mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
178 lines
5.8 KiB
178 lines
5.8 KiB
// The "Square Detector" program. |
|
// It loads several images sequentially and tries to find squares in |
|
// each image |
|
|
|
#include "opencv2/core/core.hpp" |
|
#include "opencv2/imgproc/imgproc.hpp" |
|
#include "opencv2/highgui/highgui.hpp" |
|
#include "opencv2/ocl/ocl.hpp" |
|
|
|
#include <iostream> |
|
#include <math.h> |
|
#include <string.h> |
|
|
|
using namespace cv; |
|
using namespace std; |
|
|
|
static void help() |
|
{ |
|
cout << |
|
"\nA program using OCL module pyramid scaling, Canny, dilate functions, threshold, split; cpu contours, contour simpification and\n" |
|
"memory storage (it's got it all folks) to find\n" |
|
"squares in a list of images pic1-6.png\n" |
|
"Returns sequence of squares detected on the image.\n" |
|
"the sequence is stored in the specified memory storage\n" |
|
"Call:\n" |
|
"./squares\n" |
|
"Using OpenCV version %s\n" << CV_VERSION << "\n" << endl; |
|
} |
|
|
|
|
|
int thresh = 50, N = 11; |
|
const char* wndname = "OpenCL Square Detection Demo"; |
|
|
|
// helper function: |
|
// finds a cosine of angle between vectors |
|
// from pt0->pt1 and from pt0->pt2 |
|
static double angle( Point pt1, Point pt2, Point pt0 ) |
|
{ |
|
double dx1 = pt1.x - pt0.x; |
|
double dy1 = pt1.y - pt0.y; |
|
double dx2 = pt2.x - pt0.x; |
|
double dy2 = pt2.y - pt0.y; |
|
return (dx1*dx2 + dy1*dy2)/sqrt((dx1*dx1 + dy1*dy1)*(dx2*dx2 + dy2*dy2) + 1e-10); |
|
} |
|
|
|
// returns sequence of squares detected on the image. |
|
// the sequence is stored in the specified memory storage |
|
static void findSquares( const Mat& image, vector<vector<Point> >& squares ) |
|
{ |
|
squares.clear(); |
|
|
|
Mat gray; |
|
cv::ocl::oclMat pyr_ocl, timg_ocl, gray0_ocl, gray_ocl; |
|
|
|
// down-scale and upscale the image to filter out the noise |
|
ocl::pyrDown(ocl::oclMat(image), pyr_ocl); |
|
ocl::pyrUp(pyr_ocl, timg_ocl); |
|
|
|
vector<vector<Point> > contours; |
|
vector<cv::ocl::oclMat> gray0s; |
|
ocl::split(timg_ocl, gray0s); // split 3 channels into a vector of oclMat |
|
// find squares in every color plane of the image |
|
for( int c = 0; c < 3; c++ ) |
|
{ |
|
gray0_ocl = gray0s[c]; |
|
// try several threshold levels |
|
for( int l = 0; l < N; l++ ) |
|
{ |
|
// hack: use Canny instead of zero threshold level. |
|
// Canny helps to catch squares with gradient shading |
|
if( l == 0 ) |
|
{ |
|
// do canny on OpenCL device |
|
// apply Canny. Take the upper threshold from slider |
|
// and set the lower to 0 (which forces edges merging) |
|
cv::ocl::Canny(gray0_ocl, gray_ocl, 0, thresh, 5); |
|
// dilate canny output to remove potential |
|
// holes between edge segments |
|
ocl::dilate(gray_ocl, gray_ocl, Mat(), Point(-1,-1)); |
|
gray = Mat(gray_ocl); |
|
} |
|
else |
|
{ |
|
// apply threshold if l!=0: |
|
// tgray(x,y) = gray(x,y) < (l+1)*255/N ? 255 : 0 |
|
cv::ocl::threshold(gray0_ocl, gray_ocl, (l+1)*255/N, 255, THRESH_BINARY); |
|
gray = gray_ocl; |
|
} |
|
|
|
// find contours and store them all as a list |
|
findContours(gray, contours, RETR_LIST, CHAIN_APPROX_SIMPLE); |
|
|
|
vector<Point> approx; |
|
|
|
// test each contour |
|
for( size_t i = 0; i < contours.size(); i++ ) |
|
{ |
|
// approximate contour with accuracy proportional |
|
// to the contour perimeter |
|
approxPolyDP(Mat(contours[i]), approx, arcLength(Mat(contours[i]), true)*0.02, true); |
|
|
|
// square contours should have 4 vertices after approximation |
|
// relatively large area (to filter out noisy contours) |
|
// and be convex. |
|
// Note: absolute value of an area is used because |
|
// area may be positive or negative - in accordance with the |
|
// contour orientation |
|
if( approx.size() == 4 && |
|
fabs(contourArea(Mat(approx))) > 1000 && |
|
isContourConvex(Mat(approx)) ) |
|
{ |
|
double maxCosine = 0; |
|
|
|
for( int j = 2; j < 5; j++ ) |
|
{ |
|
// find the maximum cosine of the angle between joint edges |
|
double cosine = fabs(angle(approx[j%4], approx[j-2], approx[j-1])); |
|
maxCosine = MAX(maxCosine, cosine); |
|
} |
|
|
|
// if cosines of all angles are small |
|
// (all angles are ~90 degree) then write quandrange |
|
// vertices to resultant sequence |
|
if( maxCosine < 0.3 ) |
|
squares.push_back(approx); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
// the function draws all the squares in the image |
|
static void drawSquares( Mat& image, const vector<vector<Point> >& squares ) |
|
{ |
|
for( size_t i = 0; i < squares.size(); i++ ) |
|
{ |
|
const Point* p = &squares[i][0]; |
|
int n = (int)squares[i].size(); |
|
polylines(image, &p, &n, 1, true, Scalar(0,255,0), 3, CV_AA); |
|
} |
|
|
|
imshow(wndname, image); |
|
} |
|
|
|
|
|
int main(int /*argc*/, char** /*argv*/) |
|
{ |
|
|
|
//ocl::setBinpath("F:/kernel_bin"); |
|
vector<ocl::Info> info; |
|
CV_Assert(ocl::getDevice(info)); |
|
|
|
static const char* names[] = { "pic1.png", "pic2.png", "pic3.png", |
|
"pic4.png", "pic5.png", "pic6.png", 0 }; |
|
help(); |
|
namedWindow( wndname, 1 ); |
|
vector<vector<Point> > squares; |
|
|
|
for( int i = 0; names[i] != 0; i++ ) |
|
{ |
|
Mat image = imread(names[i], 1); |
|
if( image.empty() ) |
|
{ |
|
cout << "Couldn't load " << names[i] << endl; |
|
continue; |
|
} |
|
|
|
findSquares(image, squares); |
|
drawSquares(image, squares); |
|
|
|
int c = waitKey(); |
|
if( (char)c == 27 ) |
|
break; |
|
} |
|
|
|
return 0; |
|
}
|
|
|