mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
113 lines
4.0 KiB
113 lines
4.0 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// Intel License Agreement |
|
// |
|
// Copyright (C) 2000, Intel Corporation, all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of Intel Corporation may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
|
|
namespace cv { namespace ml { |
|
|
|
struct PairDI |
|
{ |
|
double d; |
|
int i; |
|
}; |
|
|
|
struct CmpPairDI |
|
{ |
|
bool operator ()(const PairDI& e1, const PairDI& e2) const |
|
{ |
|
return (e1.d < e2.d) || (e1.d == e2.d && e1.i < e2.i); |
|
} |
|
}; |
|
|
|
void createConcentricSpheresTestSet( int num_samples, int num_features, int num_classes, |
|
OutputArray _samples, OutputArray _responses) |
|
{ |
|
if( num_samples < 1 ) |
|
CV_Error( cv::Error::StsBadArg, "num_samples parameter must be positive" ); |
|
|
|
if( num_features < 1 ) |
|
CV_Error( cv::Error::StsBadArg, "num_features parameter must be positive" ); |
|
|
|
if( num_classes < 1 ) |
|
CV_Error( cv::Error::StsBadArg, "num_classes parameter must be positive" ); |
|
|
|
int i, cur_class; |
|
|
|
_samples.create( num_samples, num_features, CV_32F ); |
|
_responses.create( 1, num_samples, CV_32S ); |
|
|
|
Mat responses = _responses.getMat(); |
|
|
|
Mat mean = Mat::zeros(1, num_features, CV_32F); |
|
Mat cov = Mat::eye(num_features, num_features, CV_32F); |
|
|
|
// fill the feature values matrix with random numbers drawn from standard normal distribution |
|
randMVNormal( mean, cov, num_samples, _samples ); |
|
Mat samples = _samples.getMat(); |
|
|
|
// calculate distances from the origin to the samples and put them |
|
// into the sequence along with indices |
|
std::vector<PairDI> dis(samples.rows); |
|
|
|
for( i = 0; i < samples.rows; i++ ) |
|
{ |
|
PairDI& elem = dis[i]; |
|
elem.i = i; |
|
elem.d = norm(samples.row(i), NORM_L2); |
|
} |
|
|
|
std::sort(dis.begin(), dis.end(), CmpPairDI()); |
|
|
|
// assign class labels |
|
num_classes = std::min( num_samples, num_classes ); |
|
for( i = 0, cur_class = 0; i < num_samples; ++cur_class ) |
|
{ |
|
int last_idx = num_samples * (cur_class + 1) / num_classes - 1; |
|
double max_dst = dis[last_idx].d; |
|
max_dst = std::max( max_dst, dis[i].d ); |
|
|
|
for( ; i < num_samples && dis[i].d <= max_dst; ++i ) |
|
responses.at<int>(dis[i].i) = cur_class; |
|
} |
|
} |
|
|
|
}} |
|
|
|
/* End of file. */
|
|
|