mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
526 lines
16 KiB
526 lines
16 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// Intel License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of Intel Corporation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "test_precomp.hpp" |
|
|
|
namespace opencv_test { namespace { |
|
|
|
enum { MINEIGENVAL=0, HARRIS=1, EIGENVALSVECS=2 }; |
|
|
|
|
|
#if 0 //set 1 to switch ON debug message |
|
#define TEST_MESSAGE( message ) std::cout << message; |
|
#define TEST_MESSAGEL( message, val) std::cout << message << val << std::endl; |
|
#else |
|
#define TEST_MESSAGE( message ) |
|
#define TEST_MESSAGEL( message, val) |
|
#endif |
|
|
|
/////////////////////ref////////////////////// |
|
|
|
struct greaterThanPtr |
|
{ |
|
bool operator () (const float * a, const float * b) const |
|
{ return *a > *b; } |
|
}; |
|
|
|
static void |
|
test_cornerEigenValsVecs( const Mat& src, Mat& eigenv, int block_size, |
|
int _aperture_size, double k, int mode, int borderType, const Scalar& _borderValue ) |
|
{ |
|
int i, j; |
|
Scalar borderValue = _borderValue; |
|
int aperture_size = _aperture_size < 0 ? 3 : _aperture_size; |
|
Point anchor( aperture_size/2, aperture_size/2 ); |
|
|
|
CV_Assert( src.type() == CV_8UC1 || src.type() == CV_32FC1 ); |
|
CV_Assert( eigenv.type() == CV_32FC1 ); |
|
CV_Assert( ( src.rows == eigenv.rows ) && |
|
(((mode == MINEIGENVAL)||(mode == HARRIS)) && (src.cols == eigenv.cols)) ); |
|
|
|
int type = src.type(); |
|
int ftype = CV_32FC1; |
|
double kernel_scale = 1; |
|
|
|
Mat dx2, dy2, dxdy(src.size(), CV_32F), kernel; |
|
|
|
kernel = cvtest::calcSobelKernel2D( 1, 0, _aperture_size ); |
|
cvtest::filter2D( src, dx2, ftype, kernel*kernel_scale, anchor, 0, borderType, borderValue ); |
|
kernel = cvtest::calcSobelKernel2D( 0, 1, _aperture_size ); |
|
cvtest::filter2D( src, dy2, ftype, kernel*kernel_scale, anchor, 0, borderType,borderValue ); |
|
|
|
double denom = (1 << (aperture_size-1))*block_size; |
|
|
|
if( _aperture_size < 0 ) |
|
denom *= 2.; |
|
if(type != ftype ) |
|
denom *= 255.; |
|
|
|
denom = 1. / (denom * denom); |
|
|
|
for( i = 0; i < src.rows; i++ ) |
|
{ |
|
float* dxdyp = dxdy.ptr<float>(i); |
|
float* dx2p = dx2.ptr<float>(i); |
|
float* dy2p = dy2.ptr<float>(i); |
|
|
|
for( j = 0; j < src.cols; j++ ) |
|
{ |
|
double xval = dx2p[j], yval = dy2p[j]; |
|
dxdyp[j] = (float)(xval*yval*denom); |
|
dx2p[j] = (float)(xval*xval*denom); |
|
dy2p[j] = (float)(yval*yval*denom); |
|
} |
|
} |
|
|
|
kernel = Mat::ones(block_size, block_size, CV_32F); |
|
anchor = Point(block_size/2, block_size/2); |
|
|
|
cvtest::filter2D( dx2, dx2, ftype, kernel, anchor, 0, borderType, borderValue ); |
|
cvtest::filter2D( dy2, dy2, ftype, kernel, anchor, 0, borderType, borderValue ); |
|
cvtest::filter2D( dxdy, dxdy, ftype, kernel, anchor, 0, borderType, borderValue ); |
|
|
|
if( mode == MINEIGENVAL ) |
|
{ |
|
for( i = 0; i < src.rows; i++ ) |
|
{ |
|
float* eigenvp = eigenv.ptr<float>(i); |
|
const float* dxdyp = dxdy.ptr<float>(i); |
|
const float* dx2p = dx2.ptr<float>(i); |
|
const float* dy2p = dy2.ptr<float>(i); |
|
|
|
for( j = 0; j < src.cols; j++ ) |
|
{ |
|
double a = dx2p[j], b = dxdyp[j], c = dy2p[j]; |
|
double d = sqrt( ( a - c )*( a - c ) + 4*b*b ); |
|
eigenvp[j] = (float)( 0.5*(a + c - d)); |
|
} |
|
} |
|
} |
|
else if( mode == HARRIS ) |
|
{ |
|
|
|
for( i = 0; i < src.rows; i++ ) |
|
{ |
|
float* eigenvp = eigenv.ptr<float>(i); |
|
const float* dxdyp = dxdy.ptr<float>(i); |
|
const float* dx2p = dx2.ptr<float>(i); |
|
const float* dy2p = dy2.ptr<float>(i); |
|
|
|
for( j = 0; j < src.cols; j++ ) |
|
{ |
|
double a = dx2p[j], b = dxdyp[j], c = dy2p[j]; |
|
eigenvp[j] = (float)(a*c - b*b - k*(a + c)*(a + c)); |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
static void |
|
test_goodFeaturesToTrack( InputArray _image, OutputArray _corners, |
|
int maxCorners, double qualityLevel, double minDistance, |
|
InputArray _mask, OutputArray _cornersQuality, |
|
int blockSize, int gradientSize, bool useHarrisDetector, double harrisK) |
|
{ |
|
|
|
CV_Assert( qualityLevel > 0 && minDistance >= 0 && maxCorners >= 0 ); |
|
CV_Assert( _mask.empty() || (_mask.type() == CV_8UC1 && _mask.sameSize(_image)) ); |
|
|
|
|
|
Mat image = _image.getMat(), mask = _mask.getMat(); |
|
int aperture_size = gradientSize; |
|
int borderType = BORDER_DEFAULT; |
|
|
|
Mat eig, tmp, tt; |
|
|
|
eig.create( image.size(), CV_32F ); |
|
|
|
if( useHarrisDetector ) |
|
test_cornerEigenValsVecs( image, eig, blockSize, aperture_size, harrisK, HARRIS, borderType, 0 ); |
|
else |
|
test_cornerEigenValsVecs( image, eig, blockSize, aperture_size, 0, MINEIGENVAL, borderType, 0 ); |
|
|
|
double maxVal = 0; |
|
|
|
cvtest::minMaxIdx( eig, 0, &maxVal, 0, 0, mask ); |
|
cvtest::threshold( eig, eig, (float)(maxVal*qualityLevel), 0.f,THRESH_TOZERO ); |
|
cvtest::dilate( eig, tmp, Mat(),Point(-1,-1),borderType,0); |
|
|
|
Size imgsize = image.size(); |
|
|
|
vector<const float*> tmpCorners; |
|
|
|
// collect list of pointers to features - put them into temporary image |
|
for( int y = 1; y < imgsize.height - 1; y++ ) |
|
{ |
|
const float* eig_data = (const float*)eig.ptr(y); |
|
const float* tmp_data = (const float*)tmp.ptr(y); |
|
const uchar* mask_data = mask.data ? mask.ptr(y) : 0; |
|
|
|
for( int x = 1; x < imgsize.width - 1; x++ ) |
|
{ |
|
float val = eig_data[x]; |
|
if( val != 0 && val == tmp_data[x] && (!mask_data || mask_data[x]) ) |
|
{ |
|
tmpCorners.push_back(eig_data + x); |
|
} |
|
} |
|
} |
|
|
|
vector<Point2f> corners; |
|
vector<float> cornersQuality; |
|
size_t i, j, total = tmpCorners.size(), ncorners = 0; |
|
|
|
std::sort( tmpCorners.begin(), tmpCorners.end(), greaterThanPtr() ); |
|
|
|
if(minDistance >= 1) |
|
{ |
|
// Partition the image into larger grids |
|
int w = image.cols; |
|
int h = image.rows; |
|
|
|
const int cell_size = cvRound(minDistance); |
|
const int grid_width = (w + cell_size - 1) / cell_size; |
|
const int grid_height = (h + cell_size - 1) / cell_size; |
|
|
|
std::vector<std::vector<Point2f> > grid(grid_width*grid_height); |
|
|
|
minDistance *= minDistance; |
|
|
|
for( i = 0; i < total; i++ ) |
|
{ |
|
int ofs = (int)((const uchar*)tmpCorners[i] - eig.data); |
|
int y = (int)(ofs / eig.step); |
|
int x = (int)((ofs - y*eig.step)/sizeof(float)); |
|
|
|
bool good = true; |
|
|
|
int x_cell = x / cell_size; |
|
int y_cell = y / cell_size; |
|
|
|
int x1 = x_cell - 1; |
|
int y1 = y_cell - 1; |
|
int x2 = x_cell + 1; |
|
int y2 = y_cell + 1; |
|
|
|
// boundary check |
|
x1 = std::max(0, x1); |
|
y1 = std::max(0, y1); |
|
x2 = std::min(grid_width-1, x2); |
|
y2 = std::min(grid_height-1, y2); |
|
|
|
for( int yy = y1; yy <= y2; yy++ ) |
|
{ |
|
for( int xx = x1; xx <= x2; xx++ ) |
|
{ |
|
vector <Point2f> &m = grid[yy*grid_width + xx]; |
|
|
|
if( m.size() ) |
|
{ |
|
for(j = 0; j < m.size(); j++) |
|
{ |
|
float dx = x - m[j].x; |
|
float dy = y - m[j].y; |
|
|
|
if( dx*dx + dy*dy < minDistance ) |
|
{ |
|
good = false; |
|
goto break_out; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
break_out: |
|
|
|
if(good) |
|
{ |
|
grid[y_cell*grid_width + x_cell].push_back(Point2f((float)x, (float)y)); |
|
|
|
cornersQuality.push_back(*tmpCorners[i]); |
|
|
|
corners.push_back(Point2f((float)x, (float)y)); |
|
++ncorners; |
|
|
|
if( maxCorners > 0 && (int)ncorners == maxCorners ) |
|
break; |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
for( i = 0; i < total; i++ ) |
|
{ |
|
cornersQuality.push_back(*tmpCorners[i]); |
|
|
|
int ofs = (int)((const uchar*)tmpCorners[i] - eig.data); |
|
int y = (int)(ofs / eig.step); |
|
int x = (int)((ofs - y*eig.step)/sizeof(float)); |
|
|
|
corners.push_back(Point2f((float)x, (float)y)); |
|
++ncorners; |
|
|
|
if( maxCorners > 0 && (int)ncorners == maxCorners ) |
|
break; |
|
} |
|
} |
|
|
|
Mat(corners).convertTo(_corners, _corners.fixedType() ? _corners.type() : CV_32F); |
|
if (_cornersQuality.needed()) { |
|
Mat(cornersQuality).convertTo(_cornersQuality, _cornersQuality.fixedType() ? _cornersQuality.type() : CV_32F); |
|
} |
|
|
|
} |
|
|
|
/////////////////end of ref code////////////////////////// |
|
|
|
|
|
|
|
class CV_GoodFeatureToTTest : public cvtest::ArrayTest |
|
{ |
|
public: |
|
CV_GoodFeatureToTTest(); |
|
|
|
protected: |
|
int prepare_test_case( int test_case_idx ); |
|
void run_func(); |
|
int validate_test_results( int test_case_idx ); |
|
|
|
Mat src, src_gray; |
|
Mat src_gray32f, src_gray8U; |
|
Mat mask; |
|
|
|
int maxCorners; |
|
vector<Point2f> corners; |
|
vector<Point2f> Refcorners; |
|
vector<float> cornersQuality; |
|
vector<float> RefcornersQuality; |
|
double qualityLevel; |
|
double minDistance; |
|
int blockSize; |
|
int gradientSize; |
|
bool useHarrisDetector; |
|
double k; |
|
int SrcType; |
|
}; |
|
|
|
|
|
CV_GoodFeatureToTTest::CV_GoodFeatureToTTest() |
|
{ |
|
RNG& rng = ts->get_rng(); |
|
maxCorners = rng.uniform( 50, 100 ); |
|
qualityLevel = 0.01; |
|
minDistance = 10; |
|
blockSize = 3; |
|
gradientSize = 3; |
|
useHarrisDetector = false; |
|
k = 0.04; |
|
mask = Mat(); |
|
test_case_count = 4; |
|
SrcType = 0; |
|
} |
|
|
|
int CV_GoodFeatureToTTest::prepare_test_case( int test_case_idx ) |
|
{ |
|
const static int types[] = { CV_32FC1, CV_8UC1 }; |
|
|
|
cvtest::TS& tst = *cvtest::TS::ptr(); |
|
src = imread(string(tst.get_data_path()) + "shared/fruits.png", IMREAD_COLOR); |
|
|
|
CV_Assert(src.data != NULL); |
|
|
|
cvtColor( src, src_gray, COLOR_BGR2GRAY ); |
|
SrcType = types[test_case_idx & 0x1]; |
|
useHarrisDetector = test_case_idx & 2 ? true : false; |
|
return 1; |
|
} |
|
|
|
|
|
void CV_GoodFeatureToTTest::run_func() |
|
{ |
|
int cn = src_gray.channels(); |
|
|
|
CV_Assert( cn == 1 ); |
|
CV_Assert( ( CV_MAT_DEPTH(SrcType) == CV_32FC1 ) || ( CV_MAT_DEPTH(SrcType) == CV_8UC1 )); |
|
|
|
TEST_MESSAGEL (" maxCorners = ", maxCorners) |
|
if (useHarrisDetector) |
|
{ |
|
TEST_MESSAGE (" useHarrisDetector = true\n"); |
|
} |
|
else |
|
{ |
|
TEST_MESSAGE (" useHarrisDetector = false\n"); |
|
} |
|
|
|
if( CV_MAT_DEPTH(SrcType) == CV_32FC1) |
|
{ |
|
if (src_gray.depth() != CV_32FC1 ) src_gray.convertTo(src_gray32f, CV_32FC1); |
|
else src_gray32f = src_gray.clone(); |
|
|
|
TEST_MESSAGE ("goodFeaturesToTrack 32f\n") |
|
|
|
goodFeaturesToTrack( src_gray32f, |
|
corners, |
|
maxCorners, |
|
qualityLevel, |
|
minDistance, |
|
Mat(), |
|
cornersQuality, |
|
blockSize, |
|
gradientSize, |
|
useHarrisDetector, |
|
k ); |
|
} |
|
else |
|
{ |
|
if (src_gray.depth() != CV_8UC1 ) src_gray.convertTo(src_gray8U, CV_8UC1); |
|
else src_gray8U = src_gray.clone(); |
|
|
|
TEST_MESSAGE ("goodFeaturesToTrack 8U\n") |
|
|
|
goodFeaturesToTrack( src_gray8U, |
|
corners, |
|
maxCorners, |
|
qualityLevel, |
|
minDistance, |
|
Mat(), |
|
cornersQuality, |
|
blockSize, |
|
gradientSize, |
|
useHarrisDetector, |
|
k ); |
|
} |
|
} |
|
|
|
|
|
int CV_GoodFeatureToTTest::validate_test_results( int test_case_idx ) |
|
{ |
|
static const double eps = 2e-6; |
|
|
|
if( CV_MAT_DEPTH(SrcType) == CV_32FC1 ) |
|
{ |
|
if (src_gray.depth() != CV_32FC1 ) src_gray.convertTo(src_gray32f, CV_32FC1); |
|
else src_gray32f = src_gray.clone(); |
|
|
|
TEST_MESSAGE ("test_goodFeaturesToTrack 32f\n") |
|
|
|
test_goodFeaturesToTrack( src_gray32f, |
|
Refcorners, |
|
maxCorners, |
|
qualityLevel, |
|
minDistance, |
|
Mat(), |
|
RefcornersQuality, |
|
blockSize, |
|
gradientSize, |
|
useHarrisDetector, |
|
k ); |
|
} |
|
else |
|
{ |
|
if (src_gray.depth() != CV_8UC1 ) src_gray.convertTo(src_gray8U, CV_8UC1); |
|
else src_gray8U = src_gray.clone(); |
|
|
|
TEST_MESSAGE ("test_goodFeaturesToTrack 8U\n") |
|
|
|
test_goodFeaturesToTrack( src_gray8U, |
|
Refcorners, |
|
maxCorners, |
|
qualityLevel, |
|
minDistance, |
|
Mat(), |
|
RefcornersQuality, |
|
blockSize, |
|
gradientSize, |
|
useHarrisDetector, |
|
k ); |
|
} |
|
|
|
double e = cv::norm(corners, Refcorners); // TODO cvtest |
|
|
|
if (e > eps) |
|
{ |
|
TEST_MESSAGEL ("Number of features: Refcorners = ", Refcorners.size()) |
|
TEST_MESSAGEL (" TestCorners = ", corners.size()) |
|
TEST_MESSAGE ("\n") |
|
|
|
EXPECT_LE(e, eps); // never true |
|
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY); |
|
|
|
for(int i = 0; i < (int)std::min((unsigned int)(corners.size()), (unsigned int)(Refcorners.size())); i++){ |
|
if ( (corners[i].x != Refcorners[i].x) || (corners[i].y != Refcorners[i].y)) |
|
printf("i = %i X %2.2f Xref %2.2f Y %2.2f Yref %2.2f\n",i,corners[i].x,Refcorners[i].x,corners[i].y,Refcorners[i].y); |
|
} |
|
} |
|
else |
|
{ |
|
TEST_MESSAGEL (" Refcorners = ", Refcorners.size()) |
|
TEST_MESSAGEL (" TestCorners = ", corners.size()) |
|
TEST_MESSAGE ("\n") |
|
|
|
ts->set_failed_test_info(cvtest::TS::OK); |
|
} |
|
|
|
e = cv::norm(cornersQuality, RefcornersQuality, NORM_RELATIVE | NORM_INF); |
|
|
|
if (e > eps) |
|
{ |
|
EXPECT_LE(e, eps); // never true |
|
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY); |
|
|
|
for(int i = 0; i < (int)std::min((unsigned int)(cornersQuality.size()), (unsigned int)(cornersQuality.size())); i++) { |
|
if (std::abs(cornersQuality[i] - RefcornersQuality[i]) > eps * std::max(cornersQuality[i], RefcornersQuality[i])) |
|
printf("i = %i Quality %2.6f Quality ref %2.6f\n", i, cornersQuality[i], RefcornersQuality[i]); |
|
} |
|
} |
|
|
|
return BaseTest::validate_test_results(test_case_idx); |
|
|
|
} |
|
|
|
TEST(Imgproc_GoodFeatureToT, accuracy) { CV_GoodFeatureToTTest test; test.safe_run(); } |
|
|
|
|
|
}} // namespace |
|
/* End of file. */
|
|
|