j += 2 )
{
std::pair<double, double> result =
divide_complex_numbers( src1_data[j], src1_data[j + 1],
src2_data[j], src2_data[j + 1],
(flags & CV_DXT_MUL_CONJ) != 0 );
dst_data[j] = (depth_t)result.first;
dst_data[j + 1] = (depth_t)result.second;
}
}
}
/// Helper function to divide a DFT in src1 by a DFT in src2. The DFTs are complex matrices.
static void div_complex( const Mat& src1, const Mat& src2, Mat& dst, const int flags )
{
const int type = src1.type();
CV_Assert( type == CV_32FC2 || type == CV_64FC2 );
if ( src1.depth() == CV_32F )
{
return div_complex_helper<float>( src1, src2, dst, flags );
}
else
{
return div_complex_helper<double>( src1, src2, dst, flags );
}
}
void CV_DivSpectrumsTest::prepare_to_validation( int /* test_case_idx */ )
{
Mat &src1 = test_mat[INPUT][0];
Mat &src2 = test_mat[INPUT][1];
Mat &ref_dst = test_mat[REF_OUTPUT][0];
const int cn = src1.channels();
// Inputs are CCS-packed arrays. Convert them to complex matrices and get the expected output
// as a complex matrix.
if( cn == 1 )
{
Mat &converted_src1 = test_mat[TEMP][0];
Mat &converted_src2 = test_mat[TEMP][1];
convert_from_ccs( src1, src1, converted_src1, flags );
convert_from_ccs( src2, src2, converted_src2, flags );
div_complex( converted_src1, converted_src2, ref_dst, flags );
}
// Inputs are complex matrices. Get the expected output as a complex matrix.
else
{
div_complex( src1, src2, ref_dst, flags );
}
}
void CV_DivSpectrumsTest::run_func()
{
const Mat &src1 = test_mat[INPUT][0];
const Mat &src2 = test_mat[INPUT][1];
const int cn = src1.channels();
// Inputs are CCS-packed arrays. Get the output as a CCS-packed array and convert it to a
// complex matrix.
if ( cn == 1 )
{
Mat &dst = test_mat[TEMP][2];
cv::divSpectrums( src1, src2, dst, flags, (flags & CV_DXT_MUL_CONJ) != 0 );
Mat &converted_dst = test_mat[OUTPUT][0];
convert_from_ccs( dst, dst, converted_dst, flags );
}
// Inputs are complex matrices. Get the output as a complex matrix.
else
{
Mat &dst = test_mat[OUTPUT][0];
cv::divSpectrums( src1, src2, dst, flags, (flags & CV_DXT_MUL_CONJ) != 0 );
}
}
TEST(Imgproc_DivSpectrums, accuracy) { CV_DivSpectrumsTest test; test.safe_run(); }
}} // namespace