mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
286 lines
11 KiB
286 lines
11 KiB
#include <cv.h> |
|
#include <cvaux.h> |
|
#include <highgui.h> |
|
#include <iostream> |
|
|
|
using namespace cv; |
|
using namespace std; |
|
|
|
inline Point2f applyHomography( const Mat_<double>& H, const Point2f& pt ) |
|
{ |
|
double z = H(2,0)*pt.x + H(2,1)*pt.y + H(2,2); |
|
if( z ) |
|
{ |
|
double w = 1./z; |
|
return Point2f( (H(0,0)*pt.x + H(0,1)*pt.y + H(0,2))*w, (H(1,0)*pt.x + H(1,1)*pt.y + H(1,2))*w ); |
|
} |
|
return Point2f( numeric_limits<double>::max(), numeric_limits<double>::max() ); |
|
} |
|
|
|
void warpPerspectiveRand( const Mat& src, Mat& dst, Mat& H, RNG* rng ) |
|
{ |
|
H.create(3, 3, CV_32FC1); |
|
H.at<float>(0,0) = rng->uniform( 0.8f, 1.2f); |
|
H.at<float>(0,1) = rng->uniform(-0.1f, 0.1f); |
|
H.at<float>(0,2) = rng->uniform(-0.1f, 0.1f)*src.cols; |
|
H.at<float>(1,0) = rng->uniform(-0.1f, 0.1f); |
|
H.at<float>(1,1) = rng->uniform( 0.8f, 1.2f); |
|
H.at<float>(1,2) = rng->uniform(-0.1f, 0.1f)*src.rows; |
|
H.at<float>(2,0) = rng->uniform( -1e-4f, 1e-4f); |
|
H.at<float>(2,1) = rng->uniform( -1e-4f, 1e-4f); |
|
H.at<float>(2,2) = rng->uniform( 0.8f, 1.2f); |
|
|
|
warpPerspective( src, dst, H, src.size() ); |
|
} |
|
|
|
FeatureDetector* createDetector( const string& detectorType ) |
|
{ |
|
FeatureDetector* fd = 0; |
|
if( !detectorType.compare( "FAST" ) ) |
|
{ |
|
fd = new FastFeatureDetector( 10/*threshold*/, true/*nonmax_suppression*/ ); |
|
} |
|
else if( !detectorType.compare( "STAR" ) ) |
|
{ |
|
fd = new StarFeatureDetector( 16/*max_size*/, 5/*response_threshold*/, 10/*line_threshold_projected*/, |
|
8/*line_threshold_binarized*/, 5/*suppress_nonmax_size*/ ); |
|
} |
|
else if( !detectorType.compare( "SIFT" ) ) |
|
{ |
|
fd = new SiftFeatureDetector(SIFT::DetectorParams::GET_DEFAULT_THRESHOLD(), |
|
SIFT::DetectorParams::GET_DEFAULT_EDGE_THRESHOLD()); |
|
} |
|
else if( !detectorType.compare( "SURF" ) ) |
|
{ |
|
fd = new SurfFeatureDetector( 100./*hessian_threshold*/, 3 /*octaves*/, 4/*octave_layers*/ ); |
|
} |
|
else if( !detectorType.compare( "MSER" ) ) |
|
{ |
|
fd = new MserFeatureDetector( 5/*delta*/, 60/*min_area*/, 14400/*_max_area*/, 0.25f/*max_variation*/, |
|
0.2/*min_diversity*/, 200/*max_evolution*/, 1.01/*area_threshold*/, 0.003/*min_margin*/, |
|
5/*edge_blur_size*/ ); |
|
} |
|
else if( !detectorType.compare( "GFTT" ) ) |
|
{ |
|
fd = new GoodFeaturesToTrackDetector( 1000/*maxCorners*/, 0.01/*qualityLevel*/, 1./*minDistance*/, |
|
3/*int _blockSize*/, true/*useHarrisDetector*/, 0.04/*k*/ ); |
|
} |
|
else |
|
{ |
|
//CV_Error( CV_StsBadArg, "unsupported feature detector type"); |
|
} |
|
return fd; |
|
} |
|
|
|
DescriptorExtractor* createDescriptorExtractor( const string& descriptorExtractorType ) |
|
{ |
|
DescriptorExtractor* de = 0; |
|
if( !descriptorExtractorType.compare( "SIFT" ) ) |
|
{ |
|
de = new SiftDescriptorExtractor/*( double magnification=SIFT::DescriptorParams::GET_DEFAULT_MAGNIFICATION(), |
|
bool isNormalize=true, bool recalculateAngles=true, |
|
int nOctaves=SIFT::CommonParams::DEFAULT_NOCTAVES, |
|
int nOctaveLayers=SIFT::CommonParams::DEFAULT_NOCTAVE_LAYERS, |
|
int firstOctave=SIFT::CommonParams::DEFAULT_FIRST_OCTAVE, |
|
int angleMode=SIFT::CommonParams::FIRST_ANGLE )*/; |
|
} |
|
else if( !descriptorExtractorType.compare( "SURF" ) ) |
|
{ |
|
de = new SurfDescriptorExtractor/*( int nOctaves=4, int nOctaveLayers=2, bool extended=false )*/; |
|
} |
|
else |
|
{ |
|
//CV_Error( CV_StsBadArg, "unsupported descriptor extractor type"); |
|
} |
|
return de; |
|
} |
|
|
|
DescriptorMatcher* createDescriptorMatcher( const string& descriptorMatcherType ) |
|
{ |
|
DescriptorMatcher* dm = 0; |
|
if( !descriptorMatcherType.compare( "BruteForce" ) ) |
|
{ |
|
dm = new BruteForceMatcher<L2<float> >(); |
|
} |
|
else |
|
{ |
|
//CV_Error( CV_StsBadArg, "unsupported descriptor matcher type"); |
|
} |
|
|
|
return dm; |
|
} |
|
|
|
void drawCorrespondences( const Mat& img1, const Mat& img2, |
|
const vector<KeyPoint>& keypoints1, const vector<KeyPoint>& keypoints2, |
|
const vector<int>& matches, Mat& drawImg, const Mat& H12 = Mat() ) |
|
{ |
|
Scalar RED = CV_RGB(255, 0, 0); // red keypoint - point without corresponding point |
|
Scalar GREEN = CV_RGB(0, 255, 0); // green keypoint - point having correct corresponding point |
|
Scalar BLUE = CV_RGB(0, 0, 255); // blue keypoint - point having incorrect corresponding point |
|
|
|
Size size(img1.cols + img2.cols, MAX(img1.rows, img2.rows)); |
|
drawImg.create(size, CV_MAKETYPE(img1.depth(), 3)); |
|
Mat drawImg1 = drawImg(Rect(0, 0, img1.cols, img1.rows)); |
|
cvtColor(img1, drawImg1, CV_GRAY2RGB); |
|
Mat drawImg2 = drawImg(Rect(img1.cols, 0, img2.cols, img2.rows)); |
|
cvtColor(img2, drawImg2, CV_GRAY2RGB); |
|
|
|
// draw keypoints |
|
for(vector<KeyPoint>::const_iterator it = keypoints1.begin(); it < keypoints1.end(); ++it ) |
|
{ |
|
circle(drawImg, it->pt, 3, RED); |
|
} |
|
for(vector<KeyPoint>::const_iterator it = keypoints2.begin(); it < keypoints2.end(); ++it ) |
|
{ |
|
Point p = it->pt; |
|
circle(drawImg, Point2f(p.x+img1.cols, p.y), 3, RED); |
|
} |
|
|
|
// draw matches |
|
vector<int>::const_iterator mit = matches.begin(); |
|
assert( matches.size() == keypoints1.size() ); |
|
for( int i1 = 0; mit != matches.end(); ++mit, i1++ ) |
|
{ |
|
Point2f pt1 = keypoints1[i1].pt, |
|
pt2 = keypoints2[*mit].pt, |
|
dpt2 = Point2f( std::min(pt2.x+img1.cols, float(drawImg.cols-1)), pt2.y); |
|
if( !H12.empty() ) |
|
{ |
|
if( norm(pt2 - applyHomography(H12, pt1)) > 3 ) |
|
{ |
|
circle(drawImg, pt1, 3, BLUE); |
|
circle(drawImg, dpt2, 3, BLUE); |
|
continue; |
|
} |
|
} |
|
circle(drawImg, pt1, 3, GREEN); |
|
circle(drawImg, dpt2, 3, GREEN); |
|
line(drawImg, pt1, dpt2, GREEN); |
|
} |
|
} |
|
|
|
const string winName = "correspondences"; |
|
|
|
void doIteration( const Mat& img1, Mat& img2, bool isWarpPerspective, |
|
const vector<KeyPoint>& keypoints1, const Mat& descriptors1, |
|
Ptr<FeatureDetector>& detector, Ptr<DescriptorExtractor>& descriptorExtractor, |
|
Ptr<DescriptorMatcher>& descriptorMatcher, |
|
double ransacReprojThreshold = -1, RNG* rng = 0 ) |
|
{ |
|
assert( !img1.empty() ); |
|
Mat H12; |
|
if( isWarpPerspective ) |
|
{ |
|
assert( rng ); |
|
warpPerspectiveRand(img1, img2, H12, rng); |
|
} |
|
else |
|
assert( !img2.empty()/* && img2.cols==img1.cols && img2.rows==img1.rows*/ ); |
|
|
|
cout << endl << "< Extracting keypoints from second image..." << endl; |
|
vector<KeyPoint> keypoints2; |
|
detector->detect( img2, keypoints2 ); |
|
cout << keypoints2.size() << " >" << endl; |
|
|
|
cout << "< Computing descriptors for keypoints from second image..." << endl; |
|
Mat descriptors2; |
|
descriptorExtractor->compute( img2, keypoints2, descriptors2 ); |
|
cout << " >" << endl; |
|
|
|
cout << "< Matching descriptors..." << endl; |
|
vector<int> matches; |
|
descriptorMatcher->clear(); |
|
descriptorMatcher->add( descriptors2 ); |
|
descriptorMatcher->match( descriptors1, matches ); |
|
cout << ">" << endl; |
|
|
|
if( !isWarpPerspective && ransacReprojThreshold >= 0 ) |
|
{ |
|
cout << "< Computing homography (RANSAC)..." << endl; |
|
vector<Point2f> points1(matches.size()), points2(matches.size()); |
|
for( size_t i = 0; i < matches.size(); i++ ) |
|
{ |
|
points1[i] = keypoints1[i].pt; |
|
points2[i] = keypoints2[matches[i]].pt; |
|
} |
|
H12 = findHomography( Mat(points1), Mat(points2), CV_RANSAC, ransacReprojThreshold ); |
|
cout << ">" << endl; |
|
} |
|
|
|
Mat drawImg; |
|
drawCorrespondences( img1, img2, keypoints1, keypoints2, matches, drawImg, H12 ); |
|
imshow( winName, drawImg ); |
|
} |
|
|
|
int main(int argc, char** argv) |
|
{ |
|
if( argc != 4 && argc != 6 ) |
|
{ |
|
cout << "Format:" << endl; |
|
cout << "case1: second image is obtained from the first (given) image using random generated homography matrix" << endl; |
|
cout << argv[0] << " [detectorType] [descriptorType] [image1]" << endl; |
|
cout << "case2: both images are given. If ransacReprojThreshold>=0 then homography matrix are calculated" << endl; |
|
cout << argv[0] << " [detectorType] [descriptorType] [image1] [image2] [ransacReprojThreshold]" << endl; |
|
cout << endl << "Mathes are filtered using homography matrix in case1 and case2 (if ransacReprojThreshold>=0)" << endl; |
|
return -1; |
|
} |
|
bool isWarpPerspective = argc == 4; |
|
double ransacReprojThreshold = -1; |
|
if( !isWarpPerspective ) |
|
ransacReprojThreshold = atof(argv[5]); |
|
|
|
cout << "< Creating detector, descriptor extractor and descriptor matcher ..." << endl; |
|
Ptr<FeatureDetector> detector = createDetector( argv[1] ); |
|
Ptr<DescriptorExtractor> descriptorExtractor = createDescriptorExtractor( argv[2] ); |
|
Ptr<DescriptorMatcher> descriptorMatcher = createDescriptorMatcher( "BruteForce" ); |
|
cout << ">" << endl; |
|
if( detector.empty() || descriptorExtractor.empty() || descriptorMatcher.empty() ) |
|
{ |
|
cout << "Can not create detector or descriptor exstractor or descriptor matcher of given types" << endl; |
|
return -1; |
|
} |
|
|
|
cout << "< Reading the images..." << endl; |
|
Mat img1 = imread( argv[3], CV_LOAD_IMAGE_GRAYSCALE), img2; |
|
if( !isWarpPerspective ) |
|
img2 = imread( argv[4], CV_LOAD_IMAGE_GRAYSCALE); |
|
cout << ">" << endl; |
|
if( img1.empty() || (!isWarpPerspective && img2.empty()) ) |
|
{ |
|
cout << "Can not read images" << endl; |
|
return -1; |
|
} |
|
|
|
cout << endl << "< Extracting keypoints from first image..." << endl; |
|
vector<KeyPoint> keypoints1; |
|
detector->detect( img1, keypoints1 ); |
|
cout << keypoints1.size() << " >" << endl; |
|
|
|
cout << "< Computing descriptors for keypoints from first image..." << endl; |
|
Mat descriptors1; |
|
descriptorExtractor->compute( img1, keypoints1, descriptors1 ); |
|
cout << " >" << endl; |
|
|
|
namedWindow(winName, 1); |
|
RNG rng; |
|
doIteration( img1, img2, isWarpPerspective, keypoints1, descriptors1, |
|
detector, descriptorExtractor, descriptorMatcher, |
|
ransacReprojThreshold, &rng ); |
|
for(;;) |
|
{ |
|
char c = (char)cvWaitKey(0); |
|
if( c == '\x1b' ) // esc |
|
{ |
|
cout << "Exiting ..." << endl; |
|
return 0; |
|
} |
|
else if( isWarpPerspective ) |
|
{ |
|
doIteration( img1, img2, isWarpPerspective, keypoints1, descriptors1, |
|
detector, descriptorExtractor, descriptorMatcher, |
|
ransacReprojThreshold, &rng ); |
|
} |
|
} |
|
waitKey(0); |
|
return 0; |
|
}
|
|
|