mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
477 lines
17 KiB
477 lines
17 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
#include <algorithm> |
|
#include <functional> |
|
#include "matchers.hpp" |
|
#include "util.hpp" |
|
|
|
using namespace std; |
|
using namespace cv; |
|
using namespace cv::gpu; |
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////// |
|
|
|
void FeaturesFinder::operator ()(const Mat &image, ImageFeatures &features) |
|
{ |
|
features.img_size = image.size(); |
|
|
|
// Calculate histogram |
|
Mat hsv; |
|
cvtColor(image, hsv, CV_BGR2HSV); |
|
int hbins = 30, sbins = 32, vbins = 30; |
|
int hist_size[] = { hbins, sbins, vbins }; |
|
float hranges[] = { 0, 180 }; |
|
float sranges[] = { 0, 256 }; |
|
float vranges[] = { 0, 256 }; |
|
const float* ranges[] = { hranges, sranges, vranges }; |
|
int channels[] = { 0, 1, 2 }; |
|
calcHist(&hsv, 1, channels, Mat(), features.hist, 3, hist_size, ranges); |
|
|
|
find(image, features); |
|
} |
|
|
|
////////////////////////////////////////////////////////////////////////////// |
|
|
|
namespace |
|
{ |
|
class CpuSurfFeaturesFinder : public FeaturesFinder |
|
{ |
|
public: |
|
inline CpuSurfFeaturesFinder(double hess_thresh, int num_octaves, int num_layers, |
|
int num_octaves_descr, int num_layers_descr) |
|
{ |
|
detector_ = new SurfFeatureDetector(hess_thresh, num_octaves, num_layers); |
|
extractor_ = new SurfDescriptorExtractor(num_octaves_descr, num_layers_descr); |
|
} |
|
|
|
protected: |
|
void find(const Mat &image, ImageFeatures &features); |
|
|
|
private: |
|
Ptr<FeatureDetector> detector_; |
|
Ptr<DescriptorExtractor> extractor_; |
|
}; |
|
|
|
void CpuSurfFeaturesFinder::find(const Mat &image, ImageFeatures &features) |
|
{ |
|
Mat gray_image; |
|
CV_Assert(image.depth() == CV_8U); |
|
cvtColor(image, gray_image, CV_BGR2GRAY); |
|
detector_->detect(gray_image, features.keypoints); |
|
extractor_->compute(gray_image, features.keypoints, features.descriptors); |
|
} |
|
|
|
class GpuSurfFeaturesFinder : public FeaturesFinder |
|
{ |
|
public: |
|
inline GpuSurfFeaturesFinder(double hess_thresh, int num_octaves, int num_layers, |
|
int num_octaves_descr, int num_layers_descr) |
|
{ |
|
surf_.keypointsRatio = 0.1f; |
|
surf_.hessianThreshold = hess_thresh; |
|
surf_.extended = false; |
|
num_octaves_ = num_octaves; |
|
num_layers_ = num_layers; |
|
num_octaves_descr_ = num_octaves_descr; |
|
num_layers_descr_ = num_layers_descr; |
|
} |
|
|
|
protected: |
|
void find(const Mat &image, ImageFeatures &features); |
|
|
|
private: |
|
SURF_GPU surf_; |
|
int num_octaves_, num_layers_; |
|
int num_octaves_descr_, num_layers_descr_; |
|
}; |
|
|
|
void GpuSurfFeaturesFinder::find(const Mat &image, ImageFeatures &features) |
|
{ |
|
GpuMat gray_image; |
|
CV_Assert(image.depth() == CV_8U); |
|
cvtColor(GpuMat(image), gray_image, CV_BGR2GRAY); |
|
|
|
GpuMat d_keypoints; |
|
GpuMat d_descriptors; |
|
surf_.nOctaves = num_octaves_; |
|
surf_.nOctaveLayers = num_layers_; |
|
surf_(gray_image, GpuMat(), d_keypoints); |
|
|
|
surf_.nOctaves = num_octaves_descr_; |
|
surf_.nOctaveLayers = num_layers_descr_; |
|
surf_(gray_image, GpuMat(), d_keypoints, d_descriptors, true); |
|
surf_.downloadKeypoints(d_keypoints, features.keypoints); |
|
|
|
d_descriptors.download(features.descriptors); |
|
} |
|
} |
|
|
|
SurfFeaturesFinder::SurfFeaturesFinder(bool try_use_gpu, double hess_thresh, int num_octaves, int num_layers, |
|
int num_octaves_descr, int num_layers_descr) |
|
{ |
|
if (try_use_gpu && getCudaEnabledDeviceCount() > 0) |
|
impl_ = new GpuSurfFeaturesFinder(hess_thresh, num_octaves, num_layers, num_octaves_descr, num_layers_descr); |
|
else |
|
impl_ = new CpuSurfFeaturesFinder(hess_thresh, num_octaves, num_layers, num_octaves_descr, num_layers_descr); |
|
} |
|
|
|
|
|
void SurfFeaturesFinder::find(const Mat &image, ImageFeatures &features) |
|
{ |
|
(*impl_)(image, features); |
|
} |
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////// |
|
|
|
MatchesInfo::MatchesInfo() : src_img_idx(-1), dst_img_idx(-1), num_inliers(0), confidence(0) {} |
|
|
|
MatchesInfo::MatchesInfo(const MatchesInfo &other) { *this = other; } |
|
|
|
const MatchesInfo& MatchesInfo::operator =(const MatchesInfo &other) |
|
{ |
|
src_img_idx = other.src_img_idx; |
|
dst_img_idx = other.dst_img_idx; |
|
matches = other.matches; |
|
inliers_mask = other.inliers_mask; |
|
num_inliers = other.num_inliers; |
|
H = other.H.clone(); |
|
confidence = other.confidence; |
|
return *this; |
|
} |
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////// |
|
|
|
struct DistIdxPair |
|
{ |
|
bool operator<(const DistIdxPair &other) const { return dist < other.dist; } |
|
double dist; |
|
int idx; |
|
}; |
|
|
|
|
|
struct MatchPairsBody |
|
{ |
|
MatchPairsBody(const MatchPairsBody& other) |
|
: matcher(other.matcher), features(other.features), |
|
pairwise_matches(other.pairwise_matches), near_pairs(other.near_pairs) {} |
|
|
|
MatchPairsBody(FeaturesMatcher &matcher, const vector<ImageFeatures> &features, |
|
vector<MatchesInfo> &pairwise_matches, vector<pair<int,int> > &near_pairs) |
|
: matcher(matcher), features(features), |
|
pairwise_matches(pairwise_matches), near_pairs(near_pairs) {} |
|
|
|
void operator ()(const BlockedRange &r) const |
|
{ |
|
const int num_images = static_cast<int>(features.size()); |
|
for (int i = r.begin(); i < r.end(); ++i) |
|
{ |
|
int from = near_pairs[i].first; |
|
int to = near_pairs[i].second; |
|
int pair_idx = from*num_images + to; |
|
|
|
matcher(features[from], features[to], pairwise_matches[pair_idx]); |
|
pairwise_matches[pair_idx].src_img_idx = from; |
|
pairwise_matches[pair_idx].dst_img_idx = to; |
|
|
|
size_t dual_pair_idx = to*num_images + from; |
|
|
|
pairwise_matches[dual_pair_idx] = pairwise_matches[pair_idx]; |
|
pairwise_matches[dual_pair_idx].src_img_idx = to; |
|
pairwise_matches[dual_pair_idx].dst_img_idx = from; |
|
|
|
if (!pairwise_matches[pair_idx].H.empty()) |
|
pairwise_matches[dual_pair_idx].H = pairwise_matches[pair_idx].H.inv(); |
|
|
|
for (size_t j = 0; j < pairwise_matches[dual_pair_idx].matches.size(); ++j) |
|
swap(pairwise_matches[dual_pair_idx].matches[j].queryIdx, |
|
pairwise_matches[dual_pair_idx].matches[j].trainIdx); |
|
} |
|
} |
|
|
|
FeaturesMatcher &matcher; |
|
const vector<ImageFeatures> &features; |
|
vector<MatchesInfo> &pairwise_matches; |
|
vector<pair<int,int> > &near_pairs; |
|
|
|
private: |
|
void operator =(const MatchPairsBody&); |
|
}; |
|
|
|
|
|
void FeaturesMatcher::operator ()(const vector<ImageFeatures> &features, vector<MatchesInfo> &pairwise_matches) |
|
{ |
|
const int num_images = static_cast<int>(features.size()); |
|
|
|
Mat_<uchar> is_near(num_images, num_images); |
|
is_near.setTo(0); |
|
|
|
// Find good image pairs |
|
for (int i = 0; i < num_images; ++i) |
|
{ |
|
vector<DistIdxPair> dists(num_images); |
|
for (int j = 0; j < num_images; ++j) |
|
{ |
|
dists[j].dist = 1 - compareHist(features[i].hist, features[j].hist, CV_COMP_INTERSECT) |
|
/ min(features[i].img_size.area(), features[j].img_size.area()); |
|
dists[j].idx = j; |
|
} |
|
|
|
// Leave near images |
|
for (int j = 0; j < num_images; ++j) |
|
if (dists[j].dist < 0.6) |
|
is_near(i, dists[j].idx) = 1; |
|
|
|
// Leave k-nearest images |
|
int k = min(4, num_images); |
|
nth_element(dists.begin(), dists.end(), dists.begin() + k); |
|
for (int j = 0; j < k; ++j) |
|
is_near(i, dists[j].idx) = 1; |
|
} |
|
|
|
vector<pair<int,int> > near_pairs; |
|
for (int i = 0; i < num_images - 1; ++i) |
|
for (int j = i + 1; j < num_images; ++j) |
|
if (is_near(i, j)) |
|
near_pairs.push_back(make_pair(i, j)); |
|
|
|
pairwise_matches.resize(num_images * num_images); |
|
MatchPairsBody body(*this, features, pairwise_matches, near_pairs); |
|
|
|
if (is_thread_safe_) |
|
parallel_for(BlockedRange(0, static_cast<int>(near_pairs.size())), body); |
|
else |
|
body(BlockedRange(0, static_cast<int>(near_pairs.size()))); |
|
} |
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////// |
|
|
|
namespace |
|
{ |
|
class CpuMatcher : public FeaturesMatcher |
|
{ |
|
public: |
|
CpuMatcher(float match_conf) : FeaturesMatcher(true), match_conf_(match_conf) {} |
|
void match(const ImageFeatures &features1, const ImageFeatures &features2, MatchesInfo& matches_info); |
|
|
|
private: |
|
float match_conf_; |
|
}; |
|
|
|
void CpuMatcher::match(const ImageFeatures &features1, const ImageFeatures &features2, MatchesInfo& matches_info) |
|
{ |
|
matches_info.matches.clear(); |
|
|
|
BruteForceMatcher< L2<float> > matcher; |
|
vector< vector<DMatch> > pair_matches; |
|
|
|
// Find 1->2 matches |
|
matcher.knnMatch(features1.descriptors, features2.descriptors, pair_matches, 2); |
|
for (size_t i = 0; i < pair_matches.size(); ++i) |
|
{ |
|
if (pair_matches[i].size() < 2) |
|
continue; |
|
const DMatch& m0 = pair_matches[i][0]; |
|
const DMatch& m1 = pair_matches[i][1]; |
|
if (m0.distance < (1.f - match_conf_) * m1.distance) |
|
matches_info.matches.push_back(m0); |
|
} |
|
|
|
// Find 2->1 matches |
|
pair_matches.clear(); |
|
matcher.knnMatch(features2.descriptors, features1.descriptors, pair_matches, 2); |
|
for (size_t i = 0; i < pair_matches.size(); ++i) |
|
{ |
|
if (pair_matches[i].size() < 2) |
|
continue; |
|
const DMatch& m0 = pair_matches[i][0]; |
|
const DMatch& m1 = pair_matches[i][1]; |
|
if (m0.distance < (1.f - match_conf_) * m1.distance) |
|
matches_info.matches.push_back(DMatch(m0.trainIdx, m0.queryIdx, m0.distance)); |
|
} |
|
} |
|
|
|
class GpuMatcher : public FeaturesMatcher |
|
{ |
|
public: |
|
GpuMatcher(float match_conf) : match_conf_(match_conf) {} |
|
void match(const ImageFeatures &features1, const ImageFeatures &features2, MatchesInfo& matches_info); |
|
|
|
private: |
|
float match_conf_; |
|
GpuMat descriptors1_; |
|
GpuMat descriptors2_; |
|
GpuMat trainIdx_, distance_, allDist_; |
|
}; |
|
|
|
void GpuMatcher::match(const ImageFeatures &features1, const ImageFeatures &features2, MatchesInfo& matches_info) |
|
{ |
|
matches_info.matches.clear(); |
|
|
|
BruteForceMatcher_GPU< L2<float> > matcher; |
|
|
|
descriptors1_.upload(features1.descriptors); |
|
descriptors2_.upload(features2.descriptors); |
|
|
|
vector< vector<DMatch> > pair_matches; |
|
|
|
// Find 1->2 matches |
|
matcher.knnMatch(descriptors1_, descriptors2_, trainIdx_, distance_, allDist_, 2); |
|
matcher.knnMatchDownload(trainIdx_, distance_, pair_matches); |
|
for (size_t i = 0; i < pair_matches.size(); ++i) |
|
{ |
|
if (pair_matches[i].size() < 2) |
|
continue; |
|
const DMatch& m0 = pair_matches[i][0]; |
|
const DMatch& m1 = pair_matches[i][1]; |
|
|
|
CV_Assert(m0.queryIdx < static_cast<int>(features1.keypoints.size())); |
|
CV_Assert(m0.trainIdx < static_cast<int>(features2.keypoints.size())); |
|
|
|
if (m0.distance < (1.f - match_conf_) * m1.distance) |
|
matches_info.matches.push_back(m0); |
|
} |
|
|
|
// Find 2->1 matches |
|
pair_matches.clear(); |
|
matcher.knnMatch(descriptors2_, descriptors1_, trainIdx_, distance_, allDist_, 2); |
|
matcher.knnMatchDownload(trainIdx_, distance_, pair_matches); |
|
for (size_t i = 0; i < pair_matches.size(); ++i) |
|
{ |
|
if (pair_matches[i].size() < 2) |
|
continue; |
|
const DMatch& m0 = pair_matches[i][0]; |
|
const DMatch& m1 = pair_matches[i][1]; |
|
|
|
CV_Assert(m0.trainIdx < static_cast<int>(features1.keypoints.size())); |
|
CV_Assert(m0.queryIdx < static_cast<int>(features2.keypoints.size())); |
|
|
|
if (m0.distance < (1.f - match_conf_) * m1.distance) |
|
matches_info.matches.push_back(DMatch(m0.trainIdx, m0.queryIdx, m0.distance)); |
|
} |
|
} |
|
} |
|
|
|
BestOf2NearestMatcher::BestOf2NearestMatcher(bool try_use_gpu, float match_conf, int num_matches_thresh1, int num_matches_thresh2) |
|
{ |
|
if (try_use_gpu && getCudaEnabledDeviceCount() > 0) |
|
impl_ = new GpuMatcher(match_conf); |
|
else |
|
impl_ = new CpuMatcher(match_conf); |
|
|
|
is_thread_safe_ = impl_->isThreadSafe(); |
|
num_matches_thresh1_ = num_matches_thresh1; |
|
num_matches_thresh2_ = num_matches_thresh2; |
|
} |
|
|
|
|
|
void BestOf2NearestMatcher::match(const ImageFeatures &features1, const ImageFeatures &features2, |
|
MatchesInfo &matches_info) |
|
{ |
|
(*impl_)(features1, features2, matches_info); |
|
|
|
// Check if it makes sense to find homography |
|
if (matches_info.matches.size() < static_cast<size_t>(num_matches_thresh1_)) |
|
return; |
|
// Construct point-point correspondences for homography estimation |
|
Mat src_points(1, matches_info.matches.size(), CV_32FC2); |
|
Mat dst_points(1, matches_info.matches.size(), CV_32FC2); |
|
for (size_t i = 0; i < matches_info.matches.size(); ++i) |
|
{ |
|
const DMatch& m = matches_info.matches[i]; |
|
|
|
Point2f p = features1.keypoints[m.queryIdx].pt; |
|
p.x -= features1.img_size.width * 0.5f; |
|
p.y -= features1.img_size.height * 0.5f; |
|
src_points.at<Point2f>(0, i) = p; |
|
|
|
p = features2.keypoints[m.trainIdx].pt; |
|
p.x -= features2.img_size.width * 0.5f; |
|
p.y -= features2.img_size.height * 0.5f; |
|
dst_points.at<Point2f>(0, i) = p; |
|
} |
|
|
|
// Find pair-wise motion |
|
matches_info.H = findHomography(src_points, dst_points, matches_info.inliers_mask, CV_RANSAC); |
|
|
|
// Find number of inliers |
|
matches_info.num_inliers = 0; |
|
for (size_t i = 0; i < matches_info.inliers_mask.size(); ++i) |
|
if (matches_info.inliers_mask[i]) |
|
matches_info.num_inliers++; |
|
|
|
matches_info.confidence = matches_info.num_inliers / (8 + 0.3*matches_info.matches.size()); |
|
|
|
// Check if we should try to refine motion |
|
if (matches_info.num_inliers < num_matches_thresh2_) |
|
return; |
|
|
|
// Construct point-point correspondences for inliers only |
|
src_points.create(1, matches_info.num_inliers, CV_32FC2); |
|
dst_points.create(1, matches_info.num_inliers, CV_32FC2); |
|
int inlier_idx = 0; |
|
for (size_t i = 0; i < matches_info.matches.size(); ++i) |
|
{ |
|
if (!matches_info.inliers_mask[i]) |
|
continue; |
|
|
|
const DMatch& m = matches_info.matches[i]; |
|
|
|
Point2f p = features1.keypoints[m.queryIdx].pt; |
|
p.x -= features1.img_size.width * 0.5f; |
|
p.y -= features1.img_size.height * 0.5f; |
|
src_points.at<Point2f>(0, inlier_idx) = p; |
|
|
|
p = features2.keypoints[m.trainIdx].pt; |
|
p.x -= features2.img_size.width * 0.5f; |
|
p.y -= features2.img_size.height * 0.5f; |
|
dst_points.at<Point2f>(0, inlier_idx) = p; |
|
|
|
inlier_idx++; |
|
} |
|
|
|
// Rerun motion estimation on inliers only |
|
matches_info.H = findHomography(src_points, dst_points, CV_RANSAC); |
|
}
|
|
|