Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
263 lines
9.3 KiB
263 lines
9.3 KiB
/*M/////////////////////////////////////////////////////////////////////////////////////// |
|
// |
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
|
// |
|
// By downloading, copying, installing or using the software you agree to this license. |
|
// If you do not agree to this license, do not download, install, |
|
// copy or use the software. |
|
// |
|
// |
|
// License Agreement |
|
// For Open Source Computer Vision Library |
|
// |
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
|
// Third party copyrights are property of their respective owners. |
|
// |
|
// Redistribution and use in source and binary forms, with or without modification, |
|
// are permitted provided that the following conditions are met: |
|
// |
|
// * Redistribution's of source code must retain the above copyright notice, |
|
// this list of conditions and the following disclaimer. |
|
// |
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
|
// this list of conditions and the following disclaimer in the documentation |
|
// and/or other materials provided with the distribution. |
|
// |
|
// * The name of the copyright holders may not be used to endorse or promote products |
|
// derived from this software without specific prior written permission. |
|
// |
|
// This software is provided by the copyright holders and contributors "as is" and |
|
// any express or implied warranties, including, but not limited to, the implied |
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
|
// indirect, incidental, special, exemplary, or consequential damages |
|
// (including, but not limited to, procurement of substitute goods or services; |
|
// loss of use, data, or profits; or business interruption) however caused |
|
// and on any theory of liability, whether in contract, strict liability, |
|
// or tort (including negligence or otherwise) arising in any way out of |
|
// the use of this software, even if advised of the possibility of such damage. |
|
// |
|
//M*/ |
|
|
|
#include "precomp.hpp" |
|
|
|
namespace cv |
|
{ |
|
|
|
/////////////////////// AlgorithmInfo for various detector & descriptors //////////////////////////// |
|
|
|
/* NOTE!!! |
|
All the AlgorithmInfo-related stuff should be in the same file as initModule_features2d(). |
|
Otherwise, linker may throw away some seemingly unused stuff. |
|
*/ |
|
|
|
static Algorithm* createBRIEF() { return new BriefDescriptorExtractor; } |
|
static AlgorithmInfo& brief_info() |
|
{ |
|
static AlgorithmInfo brief_info_var("Feature2D.BRIEF", createBRIEF); |
|
return brief_info_var; |
|
} |
|
|
|
static AlgorithmInfo& brief_info_auto = brief_info(); |
|
|
|
AlgorithmInfo* BriefDescriptorExtractor::info() const |
|
{ |
|
static volatile bool initialized = false; |
|
if( !initialized ) |
|
{ |
|
BriefDescriptorExtractor brief; |
|
brief_info().addParam(brief, "bytes", brief.bytes_); |
|
|
|
initialized = true; |
|
} |
|
return &brief_info(); |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////////////// |
|
|
|
static Algorithm* createFAST() { return new FastFeatureDetector; } |
|
static AlgorithmInfo& fast_info() |
|
{ |
|
static AlgorithmInfo fast_info_var("Feature2D.FAST", createFAST); |
|
return fast_info_var; |
|
} |
|
|
|
static AlgorithmInfo& fast_info_auto = fast_info(); |
|
|
|
AlgorithmInfo* FastFeatureDetector::info() const |
|
{ |
|
static volatile bool initialized = false; |
|
if( !initialized ) |
|
{ |
|
FastFeatureDetector obj; |
|
fast_info().addParam(obj, "threshold", obj.threshold); |
|
fast_info().addParam(obj, "nonmaxSuppression", obj.nonmaxSuppression); |
|
|
|
initialized = true; |
|
} |
|
return &fast_info(); |
|
} |
|
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////////////// |
|
|
|
static Algorithm* createStarDetector() { return new StarDetector; } |
|
static AlgorithmInfo& star_info() |
|
{ |
|
static AlgorithmInfo star_info_var("Feature2D.STAR", createStarDetector); |
|
return star_info_var; |
|
} |
|
|
|
static AlgorithmInfo& star_info_auto = star_info(); |
|
|
|
AlgorithmInfo* StarDetector::info() const |
|
{ |
|
static volatile bool initialized = false; |
|
if( !initialized ) |
|
{ |
|
StarDetector obj; |
|
star_info().addParam(obj, "maxSize", obj.maxSize); |
|
star_info().addParam(obj, "responseThreshold", obj.responseThreshold); |
|
star_info().addParam(obj, "lineThresholdProjected", obj.lineThresholdProjected); |
|
star_info().addParam(obj, "lineThresholdBinarized", obj.lineThresholdBinarized); |
|
star_info().addParam(obj, "suppressNonmaxSize", obj.suppressNonmaxSize); |
|
|
|
initialized = true; |
|
} |
|
return &star_info(); |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////////////// |
|
|
|
static Algorithm* createMSER() { return new MSER; } |
|
static AlgorithmInfo& mser_info() |
|
{ |
|
static AlgorithmInfo mser_info_var("Feature2D.MSER", createMSER); |
|
return mser_info_var; |
|
} |
|
|
|
static AlgorithmInfo& mser_info_auto = mser_info(); |
|
|
|
AlgorithmInfo* MSER::info() const |
|
{ |
|
static volatile bool initialized = false; |
|
if( !initialized ) |
|
{ |
|
MSER obj; |
|
mser_info().addParam(obj, "delta", obj.delta); |
|
mser_info().addParam(obj, "minArea", obj.minArea); |
|
mser_info().addParam(obj, "maxArea", obj.maxArea); |
|
mser_info().addParam(obj, "maxVariation", obj.maxVariation); |
|
mser_info().addParam(obj, "minDiversity", obj.minDiversity); |
|
mser_info().addParam(obj, "maxEvolution", obj.maxEvolution); |
|
mser_info().addParam(obj, "areaThreshold", obj.areaThreshold); |
|
mser_info().addParam(obj, "minMargin", obj.minMargin); |
|
mser_info().addParam(obj, "edgeBlurSize", obj.edgeBlurSize); |
|
|
|
initialized = true; |
|
} |
|
return &mser_info(); |
|
} |
|
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////////////// |
|
|
|
static Algorithm* createORB() { return new ORB; } |
|
static AlgorithmInfo& orb_info() |
|
{ |
|
static AlgorithmInfo orb_info_var("Feature2D.ORB", createORB); |
|
return orb_info_var; |
|
} |
|
|
|
static AlgorithmInfo& orb_info_auto = orb_info(); |
|
|
|
AlgorithmInfo* ORB::info() const |
|
{ |
|
static volatile bool initialized = false; |
|
if( !initialized ) |
|
{ |
|
ORB obj; |
|
orb_info().addParam(obj, "nFeatures", obj.nfeatures); |
|
orb_info().addParam(obj, "scaleFactor", obj.scaleFactor); |
|
orb_info().addParam(obj, "nLevels", obj.nlevels); |
|
orb_info().addParam(obj, "firstLevel", obj.firstLevel); |
|
orb_info().addParam(obj, "edgeThreshold", obj.edgeThreshold); |
|
orb_info().addParam(obj, "patchSize", obj.patchSize); |
|
orb_info().addParam(obj, "WTA_K", obj.WTA_K); |
|
orb_info().addParam(obj, "scoreType", obj.scoreType); |
|
|
|
initialized = true; |
|
} |
|
return &orb_info(); |
|
} |
|
|
|
static Algorithm* createGFTT() { return new GFTTDetector; } |
|
static Algorithm* createHarris() |
|
{ |
|
GFTTDetector* d = new GFTTDetector; |
|
d->set("useHarris", true); |
|
return d; |
|
} |
|
|
|
static AlgorithmInfo gftt_info("Feature2D.GFTT", createGFTT); |
|
static AlgorithmInfo harris_info("Feature2D.HARRIS", createHarris); |
|
|
|
AlgorithmInfo* GFTTDetector::info() const |
|
{ |
|
static volatile bool initialized = false; |
|
if( !initialized ) |
|
{ |
|
GFTTDetector obj; |
|
gftt_info.addParam(obj, "nfeatures", obj.nfeatures); |
|
gftt_info.addParam(obj, "qualityLevel", obj.qualityLevel); |
|
gftt_info.addParam(obj, "minDistance", obj.minDistance); |
|
gftt_info.addParam(obj, "useHarrisDetector", obj.useHarrisDetector); |
|
gftt_info.addParam(obj, "k", obj.k); |
|
|
|
harris_info.addParam(obj, "nfeatures", obj.nfeatures); |
|
harris_info.addParam(obj, "qualityLevel", obj.qualityLevel); |
|
harris_info.addParam(obj, "minDistance", obj.minDistance); |
|
harris_info.addParam(obj, "useHarrisDetector", obj.useHarrisDetector); |
|
harris_info.addParam(obj, "k", obj.k); |
|
|
|
initialized = true; |
|
} |
|
return &gftt_info; |
|
} |
|
|
|
static Algorithm* createDense() { return new DenseFeatureDetector; } |
|
static AlgorithmInfo dense_info("Feature2D.Dense", createDense); |
|
|
|
AlgorithmInfo* DenseFeatureDetector::info() const |
|
{ |
|
static volatile bool initialized = false; |
|
if( !initialized ) |
|
{ |
|
DenseFeatureDetector obj; |
|
dense_info.addParam(obj, "initFeatureScale", obj.initFeatureScale); |
|
dense_info.addParam(obj, "featureScaleLevels", obj.featureScaleLevels); |
|
dense_info.addParam(obj, "featureScaleMul", obj.featureScaleMul); |
|
dense_info.addParam(obj, "initXyStep", obj.initXyStep); |
|
dense_info.addParam(obj, "initImgBound", obj.initImgBound); |
|
dense_info.addParam(obj, "varyXyStepWithScale", obj.varyXyStepWithScale); |
|
dense_info.addParam(obj, "varyImgBoundWithScale", obj.varyImgBoundWithScale); |
|
|
|
initialized = true; |
|
} |
|
return &dense_info; |
|
} |
|
|
|
bool initModule_features2d(void) |
|
{ |
|
Ptr<Algorithm> brief = createBRIEF(), orb = createORB(), |
|
star = createStarDetector(), fastd = createFAST(), mser = createMSER(), |
|
dense = createDense(), gftt = createGFTT(), harris = createHarris(); |
|
|
|
return brief->info() != 0 && orb->info() != 0 && star->info() != 0 && |
|
fastd->info() != 0 && mser->info() != 0 && dense->info() != 0 && |
|
gftt->info() != 0 && harris->info() != 0; |
|
} |
|
|
|
} |
|
|
|
|