mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
335 lines
11 KiB
335 lines
11 KiB
#include <iostream> |
|
#include <stdio.h> |
|
#include "opencv2/core/core.hpp" |
|
#include "opencv2/core/utility.hpp" |
|
#include "opencv2/highgui/highgui.hpp" |
|
#include "opencv2/ocl/ocl.hpp" |
|
#include "opencv2/nonfree/ocl.hpp" |
|
#include "opencv2/calib3d/calib3d.hpp" |
|
#include "opencv2/nonfree/nonfree.hpp" |
|
|
|
using namespace cv; |
|
using namespace cv::ocl; |
|
|
|
const int LOOP_NUM = 10; |
|
const int GOOD_PTS_MAX = 50; |
|
const float GOOD_PORTION = 0.15f; |
|
|
|
namespace |
|
{ |
|
|
|
int64 work_begin = 0; |
|
int64 work_end = 0; |
|
|
|
void workBegin() |
|
{ |
|
work_begin = getTickCount(); |
|
} |
|
void workEnd() |
|
{ |
|
work_end = getTickCount() - work_begin; |
|
} |
|
double getTime() |
|
{ |
|
return work_end /((double)getTickFrequency() * 1000.); |
|
} |
|
|
|
template<class KPDetector> |
|
struct SURFDetector |
|
{ |
|
KPDetector surf; |
|
SURFDetector(double hessian = 800.0) |
|
:surf(hessian) |
|
{ |
|
} |
|
template<class T> |
|
void operator()(const T& in, const T& mask, std::vector<cv::KeyPoint>& pts, T& descriptors, bool useProvided = false) |
|
{ |
|
surf(in, mask, pts, descriptors, useProvided); |
|
} |
|
}; |
|
|
|
template<class KPMatcher> |
|
struct SURFMatcher |
|
{ |
|
KPMatcher matcher; |
|
template<class T> |
|
void match(const T& in1, const T& in2, std::vector<cv::DMatch>& matches) |
|
{ |
|
matcher.match(in1, in2, matches); |
|
} |
|
}; |
|
|
|
Mat drawGoodMatches( |
|
const Mat& cpu_img1, |
|
const Mat& cpu_img2, |
|
const std::vector<KeyPoint>& keypoints1, |
|
const std::vector<KeyPoint>& keypoints2, |
|
std::vector<DMatch>& matches, |
|
std::vector<Point2f>& scene_corners_ |
|
) |
|
{ |
|
//-- Sort matches and preserve top 10% matches |
|
std::sort(matches.begin(), matches.end()); |
|
std::vector< DMatch > good_matches; |
|
double minDist = matches.front().distance, |
|
maxDist = matches.back().distance; |
|
|
|
const int ptsPairs = std::min(GOOD_PTS_MAX, (int)(matches.size() * GOOD_PORTION)); |
|
for( int i = 0; i < ptsPairs; i++ ) |
|
{ |
|
good_matches.push_back( matches[i] ); |
|
} |
|
std::cout << "\nMax distance: " << maxDist << std::endl; |
|
std::cout << "Min distance: " << minDist << std::endl; |
|
|
|
std::cout << "Calculating homography using " << ptsPairs << " point pairs." << std::endl; |
|
|
|
// drawing the results |
|
Mat img_matches; |
|
drawMatches( cpu_img1, keypoints1, cpu_img2, keypoints2, |
|
good_matches, img_matches, Scalar::all(-1), Scalar::all(-1), |
|
std::vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS ); |
|
|
|
//-- Localize the object |
|
std::vector<Point2f> obj; |
|
std::vector<Point2f> scene; |
|
|
|
for( size_t i = 0; i < good_matches.size(); i++ ) |
|
{ |
|
//-- Get the keypoints from the good matches |
|
obj.push_back( keypoints1[ good_matches[i].queryIdx ].pt ); |
|
scene.push_back( keypoints2[ good_matches[i].trainIdx ].pt ); |
|
} |
|
//-- Get the corners from the image_1 ( the object to be "detected" ) |
|
std::vector<Point2f> obj_corners(4); |
|
obj_corners[0] = Point(0,0); |
|
obj_corners[1] = Point( cpu_img1.cols, 0 ); |
|
obj_corners[2] = Point( cpu_img1.cols, cpu_img1.rows ); |
|
obj_corners[3] = Point( 0, cpu_img1.rows ); |
|
std::vector<Point2f> scene_corners(4); |
|
|
|
Mat H = findHomography( obj, scene, RANSAC ); |
|
perspectiveTransform( obj_corners, scene_corners, H); |
|
|
|
scene_corners_ = scene_corners; |
|
|
|
//-- Draw lines between the corners (the mapped object in the scene - image_2 ) |
|
line( img_matches, |
|
scene_corners[0] + Point2f( (float)cpu_img1.cols, 0), scene_corners[1] + Point2f( (float)cpu_img1.cols, 0), |
|
Scalar( 0, 255, 0), 2, LINE_AA ); |
|
line( img_matches, |
|
scene_corners[1] + Point2f( (float)cpu_img1.cols, 0), scene_corners[2] + Point2f( (float)cpu_img1.cols, 0), |
|
Scalar( 0, 255, 0), 2, LINE_AA ); |
|
line( img_matches, |
|
scene_corners[2] + Point2f( (float)cpu_img1.cols, 0), scene_corners[3] + Point2f( (float)cpu_img1.cols, 0), |
|
Scalar( 0, 255, 0), 2, LINE_AA ); |
|
line( img_matches, |
|
scene_corners[3] + Point2f( (float)cpu_img1.cols, 0), scene_corners[0] + Point2f( (float)cpu_img1.cols, 0), |
|
Scalar( 0, 255, 0), 2, LINE_AA ); |
|
return img_matches; |
|
} |
|
|
|
} |
|
//////////////////////////////////////////////////// |
|
// This program demonstrates the usage of SURF_OCL. |
|
// use cpu findHomography interface to calculate the transformation matrix |
|
int main(int argc, char* argv[]) |
|
{ |
|
const char* keys = |
|
"{ help h | false | print help message }" |
|
"{ left l | | specify left image }" |
|
"{ right r | | specify right image }" |
|
"{ output o | SURF_output.jpg | specify output save path (only works in CPU or GPU only mode) }" |
|
"{ use_cpu c | false | use CPU algorithms }" |
|
"{ use_all a | false | use both CPU and GPU algorithms}"; |
|
CommandLineParser cmd(argc, argv, keys); |
|
if (cmd.get<bool>("help")) |
|
{ |
|
std::cout << "Available options:" << std::endl; |
|
cmd.printMessage(); |
|
return 0; |
|
} |
|
|
|
Mat cpu_img1, cpu_img2, cpu_img1_grey, cpu_img2_grey; |
|
oclMat img1, img2; |
|
bool useCPU = cmd.get<bool>("c"); |
|
bool useGPU = false; |
|
bool useALL = cmd.get<bool>("a"); |
|
|
|
std::string outpath = cmd.get<std::string>("o"); |
|
|
|
cpu_img1 = imread(cmd.get<std::string>("l")); |
|
CV_Assert(!cpu_img1.empty()); |
|
cvtColor(cpu_img1, cpu_img1_grey, COLOR_BGR2GRAY); |
|
img1 = cpu_img1_grey; |
|
|
|
cpu_img2 = imread(cmd.get<std::string>("r")); |
|
CV_Assert(!cpu_img2.empty()); |
|
cvtColor(cpu_img2, cpu_img2_grey, COLOR_BGR2GRAY); |
|
img2 = cpu_img2_grey; |
|
|
|
if(useALL) |
|
{ |
|
useCPU = false; |
|
useGPU = false; |
|
} |
|
else if(useCPU==false && useALL==false) |
|
{ |
|
useGPU = true; |
|
} |
|
|
|
if(!useCPU) |
|
{ |
|
std::cout |
|
<< "Device name:" |
|
<< cv::ocl::Context::getContext()->getDeviceInfo().deviceName |
|
<< std::endl; |
|
} |
|
double surf_time = 0.; |
|
|
|
//declare input/output |
|
std::vector<KeyPoint> keypoints1, keypoints2; |
|
std::vector<DMatch> matches; |
|
|
|
std::vector<KeyPoint> gpu_keypoints1; |
|
std::vector<KeyPoint> gpu_keypoints2; |
|
std::vector<DMatch> gpu_matches; |
|
|
|
Mat descriptors1CPU, descriptors2CPU; |
|
|
|
oclMat keypoints1GPU, keypoints2GPU; |
|
oclMat descriptors1GPU, descriptors2GPU; |
|
|
|
//instantiate detectors/matchers |
|
SURFDetector<SURF> cpp_surf; |
|
SURFDetector<SURF_OCL> ocl_surf; |
|
|
|
SURFMatcher<BFMatcher> cpp_matcher; |
|
SURFMatcher<BFMatcher_OCL> ocl_matcher; |
|
|
|
//-- start of timing section |
|
if (useCPU) |
|
{ |
|
for (int i = 0; i <= LOOP_NUM; i++) |
|
{ |
|
if(i == 1) workBegin(); |
|
cpp_surf(cpu_img1_grey, Mat(), keypoints1, descriptors1CPU); |
|
cpp_surf(cpu_img2_grey, Mat(), keypoints2, descriptors2CPU); |
|
cpp_matcher.match(descriptors1CPU, descriptors2CPU, matches); |
|
} |
|
workEnd(); |
|
std::cout << "CPP: FOUND " << keypoints1.size() << " keypoints on first image" << std::endl; |
|
std::cout << "CPP: FOUND " << keypoints2.size() << " keypoints on second image" << std::endl; |
|
|
|
surf_time = getTime(); |
|
std::cout << "SURF run time: " << surf_time / LOOP_NUM << " ms" << std::endl<<"\n"; |
|
} |
|
else if(useGPU) |
|
{ |
|
for (int i = 0; i <= LOOP_NUM; i++) |
|
{ |
|
if(i == 1) workBegin(); |
|
ocl_surf(img1, oclMat(), keypoints1, descriptors1GPU); |
|
ocl_surf(img2, oclMat(), keypoints2, descriptors2GPU); |
|
ocl_matcher.match(descriptors1GPU, descriptors2GPU, matches); |
|
} |
|
workEnd(); |
|
std::cout << "OCL: FOUND " << keypoints1.size() << " keypoints on first image" << std::endl; |
|
std::cout << "OCL: FOUND " << keypoints2.size() << " keypoints on second image" << std::endl; |
|
|
|
surf_time = getTime(); |
|
std::cout << "SURF run time: " << surf_time / LOOP_NUM << " ms" << std::endl<<"\n"; |
|
} |
|
else |
|
{ |
|
//cpu runs |
|
for (int i = 0; i <= LOOP_NUM; i++) |
|
{ |
|
if(i == 1) workBegin(); |
|
cpp_surf(cpu_img1_grey, Mat(), keypoints1, descriptors1CPU); |
|
cpp_surf(cpu_img2_grey, Mat(), keypoints2, descriptors2CPU); |
|
cpp_matcher.match(descriptors1CPU, descriptors2CPU, matches); |
|
} |
|
workEnd(); |
|
std::cout << "\nCPP: FOUND " << keypoints1.size() << " keypoints on first image" << std::endl; |
|
std::cout << "CPP: FOUND " << keypoints2.size() << " keypoints on second image" << std::endl; |
|
|
|
surf_time = getTime(); |
|
std::cout << "(CPP)SURF run time: " << surf_time / LOOP_NUM << " ms" << std::endl; |
|
|
|
//gpu runs |
|
for (int i = 0; i <= LOOP_NUM; i++) |
|
{ |
|
if(i == 1) workBegin(); |
|
ocl_surf(img1, oclMat(), gpu_keypoints1, descriptors1GPU); |
|
ocl_surf(img2, oclMat(), gpu_keypoints2, descriptors2GPU); |
|
ocl_matcher.match(descriptors1GPU, descriptors2GPU, gpu_matches); |
|
} |
|
workEnd(); |
|
std::cout << "\nOCL: FOUND " << keypoints1.size() << " keypoints on first image" << std::endl; |
|
std::cout << "OCL: FOUND " << keypoints2.size() << " keypoints on second image" << std::endl; |
|
|
|
surf_time = getTime(); |
|
std::cout << "(OCL)SURF run time: " << surf_time / LOOP_NUM << " ms" << std::endl<<"\n"; |
|
|
|
} |
|
|
|
//-------------------------------------------------------------------------- |
|
std::vector<Point2f> cpu_corner; |
|
Mat img_matches = drawGoodMatches(cpu_img1, cpu_img2, keypoints1, keypoints2, matches, cpu_corner); |
|
|
|
std::vector<Point2f> gpu_corner; |
|
Mat ocl_img_matches; |
|
if(useALL || (!useCPU&&!useGPU)) |
|
{ |
|
ocl_img_matches = drawGoodMatches(cpu_img1, cpu_img2, gpu_keypoints1, gpu_keypoints2, gpu_matches, gpu_corner); |
|
|
|
//check accuracy |
|
std::cout<<"\nCheck accuracy:\n"; |
|
|
|
if(cpu_corner.size()!=gpu_corner.size()) |
|
std::cout<<"Failed\n"; |
|
else |
|
{ |
|
bool result = false; |
|
for(size_t i = 0; i < cpu_corner.size(); i++) |
|
{ |
|
if((std::abs(cpu_corner[i].x - gpu_corner[i].x) > 10) |
|
||(std::abs(cpu_corner[i].y - gpu_corner[i].y) > 10)) |
|
{ |
|
std::cout<<"Failed\n"; |
|
result = false; |
|
break; |
|
} |
|
result = true; |
|
} |
|
if(result) |
|
std::cout<<"Passed\n"; |
|
} |
|
} |
|
|
|
//-- Show detected matches |
|
if (useCPU) |
|
{ |
|
namedWindow("cpu surf matches", 0); |
|
imshow("cpu surf matches", img_matches); |
|
imwrite(outpath, img_matches); |
|
} |
|
else if(useGPU) |
|
{ |
|
namedWindow("ocl surf matches", 0); |
|
imshow("ocl surf matches", img_matches); |
|
imwrite(outpath, img_matches); |
|
} |
|
else |
|
{ |
|
namedWindow("cpu surf matches", 0); |
|
imshow("cpu surf matches", img_matches); |
|
|
|
namedWindow("ocl surf matches", 0); |
|
imshow("ocl surf matches", ocl_img_matches); |
|
} |
|
waitKey(0); |
|
return 0; |
|
}
|
|
|